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ABSTRACT 

Space debris in the Low Earth Orbit (LEO) region lose 
altitude due to friction, eventually undergoing 
atmospheric re-entry. The predicted position of the object 
can differ by a significant amount from its true position, 
and a narrow field of view telescope can completely fail 
to observe it. We describe a combination between a wide 
field of view (FoV) instrument and a narrow FoV 
instrument to observe the object on decaying orbits. The 
solution includes increasing the sensitivity of the sensors 
and of the detection algorithms, improving the accuracy 
of the astrometric calibration without losing real time 
capabilities, association between the detected tracklets 
and the predicted positions of the objects, and refinement 
of orbital parameters for better short and medium term 
prediction to allow accurate positioning of the telescope. 

1 INTRODUCTION 

Since the beginning of the space era, the atmospheric re-
entries of man-made space objects became an unwanted 
reality. The international interest towards monitoring re-
entry events is growing, taking into account the 
expanding number of Low Earth Orbit (LEO) satellites 
launched (LEO large satellites constellations e.g. 
Starlink, OneWeb, etc.), and the risk associated with 
reentries of large space debris for human populated areas 
[1]. Since 1957, the total number of decays recorded in 
the Space-Track database has reached 117482 [2], and 
the total number of re-entries (payloads, rocket bodies, 
debris) from 29 November 2000 up to March 7, 2025 in 
the CORDS database is 2488 [3].  In order to accurately 
predict the date and place of the re-entry, accurate 
observations of the re-entry object must be performed, 
and complex algorithms have to be employed [4]. Even 
so, the uncertainties remain large (up to ± 72 hours for 6-
7 days before re-entry), due to the unpredictable 
perturbing forces present in the near-Earth vicinity. The 
prediction process must take into account complex 
atmospheric drag models such as the ones described in 
[5, 6]. The orbital prediction library Orekit [7] 
implements many of these models, but the models 
quickly diverge from the real position, and multiple 
observations must be made to correct them.  

As the prediction errors are larger than the field of view 
of a telescope, wide field of view (FoV) observation 
systems need to be employed. 

The domain of wide FoV surveillance for the LEO 
objects includes the FireOpal network [8], consisting of 
multiple all sky observation stations in the Australian 
desert, the Multi-site All-Sky CameRA (MASCARA) 
system presented in [9], consists of five cameras with a 
field of view (FOV) of 53 × 74°, and the LCLEOSEN 
(Low-Cost Low Earth Orbit optical surveillance SENsor) 
system presented in [10], consisting of an array of 
instruments based on wide FOV lenses and CMOS sensor 
providing full sky coverage. We have also designed a 
wide FoV surveillance system, based on low-cost 
components, designed to be easily set up anywhere and 
to provide real time results [11][12]. 

However, the wide FoV systems cannot have the 
accuracy of a narrow FoV system, such as a telescope. 
While the wider FoV system has a better chance of 
observing the re-entry object, a telescope’s superior 
angular accuracy allows a better estimation of the 
object’s evolution in time, and therefore for a better 
prediction of the time and place of contact with the 
Earth’s surface. In a previous work [13], we have 
proposed a tandem of wide FoV and narrow FoV systems 
for generic space surveillance in the LEO region, by 
using very short-term predictions from the wide FoV 
system results to orient the telescope to the target. In this 
paper we present the changes that we made to the system 
in order to adapt it to the more specific and more 
challenging task of observing re-entry objects, objects 
having a decaying orbit. We have identified several 
problems that prevented our previous system to be an 
efficient tool for observing the decaying orbits, and have 
proposed solutions for them: 

1. The sensitivity of the wide FoV instrument 
needed to be increased. For that reason, we have 
switched to using 14 bit RAW files from the 
DSLR camera, and converted these files to FITS 
for further processing. 

2. The sensitivity of the target detection algorithm 
from image frames needed to be increased. Our 
previous work relied on computing differences 
between frames, but this approach depends on 
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thresholds which, if too low, caused a lot of false 
positives, especially near the horizon where 
clouds or city lights can affect the performance. 
For this reason, we have switched to a machine 
learning based approach applied directly to the 
FITS image frames, to identify the candidate 
regions for streak detection. Once the region 
was identified, the Hough transform was 
applied to detect the line segment corresponding 
to the satellite streak. 

