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ABSTRACT

The growing density of human-made objects in orbit is
resulting in an increase in conjunction events. Collision
avoidance has become an essential component of satel-
lite operations, with many organizations relying on on-
call satellite operators to initiate avoidance maneuvers to
mitigate collision risks. Given the expected proliferation
of conjunctions in the coming decade, it will be essential
to automate this process, thus reducing operator work-
load and enhancing scalability. This study compares the
decision-making processes of satellite operators across
five organizations, including both space agencies and pri-
vate companies. Six analysts are given a set of 30 criti-
cal conjunction events and tasked with making go/no-go
decisions. Their decision criteria and thresholds are ana-
lyzed to identify variations in their approaches. Based on
these insights, deterministic rule-based classifiers are de-
veloped to replicate each analyst’s decision-making pro-
cess. Additionally, a Long Short-Term Memory (LSTM)
model, trained on a synthetic dataset of 8000 critical con-
junctions, is tested on the same 30 events assessed by the
analysts, and its classifications are compared to theirs.
The performance of both the rule-based classifiers and
the LSTM model is further evaluated on the synthetic
dataset, with the LSTM achieving an F1-score of 88%,
demonstrating its strong potential for automating or sup-
plementing decision-making processes.

Keywords: Collision Avoidance; Conjunction Assess-
ment; Dempster-Shafer Theory; Rule-Based Classifica-
tion; Long Short-Term Memory; Artificial Intelligence.

1. INTRODUCTION

As of March 2025, the number of objects cataloged by
space surveillance networks reached over 39,000 [1].
11,100 active satellites operate against this congested
backdrop comprising operational payloads and debris
alike. Of these, over 8000 satellites operate in Low Earth
Orbit (LEO) [2], making this regime a hot spot for criti-
cal conjunctions. Given the number of satellites in orbit is
expected to exceed 100,000 by 2030 [3], collision avoid-
ance activities will be of utmost importance to minimize
the risk of fragmentation events in an already crowded or-
bital environment. Over 43,000 conjunction events with
a probability of collision (PoC) greater than 1E-6 occur
monthly in LEO [4], resulting in at least 2 actionable
alerts per satellite per week [5]. The frequency of these
critical warnings is expected to proliferate, imposing sig-
nificant pressures on satellite operators who rely on man-
ual, analyst-dependent collision avoidance procedures.

Most of the collision avoidance process is automated –
there are models in place for collision screening, calcula-
tion of critical parameters at the time of closest approach
(TCA), propagation of the states and covariances of the
collision pairs to the TCA, and maneuver optimization, if
a maneuver is deemed necessary. A key aspect of the
process is go/no-go decision-making – deciding for or
against a maneuver to mitigate the collision risk. While
some entities such as SpaceX automate decision-making
using PoC thresholds [6], many organizations rely on an-
alysts working on-call around the clock to make decisions
when faced with a critical conjunction.

The need for manual go/no-go decision-making stems
from the high stakes involved – an incorrect decision
could, at worst, result in the loss of a satellite. Con-
versely, excessive maneuvers deplete the fuel budget of
the mission and disrupt planned satellite operations. Re-
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lying on human analysts to make the go/no-go decision
allows for more control over the process, particularly in
cases that require careful, case-by-case assessment. Al-
though tricky conjunction events currently make up only
a small fraction of all cases, they present unique chal-
lenges that complicate decision-making. Such conjunc-
tion events include those with sudden jumps in PoC or
covariance values, cases where values hover around pre-
defined PoC or miss distance thresholds, or situations
involving seemingly untrustworthy or error-ridden data.
Given the expected rise in conjunctions over the next
decade, these difficult cases could still constitute a signif-
icant number of events overall – manual decision-making
practices are unlikely to feasibly scale to accommodate
such a scenario.

In recent years, many works have explored the potential
of automating aspects of the collision avoidance process
using AI. European Space Agency’s (ESA) 2019 Space-
craft Collision Avoidance Challenge tasked participants
with predicting the final collision risk (PoC) between two
objects using Conjunction Data Messages (CDMs) [7].
AI models for PoC prediction have also been investigated
by [8] and [9], where classification models assess events
as high or low risk based on a PoC threshold of 1E-6,
as used in ESA’s competition. The use of deep learning
techniques, such as Long Short-Term Memory (LSTM)
models, has been explored by [9], [10], and [11] to pre-
dict PoC and covariance trends in future CDMs, and for
go/no-go decision-making [12]. Covariance forecasting
using machine learning with diffusion models has also
been implemented [13]. Beyond feature prediction, ap-
proaches to further automate event filtering and charac-
terization through the use of gradient boosted decision
trees, graph neural networks, and genetic algorithms have
also been put forth [14, 15, 16] . A multi-class classifi-
cation framework has been proposed to assess a CDM’s
likelihood of changing risk category [17], while [18] ap-
plies Evidence Theory to categorize encounter geome-
tries into five classes based on event criticality. Addi-
tionally, in line with the comparative study presented in
this work, prior studies have also explored differences in
collision avoidance practices across entities [19, 20, 21].

This work innovates by studying 30 go/no-go decisions
made by analysts at different organizations and applying
the findings towards the development of deterministic and
AI models. Two surveys are provided to the analysts –
the preliminary survey is aimed at obtaining an overview
of collision avoidance practices in the company and gen-
eral perspectives on automating the decision-making pro-
cess; the decision survey notes the decisions made by the
analysts, as well as the factors influencing them. Out-
comes from the surveys are used to develop rule-based
classification models to capture each analyst’s decision-
making process. These models are then compared to a
Long Short-Term Memory (LSTM) model based on their
ability to classify events in a simulated dataset of 8000
events, where the ground truth is inherently known. The
LSTM model used in this study is a refinement of a pre-
viously developed model in [12]. It is trained on 6400
events using an 80-20 train-test split and evaluated on

the same 1600-event test set as the rule-based classifiers
for a direct comparison. The extent to which go/no-go
decision-making can be reliably automated using deter-
ministic or AI-based approaches is investigated.

