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ABSTRACT

The multi-objective sensor tasking problem is framed
as a Partially Observable Markov Decision Process
(POMDP). To solve the POMDP, recent work has ex-
plored the use of Monte Carlo Tree Search (MCTS).
While MCTS is traditionally applied to single-objective
problems, this work extends its use to multi-objective
sensor tasking. The approach optimises three objec-
tives: discovering unregistered space objects, estimating
their orbits with limited measurements, and refining cat-
alogued orbits through tracking. Instead of scalarising
multi-objective returns, the algorithm maintains a utility
vector, driving MCTS toward Pareto-optimal solutions.
Macro- and micro-action levels are distinguished to man-
age the complexity of the decision problem. At the micro
level, initial implementations focus on stripe scanning for
search, refinement of the admissible region for follow-
up observations, and an information-theoretic selection
strategy for tracking. While the current implementation
is limited and exploratory, it provides a proof-of-concept
and identifies key directions for further development.

Keywords: Sensor tasking, Monte Carlo Tree Search, De-
cision problem, Multi-objectives, Pareto opimisation.

1. INTRODUCTION

To support sustainable practices in space and ensure se-
cure operational activities, there is a growing interest
in autonomous methods for space surveillance. Space
surveillance seeks to provide comprehensive insights into
space objects, including their origins, trajectories, mis-
sion goals, physical attributes, and rotational dynamics.
Within the context of sensor management for space sit-
uational awareness (SSA), these requirements introduce
competing objectives. The goal of sensor management is
to optimise the utilisation of sensor capacities to simul-
taneously achieve all SSA objectives. This paper focuses
on the following research question:

How can a single sensor system be tasked to efficiently
meet multiple objectives in SSA?

For surveying the space environment, optical sensors can
be tasked with scanning stripes to search for and re-
observe objects in geosynchronous orbit (GEO)[10, 18,
5]. The distribution of most GEO objects forms a ring
defining the Laplace plane. To cover the entire distri-
bution, it is sufficient to place the stripe at a fixed right
ascension angle containing the ring and scan this decli-
nation stripe continuously in a leakproof manner. Scan-
ning multiple stripes instead of just one allows for (re-
)observations at different positions along the orbit, refin-
ing orbit determination.

Schubert et al. [16] support stripe scanning as an effec-
tive method for systematically discovering new objects.
Furthermore, they propose extending the objective space
to improve initial orbit determination (IOD) by optimis-
ing a greedy sensor pointing reward function. Similarly,
Frueh et al. [6] frame sensor tasking as an optimisa-
tion problem, aiming to maximise the observed objective
area while satisfying specific criteria to enhance detection
rates compared to classical stripe scanning methods.

Previous research on sensor tasking has primarily fo-
cused on single-step approaches, maximising immedi-
ate rewards and producing optimal yet myopic solutions.
Fedeler [4] applies Monte Carlo Tree Search (MCTS) to
optical sensor systems to find near-optimal solutions over
the long term. Unlike previous methodologies, MCTS
employs a multi-step approach, identifying a sequence
of pointing directions while considering the future be-
haviour and evolution of the state and action space.

Ngo et al.[13] extends MCTS to a bi-objective problem,
balancing searching and tracking. However, this long-
term optimisation focuses on balancing sensor time re-
sources rather than the value each observation adds to
maintaining a space object catalogue. Existing literature
explores the use of information theory to quantify the
information gained from observations, guiding the opti-
misation of target-tracking strategies. Information gain
has been described using Fisher information, Rényi di-
vergence, and Kullback-Leibler divergence [21, 7, 12].

Despite these advancements, there remains a gap in ad-
dressing sensor tasking as a multi-objective and multi-
step problem. A multi-step approach seeks an opti-
mal tasking strategy over the long term, while a multi-
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objective perspective incorporates the need to gather as
much information as possible from the space environ-
ment to meet disparate needs of users, the SSA commu-
nity and space operators. The proposed approach con-
siders three main objectives: searching for unregistered
space objects, scheduling follow-up measurements to fa-
cilitate and confirm the objects’ existence to add them to
the catalog, and refining orbit information for catalogued
objects through continuous tracking. This research aims
to MCTS to perform multi-objective optimisation, pre-
serving the rewards of each objective in a utility vec-
tor rather than scalarising multi-objective returns. The
MCTS algorithm prioritises pointing solutions based on
dominance in the utility space, iteratively refining the de-
cision tree to favour promising solution paths. The final
selection is near Pareto-optimal, improving the balance
across multiple SSA objectives. At the current stage, the
implementation is limited and exploratory, but neverthe-
less provides a proof-of-concept and identifies key direc-
tions for further development.