3. The wide FoV astrometric calibration’s 
accuracy needed to be improved, especially at 
the image periphery. For this reason, a tile-based 
calibration approach was implemented, and the 
results are fused in a calibration grid that can be 
used for instant translation between pixel 
coordinates and equatorial coordinates. 

4. Real time recognition of the detected objects is 
needed, so that we can know which object is the 
one of interest. We have combined the real time 
detection process with real time position 
prediction based on TLE files. The predicted 
positions are projected in the image space, and 
can be matched automatically with the detected 
tracklet based on orientation, tracklet length, 
and distance between the tracklet and the 
prediction.  

5. The prediction of the object’s position in the 
future, based on the real time results of the wide 
FoV system needed to be improved to a longer 
period of time. Therefore, our previous 
polynomial curve extrapolation of the trajectory 
was not suitable anymore. We have proposed a 
solution to quickly adjust orbital parameters 
based on multiple available TLEs for the reentry 
object, combined with stochastic diffusion of 
chosen parameters, to eventually produce a new 
TLE file with parameters that better fit the 
current observations. This TLE file can then be 
used for the prediction of the object in the 
future. 

6. Improved processing of the narrow instrument 
image sequences: the machine learning based 
approach for target detection is also applied to 
the narrow FoV images, improving the results 
for lower contrast, higher noise, or occlusions 
such as clouds.  

Each of these improvements are described, in more 
detail, in the following sections. 

2 INSTRUMENTS 

The measurements are performed using two instruments: 
a real time, portable, wide field of view (FoV) instrument 
based on low cost, off the shelf components, and a 
narrower field of view instrument, based on a refractor 
telescope and an astronomical camera, deployed at an 

Astronomical Observatory near the city of Cluj-Napoca. 

The wide FOV system uses a Canon EOS 800 D DSLR 
camera, equipped with a 20 mm focal length Canon EF 
20mm f/1.8 USM lens. The image size is set to the 
maximum 6000x4000 pixels, this being the only 
resolution available for RAW (uncompressed) output. 
The 14 bit raw images are converted to 16-bit grayscale 
FITS images immediately after they are acquired. The 
camera is synchronized by an external trigger signal 
based on a GPS receiver, to ensure precise 
synchronization with the global UTC time. The effective 
field of view of the system is 60x40 degrees. The control 
of image acquisition, the target detection, astrometric 
calibration, and astrometric reduction, .tdm file 
generation, and orbital parameters refinement is 
performed in real time on a 13-inch MacBook Pro 2020, 
equipped with the Apple Silicon M1 processor.  

The narrow FOV instrument is equipped with an Orion 
ShortTube 80 refractor telescope and a SBIG STT 
1603ME CCD camera, working in binning mode, 
producing 16-bit FITS images of 768x512 pixels in size. 
The telescope is mounted as a secondary telescope on a 
PlaneWave L600 fast-moving accurate equatorial mount, 
with an ASCOM compatible software interface, which 
allows real time orientation towards specified 
coordinates. The acquisition system is synchronized 
using a Synoptes precise timestamping device, based on 
GPS, able to assign microsecond-accurate timestamps to 
the acquired images [14]. The instrument is placed in the 
dome of the Feleacu building of the Cluj-Napoca 
Astronomical Observatory. The images are processed 
offline, using the same algorithms that are used for the 
wide FoV instrument. 

3 TARGET DETECTION BASED ON 
NEURAL NETWORKS 

Neural networks are widely used for detecting objects of 
interest from images, if they are properly trained. One of 
the most popular solutions for is the You Only Look 
Once (Yolo) network [15]. Several different updates to 
the original architecture have been released and one of 
the major milestones came at version number eight, 
which was released in 2023 [16]. The Yolo framework 
offers five different model variants where there is a 
tradeoff between the size of the resulting model, the 
speed of the detection and the detection performance. 

The main challenge was to train the network, because the 
training process requires a large database of images 
annotated with the objects of interest (rectangles 
bounding their position). 

3.1 Creating the training dataset 

For the purposes of training, we have used images taken 
by the aforementioned wide FoV system based on Canon 
EOS camera, at a resolution of 6000 x 4000, raw format, 



 
 

converted to images of 16 bits pixel depth. To automate 
the process, we first processed the images using our 
previous detection algorithms, based on differences 
between consecutive images. We have selected the 
detections that lead to formation of tracklets of at least 3 
points, as we assumed that these detections had a lower 
probability of being false positive. These objects formed 
our initial dataset, which was later verified manually, and 
all the false positives were excluded. 