2. DATA SOURCES

2.1. Dataset A – 30 Events

The 30 events evaluated by analysts are based on events
from the test set of ESA’s 2019 Spacecraft Collision
Avoidance Challenge [7]. The events are adapted to be
higher risk – the Hard Body Radius is changed to yield
a higher Probability of Collision (PoC) and the time to
the Time of Closest Approach (TCA) for each CDM is
reduced by 0.6 days, to mimic the more critical events
faced operationally by the analysts. Details on the com-
plete event generation process can be found in a previous
work, [12], for which it was originally developed. Since
this project aims to uncover if the decision-making pro-
cess can be automated, it is of particular interest to assess
events which especially need human appraisal – events
near PoC/miss distance thresholds and those exhibiting
unusual trends. Understanding how analysts evaluate
events and make decisions is key to applying these in-
sights in the development of automated decision-making
models. Figure 1 shows the PoC distribution in the last
CDM across the 30 events. As seen in the figure, these
events are high-risk, with PoC values nearing the com-
monly used 1E-4 threshold.

Figure 1: PoC in the last CDM of the 30 events.

The events are provided to the analysts in the Consulta-
tive Committee for Space Data Systems (CCSDS) rec-
ommended format, which is an industry standard. Addi-
tionally, a summary of key quantities of the event, such
as time to TCA, miss distance, PoC, and covariance in-
formation across the CDMs, is also provided for conve-
nience. This summary is an output of an in-house, Colli-
sion Avoidance System (CAS) at the German Space Op-
erations Center (GSOC) [22]. The analysts make their de-
cisions under the following assumptions: the secondary
object is non-maneuverable, avoidance maneuvers cannot



be combined with scheduled maneuvers, and the go/no-
go decision is based on the final CDM received (at least
1.5 days before TCA).

2.2. Dataset B – 8000 Events

Dataset B comprises 8000 simulated critical events in
LEO and is used for the training and testing of the LSTM
model introduced later in Section 5.2. Unlike Dataset
A, where no definitive ground truth exists, Dataset B is
explicitly designed by defining the states of conjunction
pairs at a TCA. Thus, the final truth states of the two ob-
jects in a conjunction pair is known and devised to yield
a desired number of collisions and misses. Events are
designated as collisions if the objects’ states lie within
a 50-meter miss distance (d) threshold, and are misses
otherwise – d is capped at 500 meters for misses to still
result in high-risk events. The dataset is balanced with
4000 collisions and 4000 misses.

For the simulated events, CDMs are generated through
the following process: the conjunction pairs are back-
propagated to an initial time, t0, 65 hours before TCA.
Synthetic radar observations are generated using 25 sim-
ulated ground-based sensors positioned around the Earth.
These measurements are fed to an Extended Kalman Fil-
ter (EKF) for subsequent orbit improvement. An orbit up-
date from the filter is received every 4-10 hours (7 hours
on average), and a corresponding CDM is generated. This
replicates the cadence at which operators receive CDMs.
3 CDMs are issued per day, for a total of 9 CDMs per
event. In this work, only information up to the 5th CDM
(about 1.5 days before TCA) is used in the automated
models, to mirror the time to TCA values in Dataset A.

The CDMs in this dataset are used by the LSTM and rule-
based classification models (Section 5) to make their pre-
dictions. As it is known whether the events in this dataset
are collisions or misses, this ground truth is used to eval-
uate the predictions made by the aforementioned models.

Table 1 summarizes the parameters used for generating
the synthetic measurements with the EKF. σ refers to
standard deviation.

Table 1: Key parameters used for measurement genera-
tion and EKF orbit improvement.

Parameter Value Unit
Measurement period 120 secs
No. of measurements per period 120 -
Measurement noise, σ 15 m
Process noise, position σ 1E-10 km
Process noise, velocity σ 1E-8 km/s

120 radar observations are collected during each mea-
surement period – one observation is obtained per second.

The measurement noise applied is Gaussian with a mean
of 0 and a standard deviation of 15 meters. The process
noise is kept small as there are no unmodeled dynamics
affecting the generated measurements.

Figure 2 depicts the miss distances and PoCs for the col-
lisions and misses in the dataset – these are values from
the last CDM issued before a time to TCA of 1.5 days,
which is the same time to TCA limit for the events in
Dataset A. Many of the misses population have very low
PoCs and thus lie outside the frame of the figure. It can
be observed that a number of events have miss distances
different from the ground truth – the collision events with
d > 50 m, for instance. These events have not yet con-
verged to the final ground truth and will do so in subse-
quent EKF updates. The automated models in Section
5.3 are tasked with using this preliminary information as
of 1.5 days before TCA, anticipating the continued evo-
lution of the event, and making a go/no-go decision ac-
cordingly.

Figure 2: Distribution of events in the generated Dataset
B, comprising 8000 events, at TCA - 1.5 days.

3. ANALYST RESPONSES

3.1. Preliminary Survey

Six analysts across five different organizations – the Ko-
rean Aerospace Research Institute (KARI), the European
Space Agency (ESA), HawkEye 360, Inc., GMV, and the
German Aerospace Center (DLR) – participate in this
study. A preliminary survey has been sent to each or-
ganization to gather valuable background information on
its collision avoidance practices. Findings from this sur-
vey are used to inform the set of events curated for the
analysts, as well as the prompts in the decision survey,
to ensure they are relevant to the processes used at each
organization. Key outcomes of this survey are summa-
rized in Table 2. It is observed that decision thresholds



vary, particularly for PoC, with one organization using
1E-3, while the others use 1E-4. All organizations make
decisions for satellites in LEO, with some also work-
ing in Geostationary (GEO) and Highly Elliptical Orbits
(HEO). Notably, the analysts are generally in favor of au-
tomating the decision-making process, though some see
it as a supplement to existing practices, as opposed to a
replacement.

Table 2: Preliminary survey responses for five organiza-
tions.

Survey field Response summary
Number of analysts
in the company

2 to 7

Is at least 1 analyst
on-call 24/7?

Yes: 3
No: 2

Regimes covered LEO, GEO, HEO

SSA data sources
18th SDS, LeoLabs, EUSST,
Space Data Association

Thresholds used
PoC: 1E-3, 1E-4
d: 100 m

Last CDM
considered for
decision

12 to 48 hrs before TCA

Would an automated
process be
beneficial?

Yes, sooner the better: 4
Not yet, but would be
valuable in the future: 1

Is it possible to
automate the
process?

