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ABSTRACT

In recent years, a combination of technology maturation
and space accessibility has resulted in an increase in the
number of launches, which continues to exacerbate the
problem of maintaining and increasing Space Situational
Awareness (SSA) for safe space operation. A critical ob-
jective of SSA activities is the generation and mainte-
nance of a space object catalog. An observation strategy
and the characterization of tracklets from the collection
of images are among a set of initial key elements that
contribute to the continued accuracy of a catalog. In this
paper, a follow-up sensor tasking optimization algorithm
is used to determine observation schedules that maxi-
mize object coverage for tracking objects in the Geosyn-
chronous (GEO) orbital region. To generate observation
schedules, the sensor tasking algorithm considers several
visibility conditions and prioritizes unobserved objects
to obtain the optimal viewing directions. The algorithm
utilizes prior knowledge of cataloged objects to initial-
ize viewing directions. A set of observation schedules is
generated for the Purdue Optical Ground Station (POGS)
and executed for two nights. Detections are obtained us-
ing two different image processing techniques, conserva-
tive and non-conservative. Detection association is per-
formed to evaluate the sensor tasking with a prior object
using the Mahalanobis Distance Association (MDA) pro-
cess and Multi-Layer PHD filter composed of two steps.
The first step forms tracklets from a collection of image
sets with a Gaussian mixture PHD (GM-PHD) filter in the
orthogonal image plane. The second step of the Multi-
Layer PHD filter utilizes a labeled classical approach for
the full orbital GM-PHD filter to determine the number
of observed objects.

Keywords: Multi-Target Tracking, FISST, Probability
Hypothesis Density Filter, Sensor Tasking, GEO Catalog,
Optical Observations.

1. INTRODUCTION

The exponential growth of the total number of space
objects in the near-Earth region poses significant chal-

lenges to space operations and safety [5, 14]. These
objects include active and operational satellites, as well
as space debris. Accurate detection, tracking, identifi-
cation, and characterization of these objects are crucial
for maintaining comprehensive Space Situational Aware-
ness. According to the latest European Space Agency
(ESA) space environment report, there are currently more
than 36,000 objects cataloged and tracked [14]. About
9,100 of these objects are active payloads, and the re-
maining are pieces of debris larger than 10 centimeters in
size. There are currently almost 1 million non-cataloged
objects that are between 1 and 10 centimeters in size. It
is also estimated using ESA’s space debris environment
model, MASTER, that there are 128 million objects be-
tween 1 millimeter and 1 centimeter in size [14, 35].

The increase in the population of objects shows the im-
portance and need for regular observations to update
available information about their orbits and maintain
tracks over time. Optical observations generated by tele-
scopes provide measurements of brightness and direc-
tional information in the form of right ascension and dec-
lination angles. To generate and maintain a space object
catalog, sensor tasking observation strategies are used.
The observation strategies can be categorized into two
methods, a survey and a follow-up [34, 40, 41]. In the
survey observation strategy, parts of the sky are scanned
for the detection of new objects, where no prior infor-
mation is available. Follow-up observations are planned
according to the objects for which orbital information is
available [28].

The development of sensor tasking algorithms is an in-
tegral part of the maintenance of space object catalogs.
Earlier studies [4, 40, 41] laid the groundwork by propos-
ing survey strategies to maintain space object catalogs
without requiring prior information on object trajecto-
ries. The follow-up sensor tasking has also been inves-
tigated in [19, 31, 34, 39] to keep track of cataloged
objects. The optimization and practical implementation
of the sensor tasking are crucial to maximize the use of
ground-based telescopes while adhering to real-world ob-
servability constraints.

A necessary step in the chain of executing a schedule of
observations is the evaluation of the tasked-optimized
objects according to a prior catalog. However, objects
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are non-resolved in ground-based observations, and
there is the occurrence of missed detections, and false
detection or clutter. Clutter is a result of the release of
photo-electrons from charged particles impinging the
detector, among other sources, and does not correspond
to the detection of an actual object.

There are several ways of validating the success of
sensor tasking. One way is to compare the scheduled
with the actual detected objects. In order to facilitate such
a comparison, the observations need to be processed and
associated, either to each other and/or to the scheduled
objects. Two methods of validation are explored, where
the first is based on the detections in the single image
and can be done with maximum likelihood, Mahalanobis
distance association [6, 25, 26]. The second validation
method is a more comprehensive approach which can be
performed with multi-target tracking (MTT). In MTT,
the number of objects or cardinality alongside their
states is estimated, solving the data-to-object association
problem implicitly or explicitly.

Historically, two main research approaches are used
to explore the MTT regime: the track-based approach
and the population-based approach. Track-based ap-
proaches associate the measurements explicitly with the
single targets to form a track. The track of an object is
inferred from a sequence of observations collected over
time. The individual track of the corresponding object
is represented with appropriate probabilistic information
[7, 12, 38]. Popular track-based examples are the
Multiple Hypothesis Tracking (MHT) [8, 11, 38] and
Joint Probability Data Association (JPDA) introduced in
[16]. A more holistic probabilistic approach led to the
development of multi-target algorithms within a Random
Finite Set (RFS) framework, where a random object is
described by random size and elements, corresponding to
the number of targets and their states, respectively. The
entity exists in the absence of measurements and gives
a fully probabilistic description of the scene. Mahler
[32] uses RFS to formulate the Probability Hypothesis
Density (PHD) filter as a solution to the multi-target
problem posed in a Bayesian Filtering Framework, which
defines the population of targets as a single RFS [32, 33].