Furthermore, this research introduces a redefined action
space, structured as a tuple of macro and micro actions.
Micro actions are tactical, immediate choices linked to
high-level user objectives, represented as macro actions.
This distinction enables balancing short-term, objective-
driven decisions within the micro action space with long-
term strategic planning across multiple objectives in the
macro action space. The searching objective is achieved
using a stripe scanning algorithm. The tracking micro
action prioritises candidates based on their potential to
maximise information gain about catalogued objects over
the observation campaign. The follow-up objective is re-
alised by computing the constrained admissible region
(CAR) [1] from newly registered detections, with the re-
ward function favouring strategies that minimise uncer-
tainty regarding the CAR.

The structure of this paper is as follows: Sec. 2 provides
background on partially observable Markov decision pro-
cesses (POMDPs), Pareto optimisation, and MCTS. Sec.
3 details the implementation of MCTS in an SSA envi-
ronment. Finally, Sec. 4 summarises key findings and
offers recommendations for future research.

2. BACKGROUND

2.1. Partially Observable Markov Decision Problem

To address the research question, the sensor tasking prob-
lem is framed as a Partially Observable Markov Deci-
sion Problem (POMDP). The term partially observable
reflects the sensor’s limited knowledge of the environ-
ment, requiring a probabilistic belief in the state [15]. A
POMDP is defined by the septuple ⟨S, T,A,O,H,R, γ⟩:

• S represents the multi-target state space, encapsu-
lating knowledge of the space environment, main-
tained through an observation campaign,

• T denotes the conditional transition probabilities be-
tween states,

• A is the action space, representing decisions made
by an agent (e.g., an optical sensor),

• O is the observation space, where states and transi-
tions are only partially observable,

• H represents the measurement function that incor-
porates uncertainty, linking observations to the un-
derlying state,

• R quantifies the reward behind the associated
change in the state and action,

• γ ∈ [0, 1) is the discount factor, prioritising im-
mediate rewards when optimising the sensor tasking
strategy. In other words, a discount factor less than 1
decreases the importance of future rewards and val-
ues immediate rewards more [3].

2.2. Monte Carlo Tree Search

To solve the POMDP, this work explores Monte Carlo
Tree Search (MCTS), a reinforcement learning algorithm
that dynamically builds and evaluates a decision tree to
optimize task selection for an agent, such as an optical
sensor. MCTS seeks near-optimal long-term solutions by
identifying a sequence of pointing directions while ac-
counting for state space evolution.

Hayes et al. [9] propose an expectimax search tree using
MCTS, where expectimax refers to maximising the ex-
pected utility of a decision sequence. Here, utility models
feedback for multiple objectives, while reward represents
single-objective outcomes. The expectimax decision tree
consists of decision and chance nodes: a decision node
represents the environment and indicates that a decision
(further referred to as an action) has to be made. In con-
trast, a chance node is a child of a decision node and de-
notes the outcome resulting from the selected action. The
root node is always a decision node. To derive the optimal
sensor pointing strategy over the entire observation cam-
paign, the accumulated expected rewards of each branch
are summarised in a utility vector and propagated back-
wards to the root of the tree. The utilities are updated
and built up over a series of iterations, during which the
algorithm develops experience in deciding which actions
should be taken at each time to meet the multiple objec-
tives within the observation campaign.
MCTS therefore constructs a partial version of the full
decision tree, which is biased to focus on paths more
likely to lead to higher utility. This allows the algorithm
to achieve near-optimal outcomes while remaining com-
putationally tractable.

MCTS operates in two stages: planning and execution.
The planning stage consists of four phases:

• Selection: The algorithm traverses the tree, choos-
ing child nodes based on a balance of exploration



(discovering new options) and exploitation (select-
ing known high-utility paths). Random selection
can introduce inefficiencies, whereas guided selec-
tion improves decision quality.

• Expansion: A new action is chosen based on a pre-
defined policy, leading to the generation of a new
decision node, as shown in Fig. 1.

• Simulation (also Roll-out): A predefined policy
rolls out from the expanded node until a termination
state, such as the end of the observation campaign,
is reached.

• Backpropagation: The resulting cumulative utility
vector propagates back through the tree, updating
utility values and visit counts, which influence fu-
ture selections.

Expansion

Simulation

Figure 1. Decision tree with a newly expanded and sim-
ulated branch. Decision and chance nodes are repre-
sented by circular and hexagonal shapes, respectively.
The quadratic node illustrates the termination state of the
observation campaign.