Yes, it is deterministic: 3
Maybe, it could serve as a
filter/second opinion for the
analyst: 2

Additionally, the analysts are asked why the decision-
making process could be easy or difficult to automate.
The responses recognize both the potential and chal-
lenges of automating the decision-making process. While
some view automation as feasible, particularly if priori-
tized, others highlight key obstacles such as the difficulty
of quantifying certain factors related to maneuver plan-
ning, the uncertainty in available information, and the
need to account for unexpected changes. Concerns are
raised about ensuring all edge cases are addressed and the
operational constraints of coordinating with other space-
craft, which is not currently automated. Despite the pos-
sibility of automation, some analysts believe that the se-
vere consequences of potential errors will require human
supervision for the foreseeable future.

3.2. Decision Survey

3.2.1. Survey setup

The decision survey aims to not only gather the analysts’
go/no-go responses, but also their reasons for their deci-
sions. Six analysts from the five participating organiza-
tions completed the survey.

Table 3 summarizes the information obtained for each
event. In addition to the binary go/no-go decision, an-
alysts are asked to provide their perception of the event –
specifically regarding the event’s criticality and the ease
of their decision. There is also space for analysts to share
any specific factors that contributed to their decision.

Table 3: Components of the decision survey.

Survey field Options
Time taken Free response

Impression of the
event

1. Very critical
2. Potentially critical
3. Maneuver not needed (but risky)
4. No action needed, uncritical

Go/No-Go
decision

Go
No-Go

Ease of decision

1. Yes, threshold-based, looks
reliable
2. No, event is on the boundary
between critical/uncritical
3. No, jumping values and/or
inconsistent trends
4. Other (free response)

Specific reason
for decision Free response

CDM parameter
importance

1. Very important
2. Somewhat important
3. Unimportant

Usage of all
CDMs

Yes
No

Additional
comments Free response

To gather the relative importance of CDM parameters, the
analysts are also asked to provide an indication of how
useful a parameter is in making their decision. These pa-
rameters were specifically indicated as being used by the
analysts for decision-making in the preliminary survey.

A 1 to 3 ranking is used as shown in Table 3. The CDM
parameters that are rated are as follows:

• Probability of collision (PoC). There is a field to in-
dicate whether the True PoC or Maximum PoC is



used. The Maximum PoC is typically considered
when the K value (covariance scaling factor) is be-
low 1. K < 1 indicates PoC dilution – a reduction in
covariance could result in a higher PoC. Thus, some
analysts may choose to consider the Maximum PoC
when faced with a diluted event.

• Miss distance (d)

• Time to Time of Closest Approach (TCA)

• Relative velocity

• Radial (R) separation. There is a field to indicate
if the along-track (T) and/or normal (N) separations
are also specifically considered.

• Position uncertainties (R/T/N σ)

• Collision geometry

• Free response. There is a field to highlight any other
parameters used and why they influenced the deci-
sion.

3.2.2. Survey responses

The responses to the decision survey by the six analysts
are summarized in this section.

Table 4 shows the number of events classified as go and
no-go by each analyst.

Table 4: Go/no-go decision breakdown by analyst for
Dataset A, consisting of 30 events.

Analyst No. of go No. of no-go
Analyst 1 17 13
Analyst 2 9 21
Analyst 3 14 16
Analyst 4 11 19
Analyst 5 5 25
Analyst 6 1 29

The table highlights a range of decision tendencies. An-
alyst 6, for instance, appears to be highly conservative,
issuing only a single go decision across all events, in con-
trast to Analyst 1, who tends to opt for a maneuver more
frequently. The variability across analysts suggests that
analyst decision-making tends to be subjective, with each
analyst making decisions that are likely in line with in-
dividual operational experiences and company protocols.
These differences underscore the complexity of automat-
ing the decision process, as such a system would have to
account for various interpretations of conjunction events
based on the end user’s unique needs.

Figure 3 visualizes the go/no-go responses for each event.
Additionally, events that are deemed easy and uncritical

(ease: 1, impression: 3-4 from Table 3) by more than half
of the analysts, are also highlighted.

When considering the highest and lowest decision com-
patibilities, it is seen that Analysts 5 and 6 reach 87%, fol-
lowed by Analysts 4 and 5 at 80%; Analysts 3 and 4 agree
on only 37% of events, while Analyst 1 aligned with both
Analysts 5 and 6 on 40 % of events. This further high-
lights the discrepancy in decision-making across analysts.
6 out of the 30 events are regarded as either uncritical or
easy events by the analysts on average. 5 out of the 6 of
these events show a clear majority for the decision, with
only Event 23 – regarded ’easy’ – having a 50-50 go/no-
go split. This suggests that more alignment between ana-
lysts could be found in cases that are uncritical – 2 of the
3 events that yield 100% agreeability across all analysts
are both tagged ’uncritical’ by the analysts. Easy events –
or those for which a threshold-based decision can safely
be made – also tend to have more co-alignment in analyst
responses; this suggests that the thresholds used by the
analysts are similar, which need not always be the case as
seen in Table 2.

Section 4 takes a closer look at outcomes from the deci-
sion survey.



Figure 3: Go/no-go responses by analysts for the 30 events of interest.

4. DATA ANALYSIS

4.1. Factors Affecting Decision-Making

Through a qualitative analysis of the specific reason for
decision in the survey responses, an overview of the key
factors dictating the analysts’ decisions can be obtained.
Table 5 summarizes these rationales. Note, this table
does not specifically mention straightforward decisions
for nominal cases as these tend to be unanimous – a
Go decision when thresholds are violated, and everything
looks stable, for example.

Unsurprisingly, PoC plays a central role in the decisions
with many analysts referring to the PoC threshold and
PoC trend behavior in their responses. Additional fac-
tors such as miss distance, covariance stability, and PoC
dilution are also accounted for. Analysts noticeably dif-
fer in their tolerance for uncertainty, with some requir-
ing stable trends before committing to a maneuver, while
others maneuver in the face of sudden increases in risk.
Certain analysts emphasize operational constraints, such
as the required ∆V for maneuver execution, highlighting
the practical considerations involved in collision avoid-
ance decisions.