A Multi-Layer PHD filter [18] partitions the multi-
target problem into two steps. The first step is performed
on the orthogonal image plane, where the short series
of collected images and the respective detections are
utilized to build tracklets. The second step of the problem
utilizes the resulting tracklets to perform an update on
the prior object catalog.

This paper explores a sensor tasking framework
and facilitates validation using two different image pro-
cessing schemes and two different detection association
methods.

2. SENSOR TASKING OPTIMIZATION

The sensor tasking algorithm used in this paper and the
observation campaign with a real-life telescope is imple-
mented to create optimal observation schedules that in-
clude where and when to point a sensor. The sensor task-
ing algorithm used is based on the follow-up tasking strat-
egy. The algorithm can be used for a single sensor or a
multi-sensor framework. The sensor tasking formulation
can be expressed as follows [17, 19, 20]:

maxpAq “

l
ÿ

g“1

mg
ÿ

f“1

˜

n
ÿ

i“1

µ ¨ Pd ¨ d

¸

(1)

where µ represents the urgency value for each object i,
which allows the algorithm to prioritize unobserved ob-
jects. Pd is the probability of detection of the object i.
d is the probability that object i falls within the Field of
View (FOV) of sensor g. A is the total probable num-
ber of objects observed given that the equation contains
stochastic variables. l is the total number of sensors ob-
serving in the observation window, mg is the total num-
ber of observations made by each sensor and n is the to-
tal number of available objects. To implement the sen-
sor tasking algorithm from Equation (1), a greedy opti-
mizer is used to choose the optimal viewing direction.
Other optimizers have been explored, but performance to
computational runtime of the greedy optimizer has been
favored for efficiency, making it applicable to real-time
sensor tasking [29, 30].

A commonly used state representation form is the Two-
Line Element (TLE) catalog format provided by the
USSTRATCOM Space-Track catalog [42] due to its
availability. The sensor tasking is performed indepen-
dently of detection success, and is hence a fixed-schedule
open-loop method. Fixed-schedule methods are known
to not perform as well as the flexible-schedule feedback
methods. However, currently the former are more feasi-
ble in most real-world applications.

3. OPTICAL VISIBILITY CONDITIONS

Effective object observation requires careful considera-
tion of various environmental and operational factors. To
ensure high-quality data collection and optimize sensor
performance, a comprehensive set of visibility restric-
tions was applied to enable a more efficient operational
sensor tasking. For instance, sensors typically have a cer-
tain minimum elevation, such that any object below that
threshold would not be observed.

3.1. Moon Separation

Moon glare can degrade image quality and hinder object
detection. The angular distance to the center of the Moon



from the observer’s perspective, θOOM , can be expressed
as:

θOOM “ arccospρ̂m ¨ ρ̂Oq (2)

where ρ̂m is the unit vector of the range of the Moon
from an observer and ρ̂O is the unit vector of the range
of the object.

3.2. Earth’s Shadow

To determine if an object is inside the Earth’s shadow,
the angular radius of the Earth and Sun from the object is
needed. The umbra angle can be expressed as:

θumbra “ θC´Radius ´ θ@´Radius (3)

where θ@´Radius is the angular radius of the Sun from
the object and θC´Radius is the angular radius of the
Earth from the object. An object is considered in Earth’s
shadow if the Earth-Object-Sun angle is smaller than or
equal to θumbra.

3.3. Galactic Plane

To minimize interference from dense star fields, particu-
larly crucial for southern hemisphere sensors, separation
from the galactic north and south is desired. This condi-
tion can be applied by converting galactic coordinates of
the North and South Galactic poles to the J2000 frame.

To convert from Right Ascension (RA) and Declination
(DEC) (α and δ respectively), in J2000 to galactic coor-
dinates (l, b) or vice versa, the following equations can be
used from Binney and Tremaine [10]:

sinpbq “ cospδq cospδGq cospα ´ αGq

` sinpδq sinpδGq (4)
sinplNGP ´ lq cospbq “ cospδq sinpα ´ αGq (5)
cosplNGP ´ lq cospbq “ sinpδq cospδGq

´ cospδq sinpδGq cospα ´ αGq (6)

where αG and δG are the RA, DEC of the North Galactic
Pole (NGP) respectively, and lNGP is the longitude of the
North Celestial Pole (NCP).

αG “ 192.85948˝ (7)
δG “ 27.12825˝ (8)

lNGP “ 122.93192˝ (9)

3.4. Limiting Magnitude

The limiting magnitude of a sensor represents the faintest
apparent magnitude of an object that can be detected by
it. This threshold is influenced by various factors, such as
background noise, atmospheric attenuation, and exposure
time. Understanding the limiting magnitude is critical for

evaluating the performance of optical sensors in detect-
ing objects under different observational conditions. An
approximation on how to calculate limiting magnitude is
as follows [21]:

maglimit “ magsky ` 5 ¨ log10

ˆ

D

Dexit

˙

(10)

where magsky is the limiting sky magnitude which rep-
resents the background brightness, Dexit is the diameter
of the exit pupil of the optical sensor, and D is the diam-
eter of the aperture. It is important that all units used are
consistent; typically, millimeters are used.

4. DETECTION ASSOCIATION

A reliable method is needed to associate all the object de-
tections made in the images to evaluate the performance
and success of the observation schedules generated by
the sensor tasking algorithm. Two association methods
are implemented in this work, the Mahalanobis Distance
Association (MDA) and the Multi-Layer PHD filter, to
correlate the detections produced using two image pro-
cessing techniques.