The large, 6000x4000 pixels images were then split up 
into smaller tiles of 1000 x 1000 pixels. The result was a 
total of 1820 annotated images. 

The size of the training dataset was then increased by 
augmentation. This was achieved first by modifying the 
brightness and contrast values of the images, to simulate 
fainter streaks or additional light pollution, as seen in Fig. 
1.  

 
Figure 1. Data augmentation by changing the overall 

brightness and contrast of the image. 

Another method to increase the variability of the dataset 
and to add more data is to perform rotation and shearing 
on the images, as shown in Fig. 2. This way, the labelled 
objects would be at different angles in regard to the ones 
on the original image, thereby not just increasing the 
sample size, but also diversifying the data as well. 

 

 
Figure 2. Data augmentation through rotation and 

shearing. 

3.2 Training the network 

The augmented image dataset was split into three sub-
sets: 80% of images used for training, 20% for validation 
and 10% for testing. 

For training the network, a workstation with two Nvidia 
GTX 1080 Ti graphical cards were used. 

As the Yolo network’s input image size has to be a 
multiple of 32, we have chosen to set it to 640x640 pixels. 
The initial tiles of 1000x1000 were scaled down to 
640x640 for training and for inference. The pixel values 

for the network are floating point values ranging from 0 
to 1. We took advantage of this fact and scaled the 16-bit 
to the 0..1 interval, but we could also use, with the same 
network, 8-bit values from jpeg images, the only change 
needed being to use a different scale factor.  

The smaller image size (640x640 instead of 1000x1000) 
meant that the training time and inference time were 
reduced by a factor 1.66 overall, without taking into 
consideration other parameters. 

The training of the individual networks took anywhere 
between 3 – 8 hours depending on the model variant 
selected. We have trained the Yolo v8 with different 
sizes: nano (3 million parameters), medium (26 million 
parameters), and large (44 million parameters). 

3.3 Real time inference 

While the training process was implemented in Python, 
we needed to integrate the inference process in the real 
time C++ based application. 

Since we wanted to perform the inference tasks on an 
Apple MacBook Pro with using Apple’s own Metal 
Performance Shader (MPS) graphical acceleration back-
end, we converted the trained model to an MPS-
compatible TorchScript format. The main application is 
designed to be able to load different models without 
changing the source code. Therefore, we could load nano, 
medium or large Yolo models, or models trained using 
different settings or data sets. The models can differ in 
size, but they must obey the input and output formats. 

For the real-time inference process, we use the same 
trained model for all types of images: 

- For 6000x4000 images, we split the image in 
overlapping tiles of 1000x1000, with a stride of 
500 pixels on both axes. The tiles are then scaled 
to 640x640 pixels and fed to the model for 
prediction of the object bounding rectangles. 
The results are then fused: if some rectangles are 
overlapping, a larger rectangle to include them 
is generated. 

- For the narrow FoV instrument, generating 
768x512 pixels images, the images are scaled to 
640x640 pixels and fed to the model for 
prediction. 

Due to the fact that the large FoV images require multiple 
prediction from the trained model, and also that the large 
FoV images have to be processed in real time, the model 
of choice was, eventually, the Yolo nano. With this 
model we could complete the whole processing cycle in 
less than 5 seconds on the 2020 MacBook Pro (M1). 
However, the application framework allows us to change 
to a larger model when we switch to a more powerful 
computer. 

After the Yolo-based prediction, we need to find the 



 
 

streak as a line segment. We perform the following steps 
for each rectangle: 

- Adaptive thresholding of the original grayscale 
image for the region of interest described by the 
predicted rectangle (if more rectangles are 
overlapping, which may be the case for the wide 
FoV system, as we use overlapping tiles for 
prediction, the rectangles are fused into a larger 
rectangle). 

- Use of the Probabilistic Hough Transform of 
OpenCV to detect line segments inside the 
region of interest. 

- If more than one line segment is detected inside 
the region, the longest segment is kept as the 
streak result. 

The process is depicted in Fig. 3. 

Figure 3. Post-processing of the neural network based 
predictions to obtain the satellite streak line segments: a 
– the Yolo-based detection, b – highlight of the detection 

region, c – binarization, d – Hough transform based 
line segment detection. 