Understanding which features analysts prioritize is essen-
tial to select vital features for both the deterministic and
AI models developed for decision-making. The 7 CDM
parameter importance fields in the survey are averaged
across the 30 events for each analyst and ranked accord-
ing to their relative importance in Table 6. Analysts 1 and
6 do not consider collision geometry and relative velocity
in their decision-making, and these fields are left blank
(—) in the table. Additional features considered by the
analysts in the making of their decisions are also listed
under ’Free response’.

While Probability of Collision (PoC) is consistently
ranked as the most or second-most critical feature by
most analysts, there is notable variation in how other fea-
tures are weighted. Miss distance, time to TCA, and po-
sition uncertainties also emerge as important considera-
tions, though their rankings differ across analysts. Some
analysts rely heavily on a few key metrics, while others

take a more distributed approach, incorporating multiple
features into their assessments. Additionally, analysts
factor in dilution (through the K value), the maneuver
cost, and along-track and normal separations specifically
in making their decisions.

It is important to note that a lower ranking does not imply
that a feature is unimportant; it simply reflects the relative
emphasis placed on it in the overall decision-making pro-
cess. For example, while relative velocity and collision
geometry tend to have lower ranks, they may still play
a role in edge cases or when other indicators are incon-
clusive. The diversity in rankings further highlights the
challenge of modeling decision-making through a stan-
dardized framework, as analysts weigh different factors
based on their personal experience, risk tolerance, and
operational constraints.

4.2. Dempster-Shafer Theory for Decision Combi-
nation

As observed in Section 3.2.2, analysts often arrive at dif-
ferent conclusions when presented with the same data. If
decision-making is to be automated, an important consid-
eration is which human decisions the model should learn
from. In the presence of conflicting assessments, a sys-
tematic approach to decision fusion is required.

Dempster-Shafer Theory (DST) is used to combine infor-
mation from different sources and put together a singular
outcome based on the supporting evidence for it [23]. In
this work, it is used to combine the different decisions
made by the analysts to arrive at a single ’superimposed’
decision for each event. This approach can be used to es-
tablish a ground truth for training AI models or serve as a
framework for integrating outputs from multiple in-house
models or analysts, ensuring a more robust and unbiased
decision-making process.

In the context of this work, several key components of
Dempster-Shafer Theory (DST) are defined. The Frame
of Discernment (Θ) represents the possible decisions an
analyst could make, such as a go or no-go. In this study,
Θ consists of two possible hypotheses: G for a go de-
cision, and NG for a no-go decision. The power set in-



Table 5: Decision criteria for go/no-go maneuvers by analyst.

Analyst Go decision factors No-go decision factors

Analyst 1

PoC suddenly increases (even if below
threshold),
PoC rises constantly,
PoC close to threshold but unstable
PoC above threshold with inconsistent
PoC/covariance trends

Time to TCA is large,
PoC consistently below threshold with no
upward trend,
PoC close to threshold but unreliable trend,
K (covariance scale factor) rising

Analyst 2 Concerning PoC trend,
Miss distance near/lower than 100 m

Stable PoC, miss distance, and covariance
trends,
High R separation despite high PoC,
Inconsistent miss distance trends,
High covariance

Analyst 3

High PoC with low R separation and unsta-
ble T uncertainty,
R uncertainty exceeds R separation and
PoC is high

Stable RTN separations despite violated
thresholds,
Unreliable uncertainties

Analyst 4

Low, stable R separation,
Potential for PoC increase with improved
covariance,
PoC near threshold with large uncertainty
in T

Stable covariance evolution,
Rare but stable event geometry

Analyst 5

Potential for PoC increase with improved
covariance,
High PoC with low separation (especially
in R), without large uncertainties

PoC stable under threshold,
PoC highly diluted (results in high maneu-
ver cost due to large uncertainties)

Analyst 6 PoC > 1E-3,
Miss distance < 100 m All other cases

Table 6: Relative feature importance rankings by analyst. ’Free response’ indicates additional features that are considered
by the analyst. Col. geometry and rel. velocity refer to collision geometry and relative velocity respectively.

Rank Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5 Analyst 6

1 PoC Miss distance Miss distance PoC
Time to TCA

PoC
Time to TCA
R separation

R/T/N σ

PoC,
Miss distance,
Time to TCA,

R/T/N σ

2 R/T/N σ PoC PoC - - -
3 R separation R/T/N σ R separation R/T/N σ - -
4 Time to TCA Time to TCA R/T/N σ Miss distance - -

5 Miss distance R separation Time to TCA R separation Miss distance
Col. geometry R separation

6 — Col. geometry Col. geometry Col. geometry - —
7 — Rel. velocity Rel. velocity Rel. velocity Rel. velocity —
Free response K value — T/N separation K value Required dV —



cludes all the possible combinations of these hypotheses.
For instance, it contains elements such as ∅, which refers
to a situation where the event is neither a go nor a no-go,
and {G, NG}, which represents uncertainty when there is
insufficient evidence to decisively choose between G or
NG.

A Basic Probability Assignment (BPA) is then used to
quantify the degree of belief assigned to each hypothesis,
with the condition that the total mass across all elements
of the power set equals 1. The Dempster rule of combina-
tion is employed to merge BPAs from multiple sources of
evidence, accounting for any conflict or uncertainty be-
tween them. By combining BPAs from multiple analysts,
this rule generates a single, combined BPA, with the de-
gree of conflict represented by the parameter K.

m1,2(∅) = 0 (1)

m1,2(H) =

∑
Hi∩Hj=H m1(Hi)m2(Hj)

(1−K)
(2)

when H ̸= ∅ and where,

K =
∑

Hi∩Hj=∅

m1(Hi)m2(Hj) (3)

Here, m1 and m2 are BPAs from two analysts, which are
then combined to arrive at a single BPA, m1,2 for each
combination of hypotheses (H) in the power set. K quan-
tifies the degree of conflict between the sources of evi-
dence – the analysts, in this case.

Each analyst’s decision is mapped to a BPA using infor-
mation obtained from the decision survey – specifically
the decision made, ease of decision, and impression of
the event, as defined in Table 3.

Table 7 outlines how the BPAs for each analyst are as-
signed based on decision, ease, and impression combina-
tions.

None of the BPAs are assigned a value of 1 – this en-
sures that no source (analyst) has absolute evidence to-
wards a hypothesis. If the BPA of a source is 1 for m(G),
for instance, the combined m(G) following the rule of
combination would also be a 1 regardless of the BPAs
of the other sources. A single analyst could dominate
the decision fusion process in this case. Additionally, the
distribution of some mass to m(G,NG) allows for the ac-
knowledgment of the intrinsic uncertainty in the decision-
making process.