4.1. Two Image Processing Techniques

To obtain detections from the images captured by a sen-
sor, two image processing techniques are used: a con-
servative and a non-conservative method. In the conser-
vative processing, false positive detections are kept at a
minimum, at the cost of false negative detections. The
method is based on strict detection thresholding [27]. The
non-conservative method favors keeping false negatives
to a minimum, at the cost of, at times, a large number of
false positive detections. The non-conservative process-
ing is based on convolution methods [27, 28].

4.2. Covariance Information

For catalogs that do not provide or have incomplete co-
variance information, making it difficult to quantify the
uncertainty in the propagated position and velocity states,
studies have empirically estimated these uncertainties for
specific orbital regimes [13]. In particular, previous anal-
yses have characterized the uncertainty of objects in the
Space-Track TLE catalog’s Geosynchronous Earth Or-
bit (GEO) population [22].

To account for the absence of second moment infor-
mation, each propagated TLE object has an assumed
Npµ,Σq, where µ is the mean and Σ is the covariance
of the distribution. The largest uncertainty being in the
in-track direction [6, 22]. The covariance in the In-Track,



Cross-Track, Out-Of-Plane (ICO) frame can be approxi-
mately represented as follows:

ΣICO “

»

—

—

–

σ2
s 0 0

0
´

σs

σ̃c

¯2

0

0 0
´

σs

σ̃o

¯2

fi

ffi

ffi

fl

(11)

σ̃c “
σs

σc
(12)

σ̃o “
σs

σo
(13)

where σs represents the standard deviation term in the in-
track direction, σc is the standard deviation in the cross-
track direction, and σo is the standard deviation in the
out-of-plane direction [6]. The in-track standard devi-
ation is set to σs “ 100 km, based on the assumption
that potential measurements will be within 100 km of the
TLE object [6]. This choice also mitigates biases intro-
duced by extremely large covariance matrices. The val-
ues for the standard deviations in cross-track and out-of-
plane are given by σ̃c “ 5.608 and σ̃o “ 5.663, respec-
tively, derived from Monte Carlo simulations modeling
the propagation of the covariance [6].

4.3. Mahalanobis Distance Association (MDA)

The Mahalanobis distance is a statistical measure of the
distance between a point and a distribution [1]. The Ma-
halanobis distance, d, between a point y and the Gaussian
distribution Npµ,Σq can be expressed as follows [1]:

d2 “ py ´ µqΣ´1py ´ µqT (14)

The covariance matrix in Equation (11) needs to be ro-
tated to the image plane frame, which is based on RA and
DEC. This transformation between frames is performed
using Jacobian matrices as a linearization into the obser-
vation space of the image plane.

A threshold is applied to identify potential matches from
the catalog of objects. Objects with d2 values below this
threshold are considered potential candidates for this ob-
servation measurement. This threshold is chosen based
on the assumed statistical distribution of the residuals,
ensuring that potential candidates fall within a region
of high probability density. The threshold is selected
heuristically to balance the removal of unlikely candi-
dates while keeping potential matches [6]. A threshold
of 1 ¨ 106 is found to work effectively.

4.4. Multi-layer PHD Filter

The Multi-Layer PHD filter is composed of two steps,
the first step is the implementation of the image plane
PHD. The second step consists of the implementation of
a data-driven PHD filter, where the birth is integrated into
the measurement update step [23] incorporating classical

orbit determination in contrast to an admissible regions
approach. In this paper, the evaluation of the sensor task-
ing is done only with a prior set of TLE object catalog.
Therefore, the full orbital PHD filter in sensor tasking
evaluation application does not utilize birth.

The classical PHD filter is a solution to the multi-target
problem posed in a Bayesian framework to estimate the
cardinality and their states. The PHD filter is a first-order
approximation of the full Finite Set Statistics (FISST)
proposed by Mahler [32], therefore the leanest version
of FISST-based filters.

For the integrated detection and tracking problem in this
paper, the RFS of the multi-target state is represented by
X “ tx1, . . . ,xnu. In the example of a space object, xi

can describe the position and velocity states of the target
i for the cardinality of |X| “ n objects, and x P R6 is
the single-target state space. Similar definitions apply to
the set-valued measurement Z “ tz1, . . . ,zmu with zi
as the single-target measurement with |Z| “ m number
of measurements or sensor returns and z P Z is the mea-
surement space at a given time k ` 1. For example, for
optical the measurement can be described by angles and
angle rates z P R4.

The PHD filter propagates the first-order moment of the
multi-target filtering density Dk|kpxq, also known as the
intensity function [32], [44]. The prediction step of the
classical PHD filter involves the following assumptions:
(1) each object is independent and the dynamics can be
modeled by Markov transition density fk`1|kpx|x1q with
prior x1 and posterior x; (2) the survival process on each
object can be modeled by a Bernoulli process with known
probability pS at each time-step; (3) new objects are born
independent of the existing targets, with a known birth
process pdf bk`1|kpxq. Note: spawning is not taken into
account in this work. The classical PHD filter predic-
tion for the multi-target probability hypothesis density
Dk|kpxq is [32]:

Dk`1|kpxq “ bk`1|kpxq`
ż

pSpx1qfk`1|kpx|x1qDk|kpx1qdx1 (15)

The assumptions for the measurement update step for
the classical PHD filter are: (4) each object produces
at most one measurement, where the set of measure-
ments Zk`1 is produced by the union between measure-
ments produced by previous objects and the clutter pro-
cess Z “ Zobject Y Zclutter; (5) the multi-target prior of
the objects is Poisson distributed with variance λprior :
fk`1|kpX|Zq “ expp´λpriorq

