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ABSTRACT

We present an averaged spin state estimation and pre-
diction framework and apply it to observations of de-
funct satellites in geosynchronous earth orbit (GEO).
This framework averages a uniformly rotating object’s
attitude dynamics over rotational phase and earth orbit,
enabling fast, accurate spin state propagation months or
years into the future. By averaging, we distill solar ra-
diation torques to simple curves that are readily mod-
eled as Fourier series. Using just light curve-derived spin
rate measurements (although other measurement types
can be readily incorporated), we estimate an object’s in-
ertial spin rate and spin axis as well as its Fourier so-
lar torque and gravity gradient coefficients in a statistical
least squares filter. Inertial spin axis information is pro-
vided by torque-driven dynamical coupling between the
spin rate and spin axis as well as differences between the
inertial and observed spin rate due to time-varying obser-
vation geometry. These estimates can be used for long-
term (month to year) spin state prediction and updated
through catalog maintenance observations. We apply the
framework to real light curves of Telstar 401 and com-
pare our estimate to independent Deep Space Network
radar solutions, showing clear consistency.

Keywords: averaged attitude dynamics; estimation; light
curves.

1. INTRODUCTION

There are currently more than 1000 defunct satel-
lites and rocket bodies near geosynchronous earth or-
bit (GEO) [17]. This number continues to rise as more
satellites are launched and decommissioned. The rota-
tion states of these large, uncontrolled objects can change
significantly over time due to solar radiation and thermal
re-emission torques as well as gravity gradient torques
from earth [1, 8, 5, 7, 6, 9, 10, 18]. For example, the
retired GEO weather satellite GOES 8 spun down from
∼3.5 revolutions per minute (rpm) to nearly zero in less
than one year before spinning back up in non-principal
axis rotation [8].

The ability understand and predict the natural spin state
evolution of defunct satellites and rocket bodies is im-
portant for a number of applications. First, object atti-
tude knowledge will increase orbit prediction accuracy
through improved modeling of attitude-dependent forces
(e.g. solar radiation pressure and atmospheric drag). Sec-
ond, target attitude knowledge is crucial for active de-
bris removal (ADR) missions to rendezvous with, grap-
ple, and de-spin these large, non-cooperative objects.
With the significant observed spin state evolution of many
defunct objects, long-term attitude prediction would be
valuable to identify favorable windows of slow rotation.
This would reduce mission risk and the time and energy
required to de-spin an object. Spin state prediction is also
important to predict spin-driven material shedding events.
It is currently unclear if defunct object spin rates can
increase unbounded, ultimately resulting in catastrophic
break-up. Even strictly dissipative eddy current torques,
which are weak at GEO given their 1/R6 fall-off with
distance from the earth, do not limit rotation parallel to
earth’s magnetic field [13]. Improved understanding of
spin state evolution across the broad defunct satellite and
rocket body population can inform whether spin-driven
break-up is possible.

Understanding spin state evolution of defunct satellites
will inform decommission procedures to minimize post-
disposal spin rates and maximize long-term predictabil-
ity. For example, differences in the end of life solar array
angles and resulting solar torques of the nearly-identical
GOES 8-12 satellites have led GOES 8 and 12 to evolve
rapidly while GOES 10’s uniform spin rate has remained
nearly constant [9]. For space traffic management (STM)
and space situational awareness (SSA) there is a need
to determine whether objects are active or uncontrolled.
This can be informed by observed attitude evolution. Un-
like orbital dynamics where divergence from a ballistic
trajectory indicates control, there is no established bal-
listic baseline for attitude motion. In other words, we do
not fully understand what natural attitude motion of large,
defunct objects looks like to formally distinguish natural
from controlled motion. Further study of long-term at-
titude evolution across the defunct object population can
inform this ballistic baseline.