When analysts classify an event as a go, while citing the
event as both critical and easy (threshold-based decision),
the BPA for m(G) is maximized at 0.95, with a small
mass (0.05) allocated to uncertainty, m(G,NG). For trick-
ier events (ease: 2-4), the uncertainty correspondingly
goes up, resulting in a higher BPA for m(G,NG). Events

that are assigned go by the analysts, which are rated as
’potentially critical’, have an even higher uncertainty –
these typically refer to events which analysts predict will
increase in criticality in following CDM updates. The
BPA assignment for no-go events is done similarly, such
that m(NG) is high for uncritical events (impressions: 3-
4) and potential critical events which are easy to make
decisions for. For trickier events (ease: 2-4), some of the
mass for m(NG) is distributed to m(G,NG) to represent
the higher uncertainty in the decision-making process.

Figures 4 and 5 visualize the m(G) assigned to each event
for each analyst, with the last row in each figure showing
the aggregated m(G) following the rule of combination.
Two scenarios are considered: Firstly, the case includ-
ing all analysts (Figure 4) and secondly, the case exclud-
ing Analyst 6 (Figure 5), whose use of a different PoC
threshold heavily affects the the combined results. The
fused result when all six analysts’ decisions are used, as-
signs a go hypothesis with m(G) > 0.5 to two events (14,
16) and an uncertain hypothesis with m(G) = m(NG) to
two events (10, 17). When Analyst 6 is not factored in,
the number of fused go predictions rises to six.

Through the Dempster-Shafer Theory, particularly chal-
lenging events to classify can readily be identified –
events with combined BPAs split evenly between hy-
potheses, or those with values near 0.5, indicate more un-
certainty in the decision-making process and can be sep-
arately investigated.



Table 7: Basic Probability Assignments from decision survey outcomes.

Decision Impression Ease m(G) m(NG) m(G,NG)

Go 1 1 0.95 0 0.05
Go 1 2/3/4 0.75 0 0.25
Go 2 all 0.6 0 0.4
No-go 2 1 0 0.9 0.1
No-go 2 2/3/4 0 0.75 0.25
No-go 3/4 all 0 0.95 0.05

Figure 4: Dempster rule of combination results including all analysts. The combined decision consists of two go, 26
no-go, and two uncertain cases.

Figure 5: Dempster rule of combination results excluding Analyst 6. The combined decision consists of six go and 24
no-go cases.

5. DECISION PREDICTION

5.1. Rule-Based Classification

It is of interest to extract insights provided by the analysts
in the decision survey and transform them into quantita-
tive models that can aid the decision-making process. A
rule-based classification approach is proposed, where a
set of rules is developed based on each analyst’s classifi-
cations to produce the same go or no-go decisions made
by the analyst. Six such distinct deterministic models are
developed – one for each analyst. To aid generalization
of the rule-based classifiers, most rules are selected only
if they apply to more than one event. However, this ap-

proach is not feasible for analysts with few positive (go)
decisions, such as Analysts 5 and 6 who assigned 5 and 1
go’s respectively.

Table 8 summarizes the decision rules used in the rule-
based classifiers, which are derived from the survey re-
sponses of the analysts. Note that R, T, N refer to the
radial, along-track, and normal components, in the rel-
ative position frame centered on the primary object (the
object typically monitored by the satellite operator). The
covariance terms (with σ) pertain to the secondary object
to aid generalization across missions. Unless last 3 or
other temporal condition is specified, the features in the
rules pertain to those in the last issued CDM. Mention of
reliability in the rules corresponds to a check to ensure
that there are no significant jumps in the feature in the



last three CDMs.

PoC, time to TCA, and miss distance, are notably the only
features that can serve as standalone decision criteria –
high PoC values in the last few CDMs, low miss distance,
or a sufficiently large time to TCA alone can be enough
to dictate a go or no-go decision. In contrast, other fea-
tures, such as RTN separation and covariance, require a
combination of factors – always involving at least PoC –
to trigger a go decision. Each model achieves a 100 per-
cent accuracy rate for the analyst it is calibrated against
as it is essentially overfitted to the analyst’s decisions.

The evident diversity in decision criteria used by ana-
lysts highlights the complexity of automating decision-
making. Rule-based classifiers, which can be struc-
tured according to individual analysts’ preferences, offer
a way to automate decision-making while still adhering
to the analysts’ decision logic and retaining their influ-
ence. However, given the significant variability in deci-
sion rules, a one-size-fits-all rule-based classifier is un-
likely to be effective. Instead, multiple classifiers may
need to be developed and tailored for different scenarios
or end users with varying risk tolerances and operational
priorities. It is worth noting that rule-based classifiers can
also be time consuming to develop. Edge cases may be
difficult to identify, making such classifiers ineffective for
events not explicitly accounted for.

5.2. AI Model

AI models are widely used for classification applica-
tions and could potentially be a more effective alterna-
tive to rule-based classifiers. Long Short-Term Mem-
ory (LSTM) networks, are particularly well-suited for the
go/no-go classification task due to their ability to capture
temporal dependencies and sequential patterns in data. A
series of Conjunction Data Messages (CDMs) is avail-
able for each event, providing valuable information on
the evolution of PoC, miss distance, and other key pa-
rameters. LSTMs can recognize trends and fluctuations
in these parameters over time due to their complex inter-
nal gating mechanisms [24].

A prior study by the author demonstrates the potential of
Long Short-Term Memory (LSTM) models for go/no-go
decision-making on a smaller dataset of 200 events, la-
beled by analysts at DLR [12]. Deep learning models
such as LSTM typically require larger amounts of train-
ing data than traditional machine learning models as they
have a higher number of trainable parameters and more
complex internal memory mechanisms. Labeling thou-
sands of events would be tedious and time-consuming
work for analysts. As a result, a synthetic dataset con-
sisting of 8000 events (Section 2.2), which does not need
to be labeled by analysts, is developed and used for this
work.