ś

xPX λprior ¨fk`1|kpx|Zq;
(6) there exists a known single target measurement like-
lihood function fk`1|k`1pz|xq based on the object state
x and a single measurement z, respectively; (7) a prob-
ability of detection is known and can be state-dependent,
which is modeled as Bernoulli process based on the ob-
ject state pDpxq :“ pDpx,xsensorq and the sensor charac-
teristics that include pointing direction and field of view
xsensor; (8) the false alarm clutter rate can be modeled as
a Poisson distribution with variance λ and spatial distri-
bution cpzq “ cpz|xsensorq, which may depend on sensor



characteristics xsensor. The classical PHD filter measure-
ment update is formulated as [32]:

Dk`1|k`1pxq “ p1 ´ pDpxqq ¨ Dk`1|kpxq

` pDpxq¨

ÿ

zPZ

fk`1|k`1pz|xqDk`1|kpxq

λcpzq `
ş

pDpxqfk`1|kpz|x1qDk`1|kpx1qdx1

(16)

The application of the classical PHD filter for the orthog-
onal image plane is given in Section 4.4.1. The applica-
tion of the full orbital PHD filter is described in Section
4.4.2.

4.4.1. Orthogonal Image Plane PHD Filter

The first step in the Multi-Layer process utilizes a short
series of images separated by a few seconds, where
each k-th image contains a set of detections Z̃pkq “

tz̃1, . . . , z̃ou with z̃i P R2 and cardinality |Z̃| “ o. The
multi-target state is represented by Z “ tz1, . . . ,zeu,
with z P R4 and cardinality |Z| “ e. The state is com-
posed zi “ pα, δ, 9α, 9δq, corresponding to the right ascen-
sion, declination, and their respective rates [23].

The orthogonal image plane PHD filter utilizes a Gaus-
sian mixture application with linear dynamics. The Gaus-
sian mixture assumption provides negligible inaccuracies
from the use of the Gaussian distribution in spherical co-
ordinates. The linear dynamics assumption is justified
for high-altitude orbits where the series of images span
a small fraction of the orbit. However, further adapta-
tions can be easily implemented for lower-altitude orbits.
The filter does not employ catalog data or any prior in-
formation and each short image series is processed inde-
pendently. The initial Gaussian mixture prepared at the
beginning of each image series is produced by uniformly
sampling positions on the image plane, while the rates are
determined from a pre-analysis of the data.
The tracklet of an object is defined by linked detec-
tions across the short image series with

␣

z̃p1q, . . . , z̃pkq
(

,
where the short images series spans k epochs. Each track-
let determined as a result of the cardinality of the found
objects across the images in the series is confirmed with a
least-squares fit. Once each object’s tracklet is confirmed,
a representative measurement called a normal point z is
formed at the epoch of the last image in the series. Note
that the normal point can be generated at any image epoch
in the series, especially in the case where objects may be
entering or exiting the scene captured by the images. The
normal point z also stores the individual detections that
make up the tracklet

␣

z̃p1q, . . . , z̃pkq
(

for each epoch k in
the image series,

zpk“sq :“

"

zpsq

␣

z̃p1q, . . . , z̃pkq
( (17)

Where the state zpsq is the result of the least squares pro-
cess for the chosen s epoch in the image series. The set

of normal points is defined as Zpkq “ tz1, . . . ,zmu for
a cardinality of |Z| “ m objects in the image series.

4.4.2. Orbital PHD Filter and Sensor Tasking
Evaluation

The second step of the Multi-Layer PHD filter utilizes the
results of the first step for all sets of image series. The
classical form of the PHD filter is used with the correc-
tor from Equation (16). For evaluation of sensor tasking
the prior object catalog is used to instantiate the multi-
target intensity D0|0pxq. The aim is to determine the
tracklet-to-object association only for the prior catalog,
which does not require the birth process in the predic-
tion. Therefore, only the second term of Equation (15) is
used for this paper.

To perform the tracklet-to-object association, the orbital
PHD filter is applied with a labeled Gaussian mixture
[32, 33, 36]. The Gaussian mixture is initialized with
each component of the mixture representing an object
in the prior object catalog. The unique label identi-
fier for each component is provided by the set L0|0 “

tℓi0|0, . . . , ℓ
n0|0

0|0 u for n0|0 initial components. Addition-
ally, an association map for each component is generated.
Where the association map stores the tracklet that is as-
sociated with a component. At the end of the GM-PHD
recursion, the resulting Gaussian mixture is analyzed,
where each component whose weight is greater than zero
and has a non-empty association map is counted. The
information from the weight is related to the likelihood
of the track [36], while the association map determines
tracklet association. In the case where there are two or
more components with the same labels and different as-
sociation maps, the component with the maximum weight
is used.

5. SENSOR TASKING ANALYSIS AND EVALUA-
TION

5.1. Observation Campaign Setup

To evaluate the observation schedules, an observation
campaign was set up [24]. The campaign was performed
using Purdue Optical Ground Station (POGS) located at
New Mexico Skies Observatory. An observation sched-
ule was generated for a single sensor strategy using the
sensor tasking equation shown in Equation (1). The al-
gorithm used a constant repositioning time model which
assumes a constant slewing time between viewing direc-
tions. Details on a variable repositioning time model can
be found in [2]. The observation schedules contain de-
tails such as the viewing directions, observation times,
tracking rates, and objects predicted to be in that viewing
direction.