4 REAL TIME ASTROMETRIC 
CALIBRATION 

The detection results, in pixel coordinates, are only useful 
if they can be converted in equatorial coordinates as soon 
as possible, so that they can be used to refine the orbital 
parameters of the target. The astrometry tools available 
from astrometry.net [17] can be used to calibrate any 
image that contains a star field, and then to map the image 
pixel coordinates to equatorial coordinates. A wide field 
of view (60x40 degrees) poses some challenges to the 
astrometry tools, especially for peripherical image areas. 
For this reason, and also for real time performance, we 
have proposed, in a previous work [12], a grid-based 
accumulation of calibration results, so that the errors can 
be filtered using multiple calibrations, and the pixel space 
to equatorial coordinates conversion can be achieved in 
real time. 

In order to further increase the accuracy in the peripheral 
regions of the image we took the grid approach one step 
further and used a tile-based calibration approach. 
Instead of only performing calibration on the whole 
image, we also performed calibration on image quarters, 
and then combined all results in the same calibration grid.  

The calibration result on the whole image is shown in Fig. 
4. We can see the recognized stars and constellations. At 
a first glance, the calibration process was accurate and the 
catalogue stars are matching the stars in the image. 
However, when zooming in on the image corners, as 
shown in Fig. 5, we can see that the peripheral stars do 
not match with the image. If we pass to the astrometry 
engine only the top left quarter of the image, the results 
improve significantly, as shown in Fig. 6. In this figure, 
which shows again a zoomed in detail of the top left 
corner, we can see that the catalogue stars are now well 
aligned with their position in the image. 

The quarter based (tile-based calibration) does not 
impede the real time behaviour of the system. It is 
executed in a background process and updates the grid 
when possible, but the grid is also usable from the 
moment the first full frame calibration is completed. 
Thus, the system is able to quickly produce equatorial 
coordinates, but as the time goes by, the accuracy of the 
angular coordinates increases as the grid is updated with 
more accurate, tile-based calibration data results. 

 

 
Figure 4. Full field calibration results, showing the 

identified constellations. 

 

 
Figure 5. Full field calibration results, zoomed in detail 
showing that peripheral stars in the top left corner are 

not properly matched by the calibrated model. 



 
 

 
Figure 6. Quarter field calibration results, zoomed in 

detail showing that peripheral stars in the top left 
corner are properly matched by the calibrated model. 

5 REAL TIME TARGET RECOGNITION 

Due to the vast quantity of satellites in the low Earth 
orbit, it is important to recognize if the detected tracklets 
are of interest or not. We have implemented a method for 
generating real time predictions, projected in the image 
space, based on a file of TLE lines, such as the ones that 
can be downloaded from space-track.org. In order to 
achieve real time performance, the algorithm relies on the 
following steps: 

1. Generating predictions for every satellite in the 
TLE file, at every 60 seconds, for the projected 
duration of the observation session (usually not 
more than 1 hour). This computationally 
expensive step is achieved using Orekit and will 
not affect the real time performance of the 
system, as it is done before the actual detection 
process. 

2. During detection, identify the satellites that are 
in the field of view of the system at a given time, 
by computing the angular distance between 60 
second trajectory endpoints and the image 
centre and image corners. 

3. For the identified objects, use linear 
interpolation based on the current UTC time 
stamp to compute an approximate position for 
the exact time. By using linear interpolation of 
the trajectory, we avoid computing the position 
of the satellites for every second. 

4. The trajectories and the current predicted 
position are displayed on the original acquired 
image.  

5. If currently detected tracklets match the 
predicted trajectories, a preliminary automated 
recognition of the object is achieved. 

More details about the automatic association between 
detected tracklets and the predicted satellite positions can 
be found in [18]. 

The result of automatic object identification is shown in 
Fig. 7. The detected tracklets are shown in color, and the 

predicted trajectories are shown as white lines. A 
recognized trajectory, associated with a tracklet, is shown 
as a thick white line. A cross sign marks the current 
predicted position of the satellite. 

 
Figure 7. Real time prediction of satellite trajectories 

and automatic recognition of detected tracklets 

For observing the decaying orbits of re-entry bound 
objects, the automatic recognition system is adapted so 
that it will use only the TLEs of the objects of interest. 
The TLE file used as input will contain more than one 
version of the orbital parameters, because these 
parameters change rapidly, and the best prediction of the 
object’s position is not always generated by the latest set. 