5.2.1. Feature engineering and hyperparameter
optimization

Survey outcomes (Section 3.2) and findings from the de-
velopment of the rule-based classifiers (Section 5.1) are
used to inform feature-selection for the LSTM model. By
selecting features most relevant to analysts’ decisions and
disregarding less important ones, the model can more eas-
ily focus on key patterns, without being burdened by ad-
ditional complexity and noise. This results in the ten fea-
tures as shown in Table 9. The features cover a range of
parameters, including collision probabilities, separation
distances, and uncertainty measures.

In Section 5.1 it is identified that the rule-based classifiers
align with analyst decisions when using data simply con-
tained in the last three CDMs (the last CDM is still at least
1.5 days from TCA). As a result, the LSTM model is also
only shown three CDMs, with the last CDM also being
about 1.5 days from TCA. Using three CDMs strikes a
balance, enabling the model to still learn from the recent
trend, while minimizing complexity from the accumula-
tion of parameters in a lengthy series.

As is done in [12], the features are clipped and scaled
to account for outliers, and to enhance learning. Clipping
refers to the process of setting an upper and/or lower limit
for a feature, and assigning this number to all values be-
yond this limit. In this work, all features are assigned
an upper limit of 3 standard deviations from the mean,
except for TCA, which contains no outliers. Addition-
ally, PoC and Max. PoC values are clipped to a min-
imum value of 1E-6 and log-transformed, to compress
the range of values, preventing low-risk CDMs with near-
zero probabilities from disproportionately influencing the
developed model. Z-normalization is then applied to the
clipped and partially log-transformed data, such that it
has a mean of 0 and a standard deviation of 1 as is found
to be effective in [12].

Hyperparameter optimization is done using a grid search,
where the model’s performance is comprehensively as-
sessed on all combinations of hyperparameters of inter-
est. A stratified K-fold cross-validation with 5 folds is
implemented alongside the grid search, mitigating any
potential bias from data partitioning. Each combination
of hyperparameters is thus evaluated five times on the full
dataset of 8000 events, where a different 1/5 (20 %) is in
the test set. It is ensured that the test split contains an
equal percentage-split of the two classes. The F1-score
[25], which accounts for both the precision and recall per-
formance of the model, is used to identify the best com-
bination of hyperparameters. Precision, recall, F1-score,
and other key metrics are defined in Section 5.2.2.

Table 10 summarizes the hyperparameters selected for
the LSTM model following Grid Search-based hyperpa-
rameter optimization with stratified 5-fold cross valida-
tion.

The developed model comprises three layers. An LSTM
layer containing 100 neurons processes the sequential in-



Table 8: Decision rules used for rule-based classifiers, grouped by analyst.

Analyst Rule Features

Analyst 1

Last 3 PoC < 9E-5: no-go PoC
PoC is not strictly increasing and PoC < 1E-4 and K < 1: no-go PoC trend, K value
PoC < 9E-5 and K not significantly lower: no-go PoC, K value trend
t > 1.7 days: no-go Time to TCA

Analyst 2
d < 150 m: go d

PoC is significantly higher and PoC > 8E-5 and d < 500 m: go PoC trend, d
d < 1 km and any of last 3 PoC > 1E-4: go d, PoC

Analyst 3

Any of last 3 PoC > 1E-4 and PoC > 6E-5 and d < 500 m: go PoC, d
Mean of last 2 d < 300 m and R sep. < 150 m and PoC > 6E-5: go d, R sep., PoC
d < 500 m and R sep. < 100 m and PoC > 6E-5: go d, R sep., PoC
R σ and PoC significantly higher and d < 500 m and PoC > 6E-5: go R σ trend, PoC trend, d
N sep. < 1.5 km and reliable and R sep. < 60 m and PoC > 9E-5: go N sep. trend, R sep., PoC

Analyst 4

Last 3 PoC > 8E-5: go PoC
Any of last 3 PoC > 1E-4 and PoC > 6E-5 and d < 500 m: go PoC, d
R/T/N sep. < 5 m and PoC > 6E-5 and d < 1.2 km: go RTN sep., PoC, d
T σ > 10 km and PoC > 6E-5: go T σ, PoC

Analyst 5

Any of last 3 PoC > 1E-3: go PoC
R sep. < 5 m and PoC > 9E-5 and any of last 3 PoC > 1E-4: go R sep., PoC
T σ > 18 km and any of last 3 PoC > 1E-4: go T σ, PoC
R σ < 100 m and reliable and T σ < 10 km and last 3 PoC > 8E-5: go R σ trend, T σ, PoC

Analyst 6 Any of last 3 PoC > 1E-3: go PoC

Table 9: Features used in the LSTM model.

Feature Unit
Probability of Collision -
Maximum Probability of Collision -
K value (covariance scaling factor) -
Time to Closest Approach days
Miss Distance km
Radial, Along-track, and Normal Separation km
Obj. 2 Radial and Along-track σ km

Table 10: Optimized LSTM hyperparameters.

Hyperparameter Optimal value
Neurons 100
Dropout 0.2
Learning rate 0.001
Batch size 64

put data. A dropout rate of 0.2 is applied to minimize
overfitting – this regularization technique sets 20% of the
neurons to a value of 0 during training, preventing the

model from overly relying on specific information in the
training set to aid generalization. A fully connected fi-
nal layer consisting of a single neuron with sigmoid ac-
tivation is used to classify the event. The learning rate
strikes a balance between convergence speed and stabil-
ity – a higher rate could lead to faster convergence, but
risks overshooting the optimal solution. The batch size
refers to the amount of events the model processes at a
time before updating its weights. A learning rate of 0.001
and a batch size of 64 serve as good trade-offs between
computationally efficiency and learning stability in this
study.

5.2.2. Model performance and learned feature
importance

The results from using the optimized hyperparameters are
summarized in Table 11. These are averaged over five
shuffles of the dataset, where a stratified 5-fold cross val-
idation is applied on each shuffle.

The metrics used in Table 11 to assess the model’s per-
formance are accuracy, precision, recall, and the F1 and
F2 scores. Accuracy indicates how many predictions are
made correctly, providing a general sense of model per-
formance. Given the balanced dataset consisting of an
equal number of 1’s (collisions) and 0’s (misses) in this
case, the accuracy is not biased by class imbalance. Pre-
cision represents the fraction of predicted collisions that



Table 11: LSTM performance using optimized hyperpa-
rameters. The results shown are for training and test sets
of 6400 and 1600 events respectively.