2.3. Basic formulation of multi-objective decision-
making

Multi-objective decision-making algorithms seek to re-
turn a set of parameters that best optimise the following
problem defined in its general form:

min /max{y} = f(x̄) = [f1 (x̄) , f2 (x̄) , ..., fm (x̄)]

subject to: x̄ = (x1, x2, ..., xn) ∈ X (1)
ȳ = (y1, y2, ..., ym) ∈ Y

Here, x̄ represents an n-dimensional decision vector, and
ȳ is an m-dimensional objective vector. The compro-
mise over different (conflicting) objectives in f(x̄) leads
to a set of potential trade-off solutions, also called Pareto-
optimal solutions.

A solution is Pareto-optimal if it is not dominated by any
other solution, meaning no objective can be improved
without degrading another. Given two solutions x(1) and
x(2), x(1) dominates x(2) if:

1. x(1) is no worse than x(2) in all objectives, i.e.
fj(x

(1)) ⋫ fj(x
(2)) for all j = 1, 2, ...,M

2. x(1) is strictly better than x(2) in at least one objec-
tive, i.e. ∃k ∈ {1, 2, ...,M}, fk(x(1)) ◁ fk(x

(2))

The operator ◁ accounts for both minimisation and max-
imisation and denotes that (1) is better than (2) as
fk(x

(1)) ◁ fk(x
(2)). By iteratively comparing all solu-

tions, non-dominated solutions form the Pareto-optimal
set.

3. MONTE CARLO TREE SEARCH FOR
SENSOR TASKING IN SPACE SITUATIONAL
AWARENESS

Building on the general methodology of MCTS described
in the previous section, this part introduces a novel ap-
proach to constructing the decision tree for optimising
long-term pointing strategies. The objective is to max-
imise the expected utility of a pointing strategy while ad-
dressing three key goals:

1. Searching for unknown space objects,

2. Conducting follow-up observations to refine initial
orbit determination, and

3. Tracking specific targets of interest.

These objectives form the so-called macro action space.
In the following study, the size of the macro action space
is hence restricted to three objectives. From this point for-
ward, the terms macro action and objective will be used
interchangeably.
Since the tree starts with a decision node, it is first nec-
essary to define the role of this node in the context of the
SSA sensor tasking problem. Hence, Sec. 3.1 introduces
the characterisation of the nodes in the decision tree dis-
tinguishing between chance and decision nodes. The fol-
lowing Secs. 3.2 - 3.4 explore each macro action in detail,
beginning with a methodological overview, followed by
exemplary settings and test cases.

3.1. Node characteristics

As noted in Sec. 2.2 a decision node encodes the current
environment based on which a decision has to be made.
For the given sensor tasking problem, this environment
represents the status of the SSA catalogue that maps the
evolution of the multi-target state space. Each decision
node stores the following parameters:



• The accumulated time resources spent on previous
search tasks,

• The propagated environment under the influence of
the previous IOD actions,

• The propagated environment under the influence of
the previous tracking actions,

• The current pointing direction of the sensor

Since the root node does not yet have any child nodes, the
expansion phase is entered, and a new chance node needs
to be generated. The child node is sampled from the
macro action space, determining whether the underlying
node will perform a search, IOD, or tracking task. Based
on the sampled macro action, the corresponding pointing
task is selected from the micro action space, which con-
tains all potential pointing directions. The micro action
space varies depending on the sampled objective (see Sec.
3.2, 3.3 and 3.4). The selection of a micro action follows
a predefined reward function for the macro action space.
At this level, the choice is made using a greedy policy, en-
suring that the highest-reward micro action is prioritised.
The selected micro action then leads to the creation of a
chance node, which stores the following parameters:

• the sampled macro action

• the derived micro action

• the execution time of the underlying sensor task

The newly created chance node is directly followed by
the next decision node, which represents the updated en-
vironment after incorporating the effects of the chance
node.

Independent of its type (decision or chance), a node ad-
ditionally stores the following characteristics:

• the current utility value,

• the current utility vector and

• the number of visits to the current node.

The utility value is a scalar that records the number of so-
lutions that dominate the current node. The utility vector,
on the other hand, contains the individual rewards accu-
mulated from each micro action space.

3.2. Search

Once the algorithm determines that the current node
should be extended through a searching task, it invokes a
stripe scanning method introduced by Herzog et al. [10],
Flohrer et al. [5] and Siminski [18]. In this method, a

stripe composed of multiple declination fields is gener-
ated and placed at a fixed right ascension angle. To opti-
mise visibility and maximise the signal-to-noise ratio, the
stripe is positioned near the Earth’s shadow boundary.