To enable realistic observations, a minimum moon sepa-
ration angle of 20˝ was set, as well as a minimum of 5˝



Sensor RA deviation (˝) DEC deviation (˝)
Exposure time (s)

E (s)

Series length (s)

E (s)

Time between series (s)

E (s)

POGS 0.2386 ˘0.0732 0.0537 ˘0.0359
7.2727 ˘ 0.1033

E = 7.27

48 ˘ 1

E = 47

170 ˘ 0.1

E = 169.9880

Table 1. Pointing and timing accuracy results based on observation campaign performed on July 13, 2024 using POGS

from the galactic plane to avoid the large density of stars
near the galactic plane [24]. POGS also has a 12˝ mini-
mum elevation restriction and a limiting magnitude of 16.
The schedule was created for observation windows on the
nights of July 13, 2024, and July 24, 2024, to observe
GEO objects from the most recent TLE catalog prior to
the observation window. The observations collected on
the night of July 13, 2024, are the main focus of this pa-
per. The sensor captured single exposure images with an
exposure time of 7.27 seconds, in a so-called observation
series. Each observation series represents a single view-
ing direction with five images. There were a total of 370
images taken by POGS throughout the observation win-
dow on the night of July 13, 2024, which was interrupted
due to bad weather.

5.1.1. Timing and Pointing Accuracy

The sensor performance on the observation night was
evaluated based on timing and pointing accuracies. The
timing accuracy is evaluated by finding the difference be-
tween the time at which the sensor was optimally tasked
and the actual time when observations took place. The
mid-point of the observation series is used to perform the
evaluation. The timing evaluation process helps account
for any timing error the sensor may have and increases the
chances that the objects predicted to be in the viewing di-
rection are captured within the same observation series.
Table 1 presents the sensor performance across different
metrics compared to expected values, E, of POGS. The
expected values are based on the sensor-specific calibra-
tion performed to obtain ideal sensor parameters. The
sensor performance is evaluated in terms of the devia-
tion in the optimal viewing direction, the difference in
exposure times, the difference in the duration of the ob-
servation series, and the time between observation series.
The actual exposure time closely matches the expected
value with a small standard deviation of « 0.1s. Simi-
larly, the series length and time between series are also
aligned with their expected values, showing good over-
all consistency. These results show that POGS is highly
accurate and able to target the desired viewing direction
with little deviation in direction and negligible timing er-
rors.

5.2. Comparison of Successfully Processed Images

The two different image processing techniques are com-
pared and carefully analyzed. Figure 1 illustrates the
number of images successfully processed by each im-
age processing method throughout the same observation
night. Each method was given the same total number of
images to process. The conservative method was able to
successfully process a total of 298 images, while the non-
conservative method was able to successfully process 355
images.

Figure 1. The cumulative number of images processed
compared for each image processing method for obser-
vations by POGS on the night of July 13, 2024

Since each observation series is supposed to contain five
images, it is crucial to consider how many full five-image
series were captured by each processing method. The
number of full five-image series is shown in Table 2. The
non-conservative method results in a significantly larger
number of series with five images as compared to the con-
servative method.

Processing Type % of Image Series
with 5 images

Conservative method 42.5
Non-conservative method 93.2

Table 2. Percentage of successful number of image series
that contained the full five images as a result of the pro-
cessing type



5.3. Conservative Image Processing Association De-
tails

This section evaluates the sensor tasking based on the
conservative image processing method and the two dif-
ferent association strategies. First, results from the MDA
process is shown followed by the Multi-Layer PHD filter
association results.

5.3.1. MDA Results

The MDA method is applied on the processed images by
the conservative processing approach to associate each
detection in each image. Table 3 demonstrates a summary
of the POGS observation results, where the MDA from
Equation (14) is used to correlate detections with the TLE
catalog. The results are categorized into different groups:
planned objects and planned and observed objects.

Planned objects refer to objects included in the created
observation schedule, while observed objects are those
successfully detected by POGS and associated by the
MDA. There are no new or uncataloged objects that were
associated by the MDA since it relies on the TLE catalog
to find the closest match to a detection.

POGS Sensor
Date (UTC)

Planned
objects

Planned and MDA
associated objects

2024-07-13 116 114
2024-07-24 127 122

Table 3. Detection association results of MDA from
conservative image processing for observation campaign
performed on July 13, 2024 and July 24, 2024 using
POGS

The majority of the objects planned for observation dur-
ing the night were successfully associated by the MDA.
On the first night on July 13, 2024, more than 98%
of the planned objects in the observation schedule were
matched to detections. On July 24, 2024, over 96% of
the planned objects were associated. This result indicates
a strong correlation between the sensor tasking observa-
tion schedule and the actual detections associated by the
MDA. For the observations performed on July 13, 2024,
two planned objects were not considered associated be-
cause the objects were not present in the images, or be-
cause no TLE object met the association threshold [24].

5.3.2. Multi-Layer PHD Filter Results

The reduction of the number of images as a result of
the conservative image processing affected the result of
the image plane GM-PHD filter, where in some image
series not enough information was available to produce
well-defined tracklets. The image plane GM-PHD filter
provided a determined presence of objects on 61.5%
of the image series set from the conservative method.

Figure 3 describes the mean number of detections over
the night and a comparison of the resulting cardinality
from the MDA method and the GM-PHD filter. Figure
3(a) depicts the mean number of detections for each
image series over the night, where only the image
series that contained detections are shown. Figure 3(b)
describes the comparison in cardinality, where the MDA
method in all image series except one reported a higher
number of objects to the GM-PHD filter. The cardinality
estimate provided by the GM-PHD filter is realized from
the combined information over an image series, which
is shown to converge on a smaller subset of objects.
In some cases, the GM-PHD filter did not converge on
objects that remain persistent in at least three or more
images.