A number of studies have been conducted to estimate and
predict the attitude motion of well-known defunct satel-
lites (e.g. [14, 15]). These studies generally require de-
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tailed knowledge of an object’s properties (shape, mo-
ments of inertia, surface materials, etc.). Unfortunately,
we lack detailed knowledge of most defunct objects. The
attitude dynamics are very sensitive to shape, moments
of inertia, body-frame principal axis directions, and op-
tical properties [9, 6, 7]. These studies also generally
rely on resolved measurements given the complexities
and ambiguities associated with non-resolved light curve
inversion, even with high fidelity spacecraft models [8].
Diffraction limits preclude ground-based resolved im-
agery beyond LEO for all but the largest, adaptive optics-
equipped telescopes. Doppler-delay radar measurements
require large, powerful antennas due to the 1/R4 echo
power fall-off with distance, and satellite laser ranging re-
quires targets to have retro-reflectors. We lack sufficient
resources to regularly collect resolved measurements for
attitude estimation across the broad debris population,
especially beyond LEO. Overall, we desire a dynamics-
based spin state estimation and prediction approach that
relies primarily on readily-obtained non-resolved optical
light curves for measurements and minimal a priori infor-
mation about a particular object for applicability to the
broad defunct space object population.

In this work, we present an averaged spin state estimation
and prediction framework first discussed in Ref. [2]. We
first outline the method which is founded on averaging
the slowly-varying equations of motion for a uniformly
rotating object’s inertial spin rate and spin axis over the
object’s intrinsic rotation and earth orbit. We then ex-
plore simulated test cases and apply the approach to real
observations of the defunct GEO satellite Telstar 401.

2. METHODS

2.1. Frames

There are several frames to define that simplify the dy-
namical modeling and estimation. The first is the rotating
heliocentric orbit (O) frame (see Figure 1), centered at
the satellite and defined by the X̂ , Ŷ , and Ẑ axes. Ẑ

points from the satellite to the sun, X̂ points along the
instantaneous angular velocity of the O frame with re-
spect to the inertially-fixed N frame, denoted by ωO/N .
Here N is taken to be equatorial earth-centered inertial
(ECI) J2000. Finally, Ŷ completes the orthogonal basis
set. The angular velocity ωO/N is given by,

ωO/N =
1

u
û× u̇ (1)

where u and u̇ are the position vector and inertial ve-
locity of the sun relative to the satellite, u = |u|, and
û = u/u. Note that û and Ẑ are co-aligned. We ne-
glect the satellite’s geocentric orbit when computing u
and u̇ because variations are negligible for earth-orbiting
objects. For example at GEO, the sun direction varies by
less than ∼0.03◦ from one side of the orbit to the other.

Also, variations in the sun-satellite distance and direc-
tion due to the geocentric orbit are averaged out in our
upcoming equations. So in practice, u and u̇ are taken
as the earth-sun position and velocity and are computed
from NAIF SPICE ephemerides.

Rotation from the O frame to the N frame is given by the
following matrix,

ON =

NX̂T

NŶ T

NẐT

 (2)

where the superscript N denotes vectors defined in the N
frame and T is the vector transpose.

Figure 1: Orbit (O) and angular momentum (H) frames,
denoted by black and orange vectors respectively.

The second frame shown in Figure 1 is the rotational an-
gular momentum (H) frame denoted by the x̂, ŷ, and Ĥ

axes. Ĥ (also denoted by ẑ) is along the satellite’s ro-
tational angular momentum vector. Rotation from the O
frame to the H frame is defined by the two angles α and
β. These angles are essentially the spherical coordinates
of Ĥ in the O frame. The clocking angle α defines rota-
tion of Ĥ around the sun-line and β is the angle between
the sun-line and Ĥ . The unit vector x̂ points in the di-
rection of increasing β and ŷ (which is orthogonal to the
sun-line) in the direction of increasing α. The rotation
matrix from the O to H frame is given by,

HO = R2(β)R3(α) (3)

where Ri() is a rotation about the ith principal axis [19].