The scanning process begins with the sensor positioned at
the lowest declination field within the stripe. The sensor
captures images while gradually moving upwards, cover-
ing the entire stripe. To prevent objects from escaping de-
tection between consecutive scans, the stripe length (i.e.,
the number of declination fields) is adjusted in order to
guarantee leakproofness. This adjustment accounts for
the angular velocity of target objects, the sensor’s field of
view (FOV), and its slewing velocity, as given by:

NdecField =

⌊
tleakproof + t1 − t2

Nexp

⌋
(2)

with tleakproof as the time duration it takes for a space
object to pass through the sensor’s FOV, t1 as the longer
of either the repositioning time to the next declination
field or the sensor’s readout time, t2 as the longer of ei-
ther the repositioning time from the last to the first dec-
lination field or the sensor’s readout time, and Nexp as
the number of images taken in one declination field. Un-
der the assumption that the space object takes one day to
orbit Earth, the detection algorithm is adapted to geosyn-
chronous orbits.

Fig. 2 provides a schematic overview of the scanning
process. Based on its slewing velocity, the sensor reposi-
tions to the lowest declination field of the scanning stripe.
It then settles at the new pointing location and prepares
for the upcoming measurements. Fig. 2 also shows a
zoomed-in illustration of the scan process within one dec-
lination field: In total, the sensor takes Nexp images of
the same declination field before repositioning to the next
one. After each image exposure of duration texp the sen-
sor requires tread to readout the data. The duration of
scanning one declination field is given by Eq. 3.

tdecField = Nexp · texp + (Nexp − 1) · tread (3)

3.2.1. Example of Stripe Scanning Method

To demonstrate the performance of the stripe scanning
method, consider an optical sensor located at a geode-
tic latitude ϕ = 6◦, longitude λ = −37◦ and at altitude
h = 0m. Furthermore, the sensor has the following tech-
nical specifications: exposure duration texp = 8 s, set-
tling time tset = 7 s, readout time tread = 7 s and an
elevation cutoff angle of ϵcut = 5◦. To maximise the
apparent brightness of GEO objects, the scanning stripe
is positioned near the Earth’s shadow, centered at a geo-
centric right ascension of α⊕ ≈ 192.24◦ on the night of
March 24, 2025, at 22:01:02.62 UTC. Fig. 3 illustrates
the scanning stripe configuration. The sensor’s parame-
ters enable a leakproof scan across NdecField = 6 dec-
lination fields, with each field being exposed Nexp = 5
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Figure 2. Operational timeline of search task. The box at the right side illustrates a scanning stripe with five declination
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times. The number of declination fields is determined us-
ing Eq. 2, where t1 = 9 s is the repositioning time to
the next declination field and t2 = 7 s set to the readout
time. Note that the stripe is not centered around the equa-
torial but around the Laplace plane. The entire scan of
the stripe takes approximately 475 s.
The performance of the stripe scanning method is evalu-
ated based on the number of detected space objects. For
this assessment, the entire GEO catalogue, consisting of
1,029 space objects, was retrieved from Spacetrack [19].
The dataset is filtered to include only objects with a mean
motion of n ∈ [0.99; 1.01] and an eccentricity ϵ < 0.01.
The Two Line Elements (TLE) are propagated to the mea-
surement epochs of the stripe scan tasks. A detection is
recorded whenever a propagated object enters the sen-
sor’s field of view (FOV) at a given measurement epoch,
assuming a detection probability of one.

As Fig. 3 shows, a total of 23 detections were recorded,
which corresponds to eight unique detections. Despite
setting the number of exposures to five, certain objects
were not captured in all five images. This was the case
for all detections within FOV5. Hence, all of them do not
reveal at least three angular measurement pairs, which
are necessary to perform an initial orbit determination.
To further evaluate the efficacy of the collected measure-
ments in deriving an orbit of the other objects, the de-

tections associated with object 22724 were selected for
an angles-only IOD using Gooding’s method [8]. Unfor-
tunately, the resulting initial state estimate is quite poor.
This is primarily due to the minimal spread between the
measurement pairs, coupled with the influence of mea-
surement noise. With a time interval of just 15 s between
two measurements, the three angular pairs used for the
IOD covered less than 0.04% of the actual orbit.

These findings highlight the need for improvements in
orbit determination accuracy for objects detected using
the stripe scanning method. One potential enhancement
involves introducing an additional macro-action for re-
observation, which is discussed further in Sec. 3.3.