Sometimes the predicted trajectory is not close enough to 
the actual position of the object to be recognized 
automatically. In this case we have provided a manual 
override. The user sees, in real time, the evolution of the 
predicted position and the evolution of the detected 
position and can use the application interface to select the 
tracklet and force association. Such a case is shown in the 
results chapter of this paper, caused by a combination of 
out-of-date TLEs and a highly eccentric and rapidly 
decaying orbit. 

6 ORBITAL PARAMETERS REFINEMENT 

Once the object is detected and a TDM file is generated, 
the orbital parameters refinement process can be applied. 
The general idea is to adjust the parameters to match the 
measurement data, so that these parameters will produce 
better predictions in the (near) future, and these 
predictions can position a narrow field instrument more 
accurately. 

From analysing the historical TLE files of re-entry bound 
objects, we could see that the most unstable orbital 
parameters were the Right Ascension of the Ascending 
Node, the Argument of Perigee, and the Mean Anomaly 
(which is correlated with the Argument of Perigee). The 
most stable parameters are the Inclination, and the Mean 
Motion, but they can also start to change rapidly when 
the orbit is severely decaying. Our purpose is not to 
follow a classical Orbit Determination procedure, which 



 
 

accurately produce correct orbital elements, but to 
generate elements that can produce better predictions for 
the next minutes or tens of minutes, so that a narrower 
FoV instrument can better observe the object. For this 
reason, we have chosen to alter only two parameters: the 
Right Ascension of the Ascending Node and the 
Argument of Perigee, and we assume that all the other 
parameters remain fixed. 

Our initial approach was based on the Extended Kalman 
Filter (EKF), an estimator which adjusts the model 
parameters based on measurements in a single step, based 
on the assumed covariance of the parameters and a local 
linearization of the mapping between the model 
parameters and the measurement space. This approach is 
suitable for minor differences between prediction and 
measurement but proved to be unsuccessful for more 
severe orbital decay, such as the one we present in the 
results section. Faced with this situation, we have 
changed the approach towards a stochastic approach. The 
idea is underlined in Fig. 8. The steps of the algorithm are 
the following: 

1. Starting from an input file containing N TLEs 
for the target object, we generate N*S 
hypotheses by randomly altering the Right 

Ascension of the Ascending Node and the 
Argument of Perigee parameters with random 
amounts, positive or negative, in a specified 
range. S is a parameter of the algorithm, 
describing the number of random samples to be 
extracted for each given TLE. We’ll call this 
step Stochastic Diffusion. 

2. Using the Orekit library and the timestamps 
from the measurement TDM, we generate 
measurement predictions for all the parameter 
sets produced by the stochastic diffusion. 

3. The predictions are compared, point by point, 
with the actual measurement, and a mean 
angular distance is computed for each 
prediction. 

4. The predictions are sorted by their distance to 
the measurement, and the best M sets are kept. 

The steps from 1 to 4 are repeated multiple times (we 
currently repeat four times), gradually decreasing the 
range for the stochastic diffusion, the number of steps S 
and the number of accepted best sets M. For the last step, 
M is set to 1, meaning that a single TLE set is generated. 

  

 

 
Figure 8. The stochastic method of orbital parameters refinement 

 

7 TESTS AND RESULTS 

We have attempted to observe the re-entry process of the 
CZ-3B R/B rocket body (NORAD ID 61504), an object 
on a rapidly decaying eccentric orbit. Our first 
successful attempt was made on the early morning of 
February 22, 2025. At that time, the latest available 
orbital parameters downloaded from space-track.org 
were generated on February 19, 2025. 

We observed the object with the wide field of view 
system two times, the first time from UTC 3:16:47 to 

UTC 03:17:47 (6 frames taken at 10 seconds apart), and 
the second time from UTC 3:20:6 to 3:22:4 (12 frames, 
but the object was not detected in every frame). The 
urban location of the wide FoV system and the low 
altitude of the object made the detection difficult. A 
sample frame from the sequence is shown in Fig. 9, and 
a detail of the object in a selected region of interest is 
shown in Fig. 10.  



 
 

 
Figure 9. Large FoV image acquired from an urban 

location (contrast enhanced). 