2.2. Averaged Attitude Dynamics

In this work we account for solar radiation and gravity
gradient torques since these are by far the dominant ex-
ternal perturbations at GEO [13]. For large satellites with



non-negligible spin rates, these torques are small per-
turbations on the torque-free rotation. Combined with
ωO/N being only ∼1◦/day, the angles α and β as well
as the satellite’s inertial spin rate ωe = 2π/Pe change
slowly compared to the satellite’s rotational phase and
geocentric true anomaly. Analogous to the Lagrange and
Gauss planetary equations for osculating orbital elements
which can be averaged over fast periodic perturbations
[22], we average equations of motion for α, β, and ωe

over the satellite’s rotation and geocentric orbit. In this
work, we assume the satellite is in a uniform (flat) spin
with a rotation period non-resonant with the geocentric
orbit period.

The resulting spin and orbit-averaged equations of mo-
tion for the Ĥ clocking and coning angles α and β and
the inertial spin rate ωe are given by [7],

α̇ =
M̃y(β) + L̃y(α, β)

ωe sinβ
+

ωO/N cosα

tanβ
(4)

β̇ =
M̃x(β) + L̃x(α, β)

ωe
+ ωO/N sinα (5)

ω̇e = M̃z(β) (6)

Here M̃x, M̃y , and M̃z are the averaged H frame so-
lar torque components. For instantaneous thermal re-
emission (i.e. no thermal lag), these torques are just func-
tions of satellite properties and β. The tilde denotes that
they have been divided by the satellite’s maximum mo-
ment of inertia Is which we assume to be unknown. Sim-
ilarly, L̃x and L̃y are the averaged gravity gradient torque
components in the H frame. Finally, ωO/N = |ωO/N |.

The inertia-normalized, spin and orbit-averaged gravity
gradient torque is given by [23],

L̃ =
3

2

µ

a3(1− e2)
3
2

Igg

(
Ĥ · ĤG

)(
Ĥ × ĤG

)
(7)

where a and e are the satellite’s geocentric semi-major
axis and eccentricity, and ĤG is its geocentric orbital an-
gular momentum direction. Finally, Igg = 1−It/Is is the
gravity gradient inertia parameter where It =

1
2 (Il + Ii)

is the average of the minimum and intermediate moments
of inertia Il and Ii. Igg has the physical bounds of 0 for
equal inertias (e.g. a sphere) and 0.5 for an extremely
thin rod or disk. Since L̃ is perpendicular to Ĥ given the
cross-product in Eq. 7, the averaged gravity gradient does
not change the satellite spin rate. So, L̃z = 0. Finally, in
H frame components, ĤG is given by,

HĤG = HO ON

[
sinΩ sin i

− cosΩ sin i
cos i

]
(8)

where Ω and i are the equatorial J2000 right ascension of
the ascending node (RAAN) and inclination of the satel-
lite’s geocentric orbit. In this work, we obtain a, e, i, and
Ω from two line elements (TLEs) making sure to prop-
erly convert the TLE’s Kozai mean motion to semi-major
axis [12] and transform Ω and i from true equator, mean
equinox (TEME) to J2000 [22].

2.3. Solar-Torque Modeling

Spin-averaging enables the use of simple expressions for
the solar radiation torque. By averaging over the satel-
lite’s rotation, we can boil complex dependencies on the
satellite geometry and material reflective properties down
to curves that are just a function of β. As an exam-
ple, we compute the spin-averaged torques for the Op-
tus B3 model provided in Figure 2. The model consists
of 928 facets to accurately capture self-shadowing be-
tween the bus, solar arrays, and antennae. Assuming in-
stantaneous thermal re-emission, we account for specular
and diffuse reflection using the force model provided by
McInnes [16]. We also account for material-specific re-
flective properties for satellite bus multi-layer insulation
(MLI), solar cells, graphite solar array back-side, and car-
bon fiber reinforced antennae. We assume the satellite’s
center of mass is shifted 10 cm along the solar array axis
from the center of the bus and that the principal axes are
aligned with the body axes in Figure 2.