3.3. Initial Orbit Determination

In the case that the algorithm decides to extend the cur-
rent node with an Initial Orbit Determination task, the
angular measurements that were recorded in a previous
search task are used to construct an attributable. For opti-
cal observations this attributable is presented by a vector
that contains two angles and two angular rates:

A =
[
α, δ, α̇, δ̇

]T
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Figure 3. Simulation of a stripe scan placed at the geo-
centric right ascension α⊕ ≈ 192.24◦ and centered at
the Laplace plane. The scan takes approximately 475 s
and captures eight space objects. The number of detec-
tions for each object is found in brackets in the legend.
Throughout the stripe scan the space objects are moving
eastwards (i.e. to the left).

where α is the topocentric right ascension, δ the dec-
lination, and the dot denotes the time rate of change
of the topocentric angles. Derived from the observa-
tion geometry and two-body energy, a two-dimensional
space of admissible solutions called the Admissible Re-
gion (AR) is defined. For optical observations, this re-
gion is spanned by the range and range-rate dimension,
and its unconstrained form contains all solutions of the
under-determined orbit system [14]. The set of solutions
can be further constrained by incorporating apriori infor-
mation about the semi-major axis and eccentricity of the
orbit, resulting in the so-called Constrained Admissible
Region (CAR).

This study builds upon the work of DeMars and Jah [1]
who derived the CAR and approximated it using a Gaus-
sian Mixture Model (GMM). An unscented Kalman Fil-
ter for Gaussian Mixtures (GMUKF) is then employed
to propagate the AR to a designated target date where a
potential measurement is used to update and further re-
duce the set of orbital solutions. The updated GMM and
the predicted GMM (without measurement update) are

each merged and pruned into a single Gaussian distribu-
tion [20]. In that way the information gain of an IOD task
can be quantified by a measure like the Kullback-Leibler
(KL) divergence [11]. Its closed form is given by Eq. 8

dKL (N1(µ1, Σ1)||N2(µ2,Σ2)) =

1

2

[
log

|Σ2|
|Σ1|

+ Tr
(
Σ−1

2 Σ1

)
(4)

+ (µ2 − µ1)
T
Σ−1

2 (µ2 − µ1)− n

]
Maximising KL divergence (i.e. information gained) de-
fines the reward function within the IOD micro action
space. This means a myopic greedy algorithm is em-
ployed to identify the most suitable candidate whose Ad-
missible Region should be further refined through a new
measurement.

3.3.1. Example of IOD micro action tasking

To demonstrate the performance of the IOD micro action
function, an exemplary object from Sec. 3.2.1 is reused
to generate a CAR represented by a GMM. As shown in
Fig. 3, object 22724 has five detections, corresponding
to five angular pairs associated with this object. To uti-
lize all available observations, a linear regression is per-
formed on all measurements to derive the angular rates.
The choice for a linear polynomial is justified since the
tracklet is very short [14]. For object 22724, the resulting
attributable is

A22724 =
[
α, δ, α̇, δ̇

]T
=

 192.83◦

−1.74◦

0.0041 ◦ s−1

−0.0010 ◦ s−1


on March 24, 2025, at 22:05:40.00 UTC.
The AR shall be constrained by semi-major axes ranging
from a ∈ [40.000 km; 45.000 km] and eccentricities ϵ ≤
0.02, since the object is assumed to orbit in GEO. The
derived CAR is depicted in Fig 4 and it can be seen that
it is primarily constrained by the eccentricity limit.

To facilitate efficient processing (e.g., state propagation,
filtering), the CAR is approximated by a Gaussian Mix-
ture Model (GMM). Since the CAR is derived from a very
short tracklet, information on which range and range-rate
combination are more likely than any other is sparse. This
justifies the approximation of the CAR as a uniform dis-
tribution in the form of a GMM. Additional constraints
are applied to further simplify the construction of the
GMM:

1. All Gaussian components in the mixture have equal
weights.

2. The means are evenly distributed over the AR ap-
proximation.
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3. The GMM is assumed to be homoscedastic, mean-
ing that all components share a common standard
deviation σ.

Fig. 5 shows the locations of the Gaussian mixture means
within the CAR of object 22724. For further details on
constructing a GMM approximation, readers may refer to
DeMars and Jah [1]. Tab. 1 summarises key parameters
(such as the maximum standard deviation σmax, the num-
ber of GM components L and the optimal standard devi-
ation σ̃) necessary to approximate the CAR as a GMM.

A subsequent follow-up measurement update is sched-
uled 1min after the original declination stripe scan to
accommodate sensor slewing. In this example, let the
observed geocentric angular position of the satellite be
given by

α⊕,22724 ≈ 193.56◦ δ⊕,22724 ≈ −1.87◦

Each GMM component shown in Fig. 5 is propagated un-

Table 1. Specific parameters to recover the CAR approx-
imation as GMM for object 22724.