Figure 2. Result of the conservative image processing,
where each set of detections from individual images is
shown by the colored points according to the epoch. The
predicted TLE objects are shown with the green squares,
the blue filled circles represent the MDA associated de-
tection. The maximum weighted components from the or-
thogonal image plane GM-PHD filter from each epoch is
shown by the diamond marker.

An example of an image series where the GM-PHD fil-
ter did not determine the presence of an object is seen in
Figure 2. The image series contains four images spanning
from 04:17:23 to 04:16:34 UTC. The predicted TLE ob-
jects are represented by the green squares depicting the
propagated catalog object location on the image plane.
The GM-PHD filter resulted in a set of low-weighted
components with a single association per image denoted
by the diamond markers, which did not develop into a
tracklet. The MDA provided a set of associated detec-
tions from each image to the TLE objects. However, the
MDA of associated detections for the set of images were
inconsistent with the TLE objects predicted angle rates.

The second step of the Multi-Layer PHD filter is used
to determine tracklet-to-object associations. The set of
the tracklets converged by the image plane GM-PHD fil-



Figure 3. Results from the conservative image processing. (a) Depicts the mean number of detections as a function of
time for each set of image series for observations collected on July 13, 2024. (b) Provides the captured cardinality from
the MDA in blue and the cardinality determined by the image plane GM-PHD filter in red.

ter over the night of July 13, 2024 are utilized for the
orbital GM-PHD filter to determine associations. The
prior multi-target density is instantiated using the set of
planned TLE objects with their unique identifier for the
epoch at the beginning of the night. A uniform ini-
tial covariance composed of σx “ σy “ σz “ 5 km
and σ 9x “ σ 9y “ σ 9x “ 0.001 km/s, is used for each
object. The dynamics model for this example is ex-
panded to include third-body perturbations for the Moon,
Jupiter, and Sun, a spherical model for solar radiation
pressure [9, 43] and a fourth-order spherical harmonics
model [37]. The positions of the Earth, Moon Jupiter,
and Sun are obtained using the Matlab Implementation
of SPICE (MICE) [3] with the DE430 kernel [15]. The
measurement uncertainty utilized is defined by the result-
ing multi-target density from the image plane GM-PHD
recursion and the least-squares fit process. A resulting
multi-target density from the orbital GM-PHD is decom-
posed to determine the associations from non-empty as-
sociation maps and highest weighted components. Table
4 describes the comparison in cardinality defined by the
single image detection with MDA and the cardinality of
object association from well-defined tracklets with Multi-
Layer PHD filter. It is seen that only 17% of the planned
objects were associated with the generated tracklets. The
where tracklet-to-object association requires a minimum
of three detections for each tracklet before an association
with an object is made. In the case of the conservative im-
age processing, the number of successfully processed im-
age series with five images as seen in Table 2 contributed
to the relatively low cardinality.

POGS Sensor
Date (UTC) Object Association Cardinality

07-13-2024 MDA 114
Multi-Layer PHD 20

Table 4. Cardinality results of MDA and the Multi-Layer
PHD filter from conservative image processing for ob-
servation campaign performed on July 13, 2024 using
POGS.

5.4. Non-Conservative Image Processing Associa-
tion Details

Similar to the conservative processing evaluation, this
section analyzes the sensor tasking based on the non-
conservative image processing using the two association
strategies.

5.4.1. MDA Results

Despite the increase in the number of detections in all
images, which gives more measurements to correlate, the
MDA did not associate any additional TLE objects com-
pared to the result from the conservative method shown in
Table 3. This outcome shows that the MDA implemented
is not influenced by the number of images or detections in
each observation series. The same two objects that were
planned for observation remain unassociated by the MDA
using both image processing methods.

5.4.2. Multi-Layer PHD Results

In the non-conservative approach, a larger number of
images were processed, resulting in a higher number
of detections per image. Figure 4 describes the mean
number of detections and the comparison of the cardi-
nality of objects determined by the MDA and the image
plane GM-PHD filter for the non-conservative image
processing. In Figure 4(a) the mean number of detections
for the set of image series often surpasses 100 detections,
where in contrast to Figure 3(a) the mean number of
detections only reaches a maximum of 10. It was seen
that the number of image series achieved a greater
epoch range for the night, and all image series contained
enough images for the image plane GM-PHD to analyze.

However, it is seen that later in the night, after



Figure 4. Results from the non-conservative image processing. (a) Depicts the mean number of detections as a function of
time for each set of image series for observations collected on July 13, 2024. (b) Provides the captured cardinality from
the MDA method in blue and the cardinality determined by the image plane GM-PHD filter in red.

Figure 5. Result of the non-conservative image process-
ing, where each set of detections from individual images
is shown by the colored points according to the epoch.
The predicted TLE objects are shown with the green
squares, the blue filled circles represent the MDA associ-
ated detection. The tracklet solution from the orthogonal
image plane GM-PHD filter is denoted by the linked ma-
genta triangles.