Figure 2: Optus B3 shape model (928 facets)

The resulting spin-averaged H frame torque components
along the maximum inertia (b̂3) axis are provided in Fig-
ure 3. These torques have been normalized with respect
to Optus B3’s maximum inertia Is = 6143 kg·m2. The
non-smooth nature of M̃y , particularly near β ∼ 20◦, is
due to self-shadowing between the bus and antennae. M̃x

and M̃y are identically zero at β = 0◦ and 180◦. This is
due to the following. When the sun is along the spin axis,
the body frame torques are constant. So when averaged,
the torques perpendicular to the spin axis average to zero
as they sweep out all possible directions. Also included
in Figure 3 are 4th order Fourier series least squares fits to
these torques, leveraging the extremal constraints for M̃x

and M̃y [21]. The M̃x and M̃z fits nearly indistinguish-
able from the numerical model. Higher order Fourier se-
ries will naturally improve the fit.
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Figure 3: Optus B3 numerically computed spin averaged
solar torques and 4th order (m = 4) Fourier series fits.

So in this work, we model and estimate the solar torques
with Fourier series. With HM̃(β) = [M̃x, M̃y, M̃z]

T , the
Fourier torques are,

HM̃(β) =
d2AU

u2

{
c0+

m∑
n=1

[
an cos (nβ)+bn sin (nβ)

]}
(9)

where c0, an, and bn are the 3×1 Fourier coefficient
vectors corresponding to a distance of dAU (149.6×10−6

km), m is the Fourier order, and d2AU/u
2 accounts for the

varying sun-satellite distance due to earth’s eccentricity.

The four constraints for M̃x and M̃y are given by,

M̃x(0
◦) = cx0

+ ax1
+ ax2

+ ax3
+ ... = 0

M̃x(180
◦) = cx0

− ax1
+ ax2

− ax3
+ ... = 0

M̃y(0
◦) = cy0

+ ay1
+ ay2

+ ay3
+ ... = 0

M̃y(180
◦) = cy0 − ay1 + ay2 − ay3 + ... = 0

(10)

2.4. Measurement Model

For non-resolved light curves, a satellite’s measured (syn-
odic) spin rate ωs will differ from the inertial spin rate ωe

due to motion of the phase angle bisector (PAB) [11]. The
PAB, denoted by p̂, lies halfway between the satellite-sun
direction û and satellite-observer direction ô,

p̂ =
û+ ô

|û+ ô|
(11)

The observed spin rate ωs is then related to ωe by,

ωs = ωe − λ̇(α, β) (12)

where λ̇ is the longitude rate of p̂ relative to the satellite
spin axis. When observing objects with spin rates much
faster than their orbital motion, the PAB moves primar-
ily in body frame longitude. Therefore, over relatively
short timescales (a handful of object rotations), longitudi-
nal reflective features dominate the light curve frequency
structure. So it is this longitude component of PAB mo-
tion that primarily drives differences between ωe and ωs.
We desire an analytical solution for λ̇ to facilitate partial
derivative computation in our estimation framework.

The inertial time derivative of p̂ is given by,

˙̂p =
1

|û+ ô|

[
˙̂u+ ˙̂o− p̂

{(
˙̂u+ ˙̂o

)
· p̂

}]
(13)

where the unit vector time derivatives ˙̂u and ˙̂o can be
computed using the same functional form below,

˙̂s =
1

s

[
ṡ− ŝ

(
ṡ · ŝ

)]
(14)

Denoting t̂ as the direction of increasing satellite body-
frame longitude,

t̂ =
Ĥ × p̂∣∣∣Ĥ × p̂

∣∣∣ (15)

with sinϕ = |Ĥ × p̂|, the PAB longitude rate λ̇ is then,

λ̇(α, β) =
˙̂p · t̂
sinϕ

(16)

We see that λ̇ will increase as the angle ϕ between p̂ and
Ĥ decreases. At higher body-frame latitudes, longitude
lines converge, so p̂ will move faster in longitude near the
poles than at the body’s equator.