Parameter Values
σρ,max 500m

σρ̇,max 10m s−1

Lρ 15
Lρ̇ 5
σ̃ρ 0.0456m

σ̃ρ̇ 0.1531m s−1

Table 2. Setting of Unscented Transform

Description Parameter Values
Spread of χ points α 1
Prior knowledge

of state distribution β 2

Scaling factor κ -3
Tailedness of distribution kurt 3

State dimension n 6

der Keplerian dynamics through an Unscented Kalman
Filter (UKF) towards the measurement update epoch
Tupdate. The settings for the unscented transform and
generation of the χ - points are listed in Tab. 2 The up-
dated GMM at Tupdate is then specified by the updated
Gaussian probability density functions (PDF) of each in-
dividual mixture component:

p
(
xk|Y k

)
=

L∑
l=1

ω+
l,kpg

(
xk;m

+
l,k,P

+
l,k

)
(5)

where k denotes the time variable and in this case refers
to Tupdate, L is the number of GM components, and

pg

(
xk;m

+
l,k,P

+
l,k

)
are the updated GM components .

The new weights ω+
l,k are retrieved by means of the Gaus-

sian multivariate measurement likelihood ζl,k such that

ω+
l,k =

ζl,kω
−
l,k∑L

j=1 ζj,kω
−
j,k

(6)

To measure how much the posterior distribution given by
Eq. 5 differs from the conditional GMM p

(
xk|Y k−1

)
without measurement update at time Tupdate, the KL di-
vergence is computed. However, for GMMs, a closed-
form expression of the KL divergence does not exist, and
the usual approach is to approximate this measure [2]. In
the given example, the conditional and posterior GMMs
are each pruned and merged into two single Gaussian dis-
tributions. Herefore, a pruning threshold T = 1 × 10−3

and a merging threshold U = 1 × 109 are selected. A
mixture component whose weight falls below T is dis-
carded from the distribution. The remaining components



are pairwise compared to compute the Mahalanobis dis-
tance. A pair, whose Mahalanobis distance falls below
U gets merged together. Since the merging threshold U
is very large in this example (U = 1 × 109), all remain-
ing components merge into a single Gaussian component
with a total weight of one. This effectively simplifies the
KL divergence calculation to a comparison between two
single Gaussian distributions.

3.4. Track

Once the algorithm decides to extend the current node
with a tracking task, a myopic greedy algorithm identifies
a suitable tracking candidate through the following steps:

Step 1: Target Date Initialisation

First, the future angular position of each candidate is
computed at a target date, a future instant at which track-
ing would begin. This date is offset from the current time
instance T by a duration tshift:

tshift = talloc,def + tset + tprep + 0.5texp + tstep
T = T + tshift (7)

where talloc,def denotes a pre-defined time duration to
reposition the sensor to a new direction, tset, tprep and
texp account for the settling, preparation and exposure
time, respectively, and tstep is the incremental evaluation
step duration.

Step 2: Visibility Check

In time increments of duration tstep, the algorithm as-
sesses whether a tracking task for the candidate at hand
is feasible. The algorithm evaluates each candidate for
up to 200 s. If visibility conditions become unfavorable
or the sensor cannot reposition quickly enough, the candi-
date is removed from further consideration. The visibility
conditions at the target date are assessed through several
criteria:

• Is the candidate in the sensor’s field of regard?

• Is the candidate eclipsed by Earth’s shadow?

• Is the angular separation between the Sun and the
candidate with respect to the observer at least 60◦?

• Is the angular separation between the Moon and the
candidate with respect to the observer at least 20◦?

If a candidate fails any of these visibility criteria, it is
excluded from consideration.

Step 3: Feasibility Check (Slewing Duration)

In the next step, the actual slewing duration talloc re-
quired to relocate the sensor from its current pointing
direction toward the candidate is computed. If talloc >

Sat G
Sat Y

Figure 6. Illustration of two tracking candidates (Sat G
and Y) whose initial state uncertainty is propagated in
time. The posterior PDF (oval shape) is compared with
the conditional PDF (banana shape) to measure the in-
formation gained from a measurement update.

talloc,def or if any visibility check fails, the candidate is
marked as unsuitable at the current target date. In such
cases, the step size tstep is incremented by 1 s and Eq. 7
is updated accordingly. The process repeats until a suit-
able target date is found.