Metric Training set Test set
Accuracy 0.88 0.88
Precision 0.84 0.84
Recall 0.95 0.93
F1 0.89 0.88
F2 0.93 0.91

are actual collisions. A high precision value suggests
the model does not issue a lot of false alarms. Recall
captures the proportion of all the collisions identified by
the model, reflecting its ability to correctly detect critical
events. The F1-score is the harmonic mean of both pre-
cision and recall, making it a useful metric when it is of
importance to minimize both false positives (true misses
incorrectly labeled as collisions) and false negatives (true
collisions incorrectly labeled as misses). The F2-score
places greater emphasis on recall, prioritizing the identi-
fication of all collisions over mitigating false alarms.

The optimized model achieves a high accuracy of 0.88
on both the training and test sets, indicating strong gener-
alization and negligible overfitting. Precision (0.84) and
recall (0.93) also score highly on the test set, suggest-
ing that the model effectively identifies most collision
events while minimizing false alarms. The test F1-score
of 0.88 reflects a good trade-off between precision and
recall. The F2-score is particularly relevant in this work,
as it places more emphasis on recall – in the context of
collision avoidance, false negatives would have far more
severe consequences than false positives (potential loss of
satellite vs. unnecessary maneuver). The high F2-score
of 0.91 in the test set indicates that the model is well-
suited for prioritizing safety while maintaining overall re-
liability.

To acquire more transparency from the model outcomes,
it can be beneficial to identify which features affect the
model’s performance the most. This can be done by run-
ning the trained model on a test set where each feature
column is manipulated with dummy values, one at a time.
This effectively prevents the model from using the true
values of the specified feature, such that it is unable to use
insights from this feature when classifying the test set.
Since the data presented to the model is Z-normalized,
the values of the feature to be manipulated are set to 0 –
this ensures the data retains its overall statistical proper-
ties and does not introduce any new outliers.

Figure 6 demonstrates the feature importance of the
LSTM model by summarizing the change in the F1-score
when each feature is set to 0. R sep, T sep, N sep refer
to the separations in RTN, while R sigma and T sigma
refer to the covariance terms in the R and T components.

Figure 6: Features ranked according to their contributions
to model performance (most significant on top).

The F1-score with all features available to the model is
0.88. The results indicate that the model heavily re-
lies on distance-based features such as radial separation
and normal separation to make its predictions. How-
ever, PoC, while favored heavily by analysts in decision-
making (Table 6), is found to only have a minimal impact
on the LSTM’s predictions. The model is able to make al-
most the same quality of predictions without studying the
PoC trend. This model behavior is also observed in [12],
where PoC ranked 14 out of 16 features for relative im-
portance. This is likely to occur if there are many events
for which the PoC trend of both go and no-go events
is fairly similar, forcing the model to seek out distinc-
tive patterns amongst other features. These events can
be identified in Figure 2, where both high PoC misses
and low PoC collisions are visible. The LSTM model is
trained and tested on a dataset where go/no-go labels are
derived from miss distance (Section 2.2). It is particu-
larly promising that the model places significant impor-
tance on distance-based features, effectively focusing on
the key factors that influence the ground truth, while dis-
regarding other potentially correlated features that do not
directly affect the decision in this setup.

5.3. Comparison of Models for Decision-Making

5.3.1. LSTM vs. analysts’ survey responses

The updated LSTM model is tested on the 30 events
classified by the analysts to assess its comparative per-
formance. As these events are not part of the synthetic
dataset, there is no ground truth against which the predic-
tions can be compared. Hence, the LSTM’s performance
is evaluated by comparing its predictions against each of
the analysts’ decisions to observe the extent of alignment
as shown in Table 12. The last row in the table also in-
cludes a comparison to the combined DST results using
Analysts 1-5 (Figure 5).

Since each analyst assigned a different number of go and
no-go decisions, accuracy is not a reliable metric for eval-
uating decision agreement here. Instead, the F1-score
provides a more reliable measure of how well the LSTM
model aligns with each analyst’s decisions. The LSTM



Table 12: LSTM predictions evaluated against analyst
predictions for 30 events. The performance metrics used
are accuracy (Acc.), precision (P), recall (R), and the F1
and F2 scores.

LSTM vs. Acc. P R F1 F2
Analyst 1 0.50 0.63 0.29 0.40 0.33
Analyst 2 0.70 0.50 0.44 0.47 0.45
Analyst 3 0.53 0.50 0.29 0.36 0.31
Analyst 4 0.70 0.63 0.45 0.53 0.48
Analyst 5 0.70 0.25 0.40 0.31 0.36
Analyst 6 0.77 0.13 1.00 0.22 0.42
Combined 0.73 0.38 0.50 0.43 0.47

model aligns most closely with Analyst 4, achieving the
highest F1-score of 0.53 – this still signals substantial di-
vergence in decision-making. The model does achieve
a high recall score of 1.0 with Analyst 6, indicating the
model correctly identifies all go decisions assigned by
this analyst. However, given that Analyst 6 only assigned
one go, this high recall is trivial and does not indicate
strong agreement in a broader sense. The overall trend
suggests that the LSTM model is making very different
decisions compared to the analysts. This is likely due to
the model being trained on a different dataset (Section
2.2) and relying on its own learned decision criteria. In
contrast, the analysts’ decisions are based on their indi-
vidual thresholds for PoC, miss distance, and uncertainty
tolerance. Unless the LSTM model is specifically trained
on decisions made using these criteria, it is unlikely to
align with the analysts’ responses.

5.3.2. LSTM vs. rule-based classification

To examine the broader applicability of deterministic
models, it is of interest to evaluate their ability to classify
unseen events, particularly in comparison to AI models.
To explore this, the six rule-based classifiers developed
in Section 5.1 are tested on the events from the synthetic
dataset generated in Section 2.2. For a fair comparison
with the LSTM model, all models are evaluated on the
same test set, comprising 1600 events. Table 13 presents
a comparison of how each model classifies the synthetic
events. Note that RBC refers to ’rule-based classifier’,
with the number after it corresponding to the analyst it is
calibrated to.