Figure 4 shows synodic period variations at GEO for
several inertially-fixed spin pole latitudes. For clarity,
the synodic period is only plotted for phase angles θ =
cos−1(û · ô) less than 60◦ corresponding to night-time
observation. The satellite has an inertial rotation period
(Pe) of 160 s and an orbital inclination of 15◦. For 60◦

and 90◦ pole latitudes, the spin axis is mostly perpendicu-
lar to the PAB for an earth-based observer, so the synodic
period is relatively constant over the year. As the pole lat-
itude decreases towards the orbit plane, there are portions
of the year where the PAB moves close to the spin axis,
resulting in nightly variations of almost 1 s. Such vari-
ations are readily detectable in dense, high quality, light
curve observations. Synodic period variations increase
with slower inertial rotation. Also, the Figure 4 results are
for prograde rotation (i.e. positive pole latitude). For ret-
rograde rotation (i.e negative pole latitudes), the Figure 4
prograde solutions will essentially be reflected across the
160 s line (i.e. the synodic period will generally be lower
than the inertial period). Sensitivity of the synodic period
to the inertial spin pole direction demonstrates the utility
of leveraging synodic variations for spin pole estimation.



Furthermore, changes in ωs due to inertial acceleration
from external torques will be superimposed on the nightly
synodic variation.

(a) over 1 year

(b) over 10 days

Figure 4: Variations in the synodic period of a GEO satel-
lite for an earth-based observer (Pe = 160 s)

2.5. Estimation Framework

We can now discuss the spin state estimation framework.
Our state vector consists of the following components,

X = [α β ωe cT0 aT bT Igg]
T (17)

with dynamics given by,

F (X) = [α̇ β̇ ω̇e 01×nc
]T (18)

where nc is the total number of Fourier and gravity gradi-
ent coefficients, all assumed to be constant. In this work,
we assume that our measurements are synodic spin rates
obtained from light curve frequency analysis.

G(X) = ωs = ωe − λ̇(α, β) (19)

Other measurement types can be readily incorporated.
These include direct inertial spin pole measurements as

well as indirect measurements like Doppler bandwidth
which provides the angle between the spin axis and radar
line of sight [4, 5].

Finally, we have the four constraints on the M̃x and M̃y

Fourier coefficients given by Eq. 10 which can be written
more compactly in the following form,

[C]X = b = 04×1 (20)

We use a statistical least squares (batch) estimator [20] to
fit our state X at a specific epoch to the measurements
G(X) using the Eq. 20 constraints [21].

3. SIMULATION RESULTS

We will now explore the spin state estimation frame-
work for a simulated test case. The TLE ephemerides for
the defunct GEO satellite EchoStar 2 are used to com-
pute observation geometry and the geocentric orbital el-
ements. The initial simulation epoch is January 1, 2022
00:00 UTC. Synodic spin rate measurements are taken
from Flagstaff, Arizona, USA (35.1846◦ N, 111.7444◦
W, 2270 m elevation). After the first 4 nights where 3 - 6
hours of obs are taken with a 30 minute measurement ca-
dence, a single synodic measurement is taken every 7 - 16
days for one year. Observations are only taken at phase
angles less than 45◦ to simulate night-time observation.

The truth state is: α0 = 0◦, β0 = 150◦, Pe = 300 s, Igg =
0.396. We assume the numerically computed Optus B3
solar torques from Figure 3 as truth, evaluating them with
interpolated lookup tables. We propagate these truth dy-
namics forward and generate simulated synodic spin rate
observations.

The a priori spin period estimate is Pe = 299.7 s with
Igg = 0.45. Since we generally lack a priori spin axis in-
formation, we generate 24 hypotheses for the initial spin
pole direction with α ranging from 0◦ to 315◦ and β from
45◦ to 135◦, both in 45◦ increments. For reference to the
resulting estimates, the hypotheses are numbered in terms
of increasing α first. We model M̃x, M̃y , and M̃x as 6th
order Fourier series and set all a priori coefficient values
to zero. Therefore, we make no assumptions about the
solar torque structure.

For numerical stability in the batch filter, we scale up the
small solar torque coefficients for commensurability with
α, β, ωe, and Igg and scale the simulation time accord-
ingly. For a priori covariance P̄0 in the filter [20], we
assume 1-σ uncertainties of 3◦ for α and β, 0.1 for the
scaled Fourier coefficients, 0.1 rad/s for ωe, and 0.03 for
Igg . A 0.01 s 1-σ uncertainty is applied as random noise
to the true synodic period measurements.