07:30 UTC there was a reduction in the difference in the
estimated cardinality between MDA and the image plane
GM-PHD. In Figure 4(b), for the 73 image series the
image plane GM-PHD the convergence rate on objects
is increased to 83.6% compared to the 61.5% from the
conservative approach. The cardinality estimated by
the image plane GM-PHD filter remains in most cases
below the estimated cardinality determined by the MDA.
Figure 5 shows the solution of the image plane GM-PHD
filter for the same image series shown in Figure 2, where
in the case of the non-conservative method, the five
images are available. The additional set of detections
revealed a coherent set of detections near the predicted
TLE object on the upper left of the plot.

The tracklet solution of the image plane GM-PHD
filter is denoted by the linked magenta triangles, where
the MDA associated the same three of five detections for
the tracklet. To further verify the validity of the measure-
ments obtained from the GM-PHD filter, spot-checking
was conducted on each converged detection. An example
of this verification process is shown in Figure 5, where a
specific detection is marked as a red circle and zoomed
in from the raw image.

Figure 6 illustrates an image series in which the
image plane GM-PHD converged on two objects. The
tracklet for each object is shown to be consistent with the
predicted motion of the TLE objects in the image plane
over the set of images.

Figure 6. Example of non-conservative image process-
ing, where the image plane GM-PHD filter converges on
two objects, denoted by the linked triangle markers. De-
tections are shown with epoch colored points, predicted
TLE objects are shown by the green squares and MDA
detections are shown by blue filled circles.



The MDA did not associate with the same detections for
each image determined by the image plane GM-PHD fil-
ter. Despite the large number of detections, the image
plane GM-PHD filter displayed robust behavior in con-
verging on objects present in all five images.

From the outcome of each image processing method, a set
of epoch-matching images of the converged image plane
PHD filter were selected for comparison. Figure 7 de-
scribes the comparison of the two methods for the num-
ber of detections and also the results of the orthogonal
image plane GM-PHD filter.

Figure 7(a) provides the number of detections for im-
ages of the same epoch. It was seen that with the non-
conservative method, the first 19 epoch-matching images
have an increase of two to three times more detections.

For the remaining 61 epoch-matching images, the num-
ber of detections for the non-conservative method is in-
creased in most to at least an order of magnitude or more.
Figure 7(b) compares the solution of the orthogonal im-
age plane GM-PHD for the image series to which each
image number belongs. For the first set of 10 images, the
solution of the filter provided a reduced object cardinal-
ity in the non-conservative image processing method. It
was noted that the increase in the number of detections
did not always guarantee a filter solution. An example of
this is shown with epoch-matching image numbers 49 to
54, where neither image processing method resulted in an
object despite a large number of detections present.

Figure 7. (a) For images of the same epoch, the number
of detections for the conservative mode is shown in red
and non-conservative mode depicted in black. (b) The
cardinality solution from the image plane (IP) GM-PHD
for the conservative and non-conservative mode are also
shown in the same color order.

The second step of the Multi-Layer PHD was performed
with the resulting tracklets defined by the image plane
GM-PHD filter with the same initialized labeled Gaus-
sian mixture and dynamics modeling as described in Sec-
tion 5.3.2. Table 5 provides a comparison in cardinal-

ity using the non-conservative image processing between
the MDA object-to-detection association and the Multi-
Layer PHD filter object-to-tracklet association. The in-
crease in object association provided by the Multi-layer
PHD is increased primarily due to the higher of num-
ber successfully processed image series from the non-
conservative image processing.

POGS Sensor
Date (UTC) Object Association Cardinality

07-13-2024 MDA 114
Multi-Layer PHD 61

Table 5. Cardinality results of MDA and the Multi-Layer
PHD filter from non-conservative image processing for
observation campaign performed on July 13, 2024 using
POGS.

For the 61 objects that were associated by the Multi-
Layer PHD filter with the tracklets produced from the
non-conservative image processing, 60 objects were
identified as optimally tasked from the TLE object cat-
alog. The 60 objects result in 51% of optimally tasked
objects were observed. A single object was not optimally
tasked but was included in the TLE catalog. The same
object was also associated with the MDA method.

5.5. Sensor Tasking Evaluation Summary

The cardinality results from the conservative and non-
conservative image processing techniques, shown in Ta-
bles 4 and 5 respectively, demonstrate the effectiveness
of each association strategy in associating detections. A
summary of the cardinality for the Multi-Layer PHD filter
and MDA is shown in Table 6 for both conservative and
non-conservative image processing methods. The MDA
successfully associates a larger number of the optimally
planned objects as compared to the Multi-Layer PHD fil-
ter. However, the Multi-Layer PHD filter resulting cardi-
nality is a tracklet-to-object association, where the MDA
cardinality represents the detection-to-object association.

POGS Sensor
Date (UTC) Object Association Cardinality

MDA Multi-Layer
PHD

07-13-2024 Conservative 114 20
Non-
Conservative 114 61

Table 6. Comparison of the cardinality results from the
MDA and the Multi-Layer PHD on both the conservative
and non-conservative image processing methods for the
observation campaign on July 13, 2024.

The differences between the two association strategies
are provided in a set of pictographic illustrations shown
in Figure 8. The process of the orthogonal image plane



GM-PHD filter is denoted in (a) and the MDA is denoted
in (b). In Figure 8(a) a tracklet acquisition across the set
of images in the same observation series is represented
by the linked purple triangles. In Figure 8(b), the MDA is
performed on each detection in each independent image
to associate the detection shown in blue to the predicted
TLE object on the image plane in green.

Figure 8. (a) Denotes the process of taking each closely
space image in time and using the orthogonal image
plane GM-PHD filter to determine tracklets. (b) Shows
the process of the MDA for association of a detection in
blue to the TLE object from the catalog in green for each
image independently.