The LSTM model generally outperforms the RBCs,
achieving an accuracy of 0.88, precision of 0.84, recall of
0.93, and F1 and F2 scores of 0.88 and 0.91, respectively.
In contrast, the performances of the RBCs vary signifi-
cantly. RBC 2, which is calibrated to Analyst 2, performs
relatively well with the highest F1-score across all the
RBCs with 0.62. Analyst 2 heavily favors miss distance
in decision-making, d, (Table 6) and the rules developed
for RBC 2 place heavy emphasis on d as a result. Given

Table 13: Comparison of model performance on a test
set of 1600 events. The performance metrics used are
accuracy (Acc.), precision (P), recall (R), and the F1 and
F2 scores.

Model Acc. P R F1 F2
LSTM 0.88 0.84 0.93 0.88 0.91
RBC 1 0.65 0.80 0.40 0.53 0.44
RBC 2 0.69 0.79 0.51 0.62 0.55
RBC 3 0.60 0.79 0.28 0.41 0.32
RBC 4 0.63 0.82 0.33 0.47 0.37
RBC 5 0.66 0.87 0.38 0.53 0.43
RBC 6 0.64 0.84 0.33 0.48 0.38

the target labels for the dataset are also set based on the
true d at TCA between the two objects, it is is not entirely
surprising that a distance-based classifier performs better
on the dataset. RBC 3, RBC 4, and RBC 6 have lower
accuracy and F1 scores, reflecting their relatively limited
ability to generalize across the synthetic dataset. All three
of the RBCs appear to result in many false negatives, re-
sulting in noticeably lower recall. However, all the RBCs
tend to have decently high precision values ranging from
0.79 to 0.87. RBC 5 achieves the highest precision (0.87)
in the comparison, but this comes at a cost of low recall.
The model is selective in making go decisions resulting
in fewer false alarms, but fails to detect many actual col-
lisions. In comparison, the LSTM model appears well-
balanced – it misses few collisions, while mitigating the
number of false alarms. Given the models are making
predictions based on CDM information capped at TCA -
1.5 days, it can be inferred that the LSTM model is better
at anticipating the risk evolution of the events. True col-
lisions that initially appear to be less risky are identified
correctly far more often by the LSTM model than by the
RBCs.

It must be noted that the RBCs are ’trained’ on the (differ-
ent) dataset of only 30 events classified by the analysts,
while the LSTM model is trained on significantly more
events (6400) in the same events dataset. While RBCs
informed by thousands of analyst decisions would likely
perform better, challenges remain in collecting such a
large volume of decisions and effectively fitting rules to
capture trends across the events without becoming overly
complex. Additionally, RBCs are time-consuming to de-
velop as they need to be individually designed and cal-
ibrated to an analyst’s decision criteria. LSTMs on the
other hand, are able to identify and learn patterns in the
data on their own, leading to high performance metrics
without the need for labor-intensive rule-creation.

The RBC and LSTM decisions (Table 13) generally show
greater alignment compared to the decisions made by an-
alysts and the LSTM model (Table 12). This could be
due to the small sample size of 30 events in the compar-
ison with the analysts which could result in easily biased



metrics. Another important factor is the inherent variabil-
ity in human decision-making. Analysts may not always
make the same decision when faced with the same event,
especially in borderline cases where one might lean on
intuition. Humans are susceptible to inconsistencies and
errors in judgment, introducing a level of subjectivity that
is difficult to account for. In contrast, RBCs follow pre-
defined, consistent rules, making them less prone to such
variability. As a result, RBCs may be quite useful as a
pre-filter for decision-making, where events unlikely to
evolve into critical events can be identified and removed
from consideration.

Overall, LSTM networks appear to be a promising so-
lution for decision-making in this context. Their abil-
ity to learn directly from data enables them to capture
complex decision patterns without requiring manually
defined rules. Additionally, their scalability and adapt-
ability make them well-suited for handling larger datasets
and evolving decision criteria, reducing the reliance on
rigid, predefined rules that may not generalize well across
events.

6. CONCLUSIONS

Automating the collision avoidance decision-making pro-
cess is an essential, but complex task, as it requires care-
ful assessment of multiple parameters – often with inher-
ent uncertainties – while adhering to specific operational
needs and constraints. This work analyzes 30 go/no-go
decisions made by professional analysts, who regularly
make such decisions for their respective organizations, to
understand their decision-making strategies. These in-
sights are then used to inform the development of pre-
dictive models, including both deterministic rule-based
classifiers and AI approaches.

A comparative analysis of decision-making practices
across five organizations is conducted. Six analysts from
these entities make go/no-go decisions for a set of 30
critical conjunction events. It is found that the ana-
lysts make significantly different decisions when pre-
sented with the same events. This disparity arises from
the use of varying decision criteria and thresholds. The
factors influencing each analyst’s decisions are explored,
showing that while probability of collision (PoC) is a key
factor, some analysts prioritize distance-related features
(miss distance/radial separation) more. Trend informa-
tion is vital, with all six analysts relying on feature evo-
lution (across PoC, relative position, covariance) in their
decision-making process. Additionally, there is a notable
difference in how analysts handle high uncertainties or ir-
regular trends, with some choosing to hold off on issuing
a go decision despite a high PoC in the presence of un-
certainty. The application of the Dempster-Shafer Theory
to combine go/no-go decisions is explored in this work.
This approach provides a systematic method for integrat-
ing decisions from multiple sources, such as analysts in
this case. By considering both supporting evidence and
uncertainty, it enables the generation of a single, fused

decision that reflects the collective input of the analysts,
while accounting for variations in their confidence levels.

Additionally, deterministic models are devised to auto-
mate decision-making by replicating analysts’ decision
criteria. Rule-based classification models are developed
using insights from the analysts’ survey responses and
use combinations of thresholds across parameters to clas-
sify events. However, they are tedious to tailor to each
individual analyst and their rigidity limits generalization.
In contrast, a Long Short-Term Memory (LSTM) model
is introduced as a more flexible alternative, capable of
learning decision patterns directly from data. The model
autonomously extracts meaningful relationships between
the features in the dataset and outperforms the rule-based
classifiers, achieving an accuracy and an F1-score of 88%
on a test set of 1600 critical events. Learned feature im-
portance analysis on the LSTM model indicates a heavy
reliance of the model on distance-based quantities, such
as radial separation, with little influence from typically
dominant features in decision-making such as the PoC.
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