Starting at the initial epoch, we fit each hypothesis to in-
creasing timespans of measurements, saving the updated
estimates as new a priori and refitting over a larger frac-
tion of the data. During this process, if β leaves (0◦,



180◦), Igg exceeds physical bounds, the satellite spin rate
reaches zero during propagation, or the post-fit measure-
ment residuals diverge, we attempt to re-fit over shorter
and shorted segments until passing these checks. If we
cannot add another measurement without failing these
checks, we discard the hypothesis. Otherwise, we con-
tinue fitting over longer and longer segments until all
measurements have been incorporated. These checks
solely enforce consistency with the assumed dynamics
model and measurements and make no additional as-
sumptions about the object.

(a) dots are synodic periods, solid lines are inertial

(b) Ĥ clocking angle α (c) Ĥ coning angle β

Figure 5: Fit for hypothesis 24 after 3 days (blue is truth)

Figure 5 shows the fitting process for hypothesis 24
(α0 = 315◦, β0 = 135◦) over the first three nights of ob-
servations. The blue line in Figure 5a is the true inertial
spin period Pe and the black dots are the corresponding
synodic measurements with noise added. We can see that
the nightly synodic variation is superimposed on the solar
torque-driven inertial period change. The initial a priori
estimate for hypothesis 24 is shown in red (solid line for
Pe, dots for Ps = 2π/ωs). The a priori Pe is constant
since we assume zero solar torque a priori. The a priori
synodic variation is inconsistent with the measurements
due to the initial spin axis being 30.4◦ from the true loca-
tion. Minimizing the least squares difference between the
predicted and observed measurements, the filter updates
the state to the yellow fit which closely overlays the true
α, β, and Pe.

(a) Inertial period (synodic
measurements are black dots)

(b) clocking angle α

(c) coning angle β

Figure 6: Spin state evolution for all viable hypotheses
after 90 days (blue is truth)

(a) M̃x (b) M̃y

(c) M̃z

Figure 7: Torque estimates for the all viable hypotheses
after 90 days (blue is truth)

Moving out further in time, Figure 6 shows all viable hy-
potheses after 90 days (with the blue lines denoting the
truth). At this point, 11 of the 24 hypotheses have been
discarded for failing to pass the above checks. Most of
the remaining viable hypotheses are closely tracking the
spin period measurements. However, from the α and β
estimates we see that the pole solutions fall largely into
two groups, the first near the true spin axis and the sec-
ond attracted to another spin axis that was a well-fitting



solution to the first 4 nights of dense synodic measure-
ments. We see similar separation in the Figure 7 torque
estimates, most notably for M̃z where there are two ”mir-
rored” groups of solutions. Overall, we can see several of
the torque estimates beginning to converge on the true
curves.

(a) Inertial period (synodic measurements
are black dots)

(b) Ĥ clocking angle α

(c) Ĥ coning angle β

Figure 8: 1 year spin state evolution for the 4 viable hy-
potheses

(a) M̃x

(b) M̃y

(c) M̃z

Figure 9: 1 year torque estimates for the 4 viable hypothe-
ses

Figures 8 and 9 show the 4 remaining viable hypotheses
after 1 year. All other hypotheses have been discarded
after failing to pass one or more of the above checks
for dynamical and measurement consistency. All 4 es-
timates closely track the true spin period and pole evolu-
tion with torque estimates converging on the true curves.
Estimated gravity gradient parameters Îgg for the 4 hy-



potheses range from 0.360 - 0.384 compared to the true
value of 0.396 (3 - 9% difference), due in part to Igg
absorbing discrepancies between the true numerical so-
lar torques and truncated Fourier series model. Further
observations will improve the torque coefficient and Igg
estimates. Also, measurements of the nightly synodic pe-
riod variation accelerate convergence by providing direct
spin axis information. Otherwise, spin axis information
is obtained through weaker dynamical coupling between
ωe and the spin axis via the solar torque components.