For the image series in which the Multi-Layer PHD filter
determined the presence of objects in the set of image
series, the number of detections per associated object was
analyzed. The comparison shown in Table 7 illustrates
the maximum and minimum number of detections per
associated object between the MDA and Multi-Layer
PHD filter seen for the observation campaign on July 13,
2024. For all tracklet solutions found with the image
plane GM-PHD the smallest and largest tracklet by
number of detections was found to be the same for both
the conservative and non-conservative image processing
methods. The association to an object resulting from
the orbital labeled GM-PHD filter attributes a group of
detections defined by the tracklet to a prior catalog object
estimate. Therefore, the cardinality shown in Table 6
for the Multi-Layer PHD filter represents the observed
objects over multiple images in an image series. Unlike
the Multi-Layer PHD filter, the MDA process does not
form a tracklet of detections. Instead, it utilizes a single
detection basis for each image in an observation series,
resulting in only one object association per detection.
The MDA object association cardinality of 114 out of the
116 planned objects presented in Table 6 is purely reliant
on the TLE catalog and the associations are performed
in a single image. Inaccuracies in the TLE data can
lead to discrepancies in the propagation and association
process [22]. These errors highlight the need to account
for velocity probabilities during the association process
to provide results using an approach that does not depend
on TLE sets.

POGS Sensor
Date (UTC)

Number of Detections per Object
Associated (min, max)

MDA Multi-
Layer PHD

07-13-2024 Conservative 1 3, 5
Non-
Conservative 1 3, 5

Table 7. Comparison between the number of detections
per object associated determined by the MDA and the
Multi-layer PHD filter for both conservative and non-
conservative image processing methods over the obser-
vation campaign on July 13, 2024.

The solutions provided by the Multi-Layer PHD
filter are confirmed with a spot-checking process con-
ducted on the detections in the tracklets determined
by the image-plane GM-PHD filter. An example of
this is shown in Figure 5 and Figure 9 where the blue
star marker represents the same zoomed-in detection in
Figure 5. This process demonstrates that the identified
detection is not a star streak but is more likely to be
an object, confirming that it is a valid candidate for
association. It also provides additional confidence in the
accuracy of the GM-PHD filter in distinguishing object
detections from background noise and stellar sources.

Figure 9. Raw FITS Image. The green markers represent
matched star streak detections and orange circles are the
possible object detections. Unmatched streaks or mea-
surements are shown as red `.

6. CONCLUSIONS

In this paper, a sensor tasking framework and validation
methods were explored, which used two different image



processing methods and two different association meth-
ods.

A greedy optimizer was implemented to solve the sen-
sor tasking problem, resulting in computationally effi-
cient observation schedules for optical observations us-
ing a single ground-based optical sensor, observing the
geosynchronous regions. The observation schedule is a
fixed, open-loop setup. Tasking plans were created adher-
ing to a set of visibility conditions that allow a more re-
alistic application of the sensor tasking algorithm to real-
life ground-based observers. Two observation campaigns
were conducted on July 13, 2024, and July 24, 2024.
The images captured by Purdue Optical Ground Station
(POGS) were processed using two methods. The conser-
vative method resulted in fewer detections compared to
the non-conservative method.

Two methods of validating the success of the sensor
tasking were used for the observation campaign of July
13, 2024. The detections from each image processing
method were used to perform associations. The first val-
idation method was accomplished with the Mahalanobis
Detection Association (MDA) technique, which was uti-
lized to associate the detections on each image to a space
object catalog. The MDA method remained unaffected
by the image processing method, providing the same ma-
jority of associated objects present in the viewing direc-
tions. The second method of validation of the sensor task-
ing was done with the Multi-Layer Probability Hypothe-
sis Density (PHD) filter. The Multi-Layer PHD filter gen-
erated tracklets before performing association to an ob-
ject. The detections across images are associated, which
generated tracklets by the orthogonal image plane Gaus-
sian mixture PHD (GM-PHD). The image plane GM-
PHD filter generated a different number of converged ob-
jects with well-defined tracklets for the two image pro-
cessing methods. The increased number of images in the
non-conservative image processing revealed an increase
in the number of converged objects compared to the con-
servative image processing. The set of additional detec-
tions allowed the orthogonal image plane GM-PHD filter
to determine the presence of objects with appropriate an-
gle rates according to the predicted motion of the TLE
objects in the image plane. The tracklet-to-object associ-
ation was performed by the labeled orbital GM-PHD fil-
ter with the generated tracklets. The planned TLE objects
were used to initialize the prior multi-target density. The
labeled orbital GM-PHD indicated that all objects except
one were identified as part of the optimal tasking.

The effectiveness of the sensor tasking was demonstrated
by the execution of the observation campaign and the two
association methods, which produced different success-
ful results. POGS, the sensor used in the observation
campaign, showed a small standard deviation in expo-
sure time of 0.1 seconds, and negligible errors in series
length and time between series. POGS also displayed
high accuracy in targeting the desired viewing directions.
The validation of the sensor tasking with the MDA, a
detection-to-object association, indicated over 96% suc-
cess of observed to planned objects. The tracklet-to-

object association made with the Multi-Layer PHD filter
resulted in a success of 17% of observed to planned ob-
jects for conservative image processing and 51% for non-
conservative image processing. The tracklet-to-object as-
sociation, which accounts for the association of the group
of detections in an image series, provided a stronger re-
sult. In contrast, the detection-to-object association only
requires a single detection, which is heavily reliant on an
object catalog and can be affected by catalog data.
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