 
Figure 10. Detail showing the observed object (35 

pixels wide, in a 6000x4000 pixels image) 

The main challenge was, however, the highly outdated 
set of orbital parameters. During the automatic detection 
process we have projected, in real time, the predicted 
position from 8 available parameter sets, the oldest 
being from February 13 and the newest from February 
19, 2025. To our surprise, the best match between the 
prediction and the detection was not for the newest 
parameter set, but for the one generated on February 14. 
Even so, the angular distance between predicted and 
measured equatorial coordinates was more than 10 
degrees. The main problem was that the error was not 
only along the track, meaning that a narrow field 
telescope would eventually observe it with some delay, 
but it also had more than 3 degrees of cross track error, 
which was more than the angular field of view of the 
narrow instrument, as shown in Fig. 11. 

 
Figure 11. Detected object compared with the 

predicted position (white line and cross), highlighted 

We have applied the orbital parameter refinement 
algorithm based on Monte Carlo sampling and testing, 
using the first detection results as input. We have 
obtained refined orbital parameters and the average 
angular error for the first sequence was reduced to less 
than 0.1 degrees. Using the refined parameters, we have 
compared the predicted positions for the second 
sequence with their corresponding measured positions. 
While the predictions were not perfect, the errors were 
greatly reduced to an average of 0.5 degrees, with a less 
than 0.3 degrees cross track error, meaning that the 
object would be easily observed by a narrow field of 
view instrument oriented towards the predicted position. 
The process is depicted in Fig. 12. The time between the 
two sequences is about 2 minutes, which is more than 
enough for the execution of the refinement algorithm 
and for commanding the orientation of other 
instruments. 

 

 
Figure 12. Comparison between predicted positions 

and measured positions, for two sequences, large FoV 
instrument, February 22. 

 

The second test was performed on February 26, 2025, 
from UTC 3:46 to UTC 3:55, using the narrow field of 
view system. This time, the most recent TLE parameters 
were generated on February 25, at 13:42 UTC, so they 
were fairly recent. Based on these parameters, the 
object’s position was predicted accurately enough that 
the narrow field instrument was properly positioned. 
The object was observed in 15 sequences, each sequence 
was obtained in sidereal tracking mode, corresponding 
to a fixed telescope position in equatorial coordinates. A 
sample image, showing the object’s position at UTC 
3:47:02, is shown in Fig. 13. 



 
 

 
Figure 13. Sample image from the narrow FoV 

instrument (contrast enhanced), showing the observed 
object 

The first sequence was processed automatically to 
generate the tracklet TDM. The detected positions in the 
image space are shown in Fig. 14. The object was not 
detected in all the frames, due to its rapid spinning which 
caused a large variability of its brightness. The first 
detected sequence was compared to the available TLEs 
and, through the stochastic refinement process, 
produced a refined TLE for better prediction of the next 
positions. The initial average error was 2.5 degrees, 
mostly along track, meaning that the prediction was 
good enough for the narrow FoV instrument positioning.  

 

 
Figure 14. Result tracklet for the first sequence of the 

narrow instrument 

We have used the results of the first sequence to refine 
the orbital parameters, and after this process the 
predictions for the first sequence matched the 
measurement perfectly, as shown in Fig. 15. However, 
in order to test the usefulness of the refined parameters 
we used them to generate predictions for the last 
sequence, 7 minutes later. For this sequence the 
predictions based on the initial TLE had an angular 
difference of 1.5 degrees from the measured positions. 
The refined parameters reduced this error to about 0.5 
degrees. The process is shown in Fig. 15: the initial 

sequence is shown in the top left corner, and the last 
sequence in the bottom right corner. 

 
Figure 15. Comparison between predicted positions 
and measured positions, for two sequences, narrow 

FoV instrument, February 26 

The object is no longer in orbit. It has re-entered the 
atmosphere on February 28, 2025 [3]. 

8 CONCLUSION 

Observing the objects on decaying orbits, destined for 
re-entry, is a challenging task, especially due to the rapid 
change between the actual orbit and the one modelled by 
the known parameters. Our proposed solution is a 
combination of a wide FoV instrument for acquiring the 
target, and a narrow FoV instrument for precise 
measurement of its position. Our contribution includes a 
generic, machine learning based target detection 
solution that can be applied to any type of image, taken 
from both the narrow FoV and the wide FoV sensors, on 
any bit depth, the automatic association of the detected 
tracklet with the predicted position from known orbital 
parameters, and the generation of new, updated orbital 
parameters based on stochastic filtering. Future work 
will be focused on the full automation/robotization of 
the process. 
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