4. REAL OBSERVATION RESULTS

We will now apply the spin state estimation and pre-
diction framework to real observations of defunct GEO
satellites. Data was collected from 2012 - 2018 at two ob-
serving sites. The first, affiliated with the Royal Military
College of Canada (RMC), is in Greater Napanee, On-
tario, Canada (44.1231◦ N, 76.8903◦ W, 79 m elevation).
The RMC data were collected at a ∼3.3 second cadence
with a 0.28 m telescope and calibrated to apparent mag-
nitudes. Further details on the RMC data collection and
reduction can be found in Ref. [10]. The second site is at
the United States Naval Obseratory (USNO) in Flagstaff,
Arizona, USA (35.1846◦ N, 111.7444◦ W, 2270 m eleva-
tion). The USNO data were collected at a ∼37 s cadence
and calibrated to apparent magnitudes.

To extract synodic spin rate information, we fit each light
curve with a model function consisting of a polynomial in
time and a Fourier series [11]. The polynomial captures
secular changes in the mean magnitude due to varying
observation geometry and the Fourier series models the
satellite’s rotation. A quadratic polynomial and 16th or-
der Fourier series were used in this work. Candidate peri-
ods were tested over a range of values obtained from ini-
tial inspection. An iterative approach was taken to more
finely sample around the best-fit until the relative change
in the spin rate estimate dropped below 1e-6. Visual
inspection, minimum dispersion phase-folding, Lomb-
Scargle analysis, and consistency with the spin rate trend
from nearby light curves was used to disambiguate har-
monics, for example the true spin rate and twice the true
rate. The midpoint of each light curve was taken as the
measurement epoch. Observation arcs spanned ∼30 min-
utes to several hours, with a minimum timespan of sev-
eral rotation periods for measurements to be considered.
These synodic spin rate measurements were then pro-
cessed in the spin state estimation framework.

4.1. Telstar 401

Telstar 401 is a defunct GEO satellite that launched in
1993 and failed on orbit in 1997. As a result, it was
never raised to the GEO graveyard and currently librates
around the western stable GEO point, making it visible
from North America year-round. Figure 10 shows a seg-
ment of the Telstar 401 light curve collected at RMC on

June 14, 2012 with the quadratic polynomial + 16th order
Fourier series yielding a best-fit period of 161.51 s.

Figure 10: Segment of Telstar 401 light curve on June 14,
2012 with best-fit synodic period estimate (161.51 s)

Figure 11 shows the measured synodic spin period time
history for Telstar 401 obtained from RMC and USNO
photometry, spanning 5.5 years. Over this timespan, the
mean synodic period was ∼160 s and we see a cyclic pe-
riod trend similar to that for the simulated case in Fig-
ure 8.

Figure 11: Telstar 401 measured synodic period history

We apply the batch filter to the Figure 11 measurements
with a 6th order Fourier series for the solar torques (set-
ting all a priori coefficient values to zero) and assume an
a priori Igg of 0.4. We take the synodic measurement on
the first night as the a priori inertial period. We consider
264 pole hypotheses with α from 0◦ to 345◦ and β from
15◦ to 165◦, both in 15◦ increments. We assume 1-σ un-
certainties on the angles of 6◦.

Processing the observations for each hypothesis using the
aforementioned checks, the 7 converged solutions for the
inertial period Pe and orbit frame spin axis angles α and β
are provided in Figure 12. The synodic period measure-
ments are plotted as black dots. We see the 7 solutions
lie nearly on top of each other and all closely track the
measured periods.



(a) period (measurements are black dots)

(b) Ĥ clocking angle α

(c) Ĥ coning angle β

Figure 12: Telstar 401 spin state evolution for the 7 best-
fit hypotheses

The corresponding 6th order Fourier series torque esti-
mates are provided in Figure 13. The estimated torques
are similar in magnitude to the simulated torques for Op-
tus B3 in Figure 3 with M̃x sharing a similar shape. Like
the simulated torques, M̃z changes sign around β = 90◦

corresponding to Telstar 401’s equatorial plane. This M̃z

sign change, coupled with β variation, drives the cyclic
pattern in Telstar 401’s synodic spin rate. We should note
that the Telstar 401 M̃z estimate is largely unconstrained
for β values outside [45◦ 135◦] because β never exceeds
this range in Figure 12c. So M̃z values outside these

bounds are poorly informed. We see a similar behavior
in Figure 9c. Torque estimates at these extremal β val-
ues would improve if further spin rate measurements are
taken when β reaches these values.