Step 4: Simulated State Update and Information Gain

Once a valid target date is identified, the candidate un-
dergoes a simulated state update. Its angular position
is converted into a right ascension/declination measure-
ment pair relative to the topocentric inertial frame. This
angular pair is used to simulate an update of the candi-
date’s state and state covariance estimate using an Ex-
tended Kalman Filter (EKF) [17]. The EKF returns the
predicted state uncertainty as well as the updated state
uncertainty. The KL divergence, which quantifies the re-
duction in uncertainty and thus the information gain from
the tracking task, is calculated to compare the probabil-
ity distributions before and after the update. Assuming
Gaussian distributions, it is given by Eq. 8 [22, 11].

dKL (N1(µ1, Σ1)||N2(µ2,Σ2)) =

1

2

[
log

|Σ2|
|Σ1|

+ Tr
(
Σ−1

2 Σ1

)
(8)

+ (µ2 − µ1)
T
Σ−1

2 (µ2 − µ1)− n

]

Fig. 6 illustrates an example of two tracking candidates .
It can be seen that a measurement update shows a greater
uncertainty reduction of Sat G compared to Sat Y.

Step 5: Utility Evaluation

The algorithm then assigns a tracking utility vector



utrack,i for each candidate i:

utrack,i =

[
dKL,i

∆Ti

]
(9)

where dKL,i represents the KL divergence as information
gain, while ∆Ti is the waiting time between the sensor’s
readiness and the upcoming target date to track the can-
didate as derived in Eq. 7.

Step 6: Micro Action Selection

To optimise candidate selection, the algorithm prioritises
higher information gain and shorter waiting times. The
candidate with the lowest number of dominating solu-
tions with respect to utrack is selected as the tracking
target. In case multiple solutions reveal the same domi-
nance, the final target among these candidates is selected
based on a random policy.

As detailed in Sec. 2.2, MCTS not only exploits the strat-
egy that yields the most promising myopic results but
also explores alternative strategies by expanding multiple
nodes. To avoid redundant expansions, tracking candi-
dates already selected by sibling nodes are excluded from
further consideration.

3.4.1. Example of multi-target tracking

To evaluate the performance of the tracking micro-action
function, the MCTS is initialised with a single-objective
task that exclusively focuses on tracking. In this example
scenario, the algorithm aims to maintain accurate orbital
information for three targets. Following the optimisation
strategy outlined in Sec. 3.4, the algorithm generates a
set of instructions specifying which targets to track, at
what times, and in which sensor directions. The tracking
candidates are presented in Tab 3.

Following the steps in Sec. 3.4, this example applies
tracking candidate selection to the TDRS satellites, ex-
panding the MCTS with a new chance and decision node.

Step 1: With the sensor settings presented in the example
of Sec. 3.2, the current time instance T =2025-03-24
T22:01:02.620 UTC is shifted forward by tshift = 20 s.
Hereby, 6 s are reserved to prepare the sensor for the up-
coming tracking task and 2 s are reserved to allocate the
sensor to its new pointing position. The incremental step
size tstep is set to 1 s. Accordingly, the current target date
becomes T22:01:22.620 UTC.

Step 2: For the current target date, the visibility criteria
are checked for all TDRS satellites. All candidates are in
the sensor’s field of regard (FOR) but are not occulted by
Earth’s shadow. Hence, all candidates are theoretically
observable. However, TDRS 5 does not meet the solar
phase angle condition which, as its solar phase angle is
≈ 31.86◦ at the moment of the current target date. Hence,
the step duration tstep is incremented for TDRS 5 and

that object starts again from step 1 with an updated target
date. TDRS 6 and 12, however, pass the visibility check
at the current target date and proceed with step 3.

Step 3: By default, it was initially assumed that the allo-
cation of the sensor towards the candidate’s position shall
take talloc,default = 2 s. This assumption is revisited in
the slewing feasibility check and it shows that at the cur-
rent target date the sensor does not manage to arrive in
time at TDRS 6 nor at TDRS 12, since the actual alloca-
tion duration talloc takes approximately 105 s and 111 s,
respectively. Consequently, the remaining two satellites
are also not suitable as tracking targets at the current tar-
get date, and their tstep needs to be incremented. At this
point, all TDRS satellites need to revisit step 1 until a tar-
get date is found that meets all required conditions. The
assigned target dates, at which the conditions are met for
each candidate are:

• TDRS 5: - not trackable -

• TDRS 6: 22:03:06.620 UTC

• TDRS 12: 22:03:12.620 UTC

It shows that TDRS 5 was not trackable within the given
time frame of 200 s as its solar phase angle remained be-
low 33◦ and never exceeded the required minimum of
60◦.

Step 4: The simulated state update by means of an
EKF reveals dKL,TDRS6 = 31.09 for TDRS 6 and
dKL,TDRS12 = 30.22 for TDRS 12 as a measure for the
information gained from a potential tracking task.