(a) M̃x

(b) M̃y

(c) M̃z

Figure 13: Telstar 401 6th order Fourier series torque es-
timates for the 7 best-fit hypotheses

To better understand the spin axis evolution of these con-
verged solutions (which are all within several degrees of



each other), Figure 14 shows the hypothesis 26 spin axis
time history in equatorial J2000 starting at the green dot
on June 11, 2012. Telstar 401’s geocentric orbit normal at
the midpoint of the 5.5 year span is given by the dashed
line. We can see that Telstar 401’s spin axis precesses
clock-wise around the orbit normal direction due to grav-
ity gradient torques which are of similar magnitude to the
solar torques.

Figure 14: Telstar 401 best-fit spin axis evolution from
June 11, 2012 - October 25, 2017 in equatorial J2000 (×
denotes the February 27, 2017 location)

The × marker in Figure 14 denotes the estimated pole
location on February, 27, 2017. Doppler measurements
of Telstar 401 were collected using the Deep Space Net-
work radar antennas in Goldstone, California from late
February through early March 2017 [3]. Figure 15 shows
the possible radar-derived solutions for Telstar 401’s spin
axis over these days. At each epoch, the spin axis lies on
one of the corresponding curves [3, 4]. Provided the iner-
tial spin axis does not move, viable spin axis solutions are
at the intersection of the curves for all five epochs shown.
Our estimate indicates a ∼3.2◦ increase in J2000 right
ascension (RA) and ∼0.5◦ increase in declination (dec)
from February 23 - Mar 2, 2017, so the radar-derived
spin axis curves may not line up exactly. The dashed
circles denote the approximate viable pole regions. The
(RA, dec) prediction from our current attitude estimation
framework on February 27, 2017 is 235.2◦ and 44.7◦ and
is marked as shown. This is ∼7◦ from the center of the
right radar-derived pole region.

Table 1 shows the Telstar 401 hypothesis 26 spin state
propagated to the last measurement epoch on October
25, 2017. We note that the best-fit Igg is well-within
the viable bounds and suggests a slightly more com-
pact mass distribution than the Optus B3 model (Igg =
0.396). Follow-on observations would help further refine
this gravity gradient estimate and the solar torque com-
ponents.

Figure 15: Telstar 401 Deep Space Network radar spin
axis solutions and the prediction from this work (equato-
rial J2000).

Table 1: Telstar 401 best-fit solution on October 25, 2017

P̂e α̂ β̂ RAJ2000 Dec.J2000 Îgg

171.5 s 32.9◦ 75.1◦ 184.3◦ 60.3◦ 0.300

5. CONCLUSIONS

We presented an averaged spin state estimation and pre-
diction framework for uncontrolled satellites and rocket
bodies. Averaging enables rapid spin state propagation
months or years into future. More importantly, by av-
eraging the perturbing torques over the fast angles (ob-
ject rotational phase and geocentric orbit true anomaly),
we distill the torque models to simple curves that we ap-
proximate with Fourier series. This enables us to esti-
mate a uniformly rotating object’s spin state and perturb-
ing torques from light curve-derived synodic spin rate
measurements with no a priori information. Dynami-
cal coupling between the spin rate and spin axis allows
us to tie together long-term observations, strongly con-
straining viable states. We applied this framework to real
observations of the defunct Telstar 401 satellite in GEO
and showed close agreement of our estimated spin axis
with independent radar-derived measurements. Given the
”shape-model free” nature of this approach, it can be
readily applied to long-term observations of the broad de-
funct satellite and rocket body population in GEO and
elsewhere.
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