Step 5: The utility vectors assigned to the remaining can-
didates are:

utrack,TDRS6 =

[
31.09
106 s

]
utrack,TDRS12 =

[
30.22
112 s

]

Step 6: As can be seen from the previous step, the track-
ing utility vector of TDRS 6 dominates over the one of
TDRS 12 in information gain and wasting time resources.
As a result, TDR6 is selected to extend the MCTS by a
new chance node. The state of the catalogue is propa-
gated under the new tracking micro action, resulting in a
new decision node, too.

Up until this point, the focus has been set on the selection
of the micro action. In other words, the presented steps
explain how to expand the decision tree. When applying
the MCTS algorithm as detailed in Sec. 2.2, the pointing
strategy presented in Tab. 4 is returned



Table 3. State and state covariance with reference to EME2000 on March 24, 2025, at 22:01:02.62 UTC

Satellite State Vector (m, m/s) State Covariance (m2, m2/s, m2/s2)

TDRS 5



30201985.91

28558626.98

7525934.90

−2147.23

2137.16

511.17





1e6 0 0 0 0 0

0 1e6 0 0 0 0

0 0 1e6 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



TDRS 6



−12013696.71

39168765.19

9914565.27

−2947.53

−853.43

−207.52





1e6 0 0 0 0 0

0 1e6 0 0 0 0

0 0 1e6 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



TDRS 12



−15563499.68

39106290.32

2639037.33

−2856.77

−1134.97

−32.74





1e6 0 0 0 0 0

0 1e6 0 0 0 0

0 0 1e6 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Table 4. Schedule for tracking TDRS 5, 6 and 12 starting from March 24, 2025, at 22:03:06.620

Task ID Target Target Date RA [deg] Dec [deg]
0 TDRS 12 2025-03-24T22:01:02.620Z 111.6 3.1
1 TDRS 5 2025-03-24T22:01:13.620Z 111.1 3.2
2 TDRS 5 2025-03-24T22:01:44.620Z 111.3 3.1
3 TDRS 5 2025-03-24T22:02:15.620Z 111.4 3.1
4 TDRS 5 2025-03-24T22:02:46.620Z 111.5 3.1
5 TDRS 6 2025-03-24T22:03:48.620Z 106.2 14.9

4. CONCLUSION AND OUTLOOK

This work presents a proof-of-concept study demonstrat-
ing how Monte Carlo Tree Search (MCTS) can address
multi-objective sensor tasking problems. The study in-
troduced the multi-objective problem, emphasising that
searching, Initial Orbit Determination (IOD), and track-
ing represent essential objectives in sensor management
aimed at building and maintaining a full space object cat-
alogue.
To tackle the complexity of determining optimal sensor
pointing strategies, the approach was structured into two
distinct optimisation aspects: macro actions (overall ob-
jectives) and micro actions (objective-specific strategies).

As discussed in Sec. 2.3, macro-action optimisation em-
ploys the dominance principle to compare utility vectors.
Future research will focus explicitly on applying MCTS
to macro-action optimisation by defining and refining ap-
propriate utility measures and dominance criteria.
Concerning micro-action optimisation within the search-
ing objective, this study focused on the implementation of
a stripe-scanning algorithm for systematically exploring a
partial region around the Laplace ring to detect space ob-
jects. Currently, the stripe-scanning approach represents
the only implemented method within the search micro-
action space, resulting in a reward of one whenever this
strategy is employed to follow a searching task. Future
efforts will be dedicated to developing additional search
algorithms and deriving specific micro-action rewards to



extend the MCTS framework.
With regard to the IOD objective, the Constrained Ad-
missible Region (CAR) was successfully recovered and
approximated using a Gaussian Mixture Model (GMM).
Future work will aim to improve both the propagation of
this distribution and the evaluation of measurement up-
date value. A reward function for this micro-action space
can be derived from information-theoretic measures such
as the Kullback-Leibler divergence. The tracklet —re-
sulting from a previous search task— that maximises in-
formation gain can then be selected as the most suitable
candidate for the corresponding IOD task.
Finally, the micro-action space related to tracking was ex-
amined, too. The selection of a suitable tracking candi-
date follows an iterative six-step procedure. At the end
of this process, each candidate is assigned a tracking util-
ity vector. The candidate that provides the least domi-
nated solution among all is selected as the tracking target,
which extends the MCTS with a new chance and decision
node. The utility vector is designed to reward high infor-
mation gain and penalise long time gaps between consec-
utive measurements.

This proof-of-concept lays the groundwork for a
decision-theoretic approach to autonomous sensor task-
ing. While the current implementation leaves several as-
pects unexplored, it provides a starting point for develop-
ing more refined and adaptive strategies in future work.
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