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ABSTRACT

The growing number of defunct satellites in geosyn-
chronous earth orbit (GEO) motivates continued devel-
opment of active debris removal (ADR) and satellite ser-
vicing missions. These missions will benefit greatly from
detailed target spin state information and accurate fu-
ture predictions. The spin rates of defunct GEO satel-
lites are diverse with uniform rotators and non-principal
axis tumblers. For some satellites, observations show that
these spin rates can change significantly over time includ-
ing transitions between uniform rotation and tumbling.
Modeling and observations have shown that some de-
funct GEO satellite spin states are largely driven by solar
torques via the Yarkovsky-O’Keefe-Radzievskii-Paddack
(YORP) effect. Recent studies of the tumbling YORP
regime with full Euler dynamics models have uncovered
dynamically rich behaviors that are consistent with satel-
lite observations. Unfortunately, the full dynamics do
not explain the fundamental mechanisms driving these
behaviors. Furthermore, their computational overhead
greatly hinders broad, long-term (i.e. multi-year) dynam-
ical studies. To remedy these issues, we present tum-
bling averaged dynamics models that accurately capture
and explain the behavior observed in the full dynamics
while reducing computation times by up to three orders
of magnitude. These averaged models promise to facil-
itate broad studies of long-term rotational dynamics for
defunct satellites and rocket bodies.

Keywords: defunct satellites, rotational dynamics, solar
torques, active debris removal, space situational aware-
ness.

1. INTRODUCTION

To manage the growing space debris population and ex-
tend the operational life of aging satellites, a number
of organizations are developing active debris removal
(ADR) and satellite servicing missions. ADR/servicing
spacecraft will need to rendezvous, grapple, and poten-
tially de-spin large satellites not designed for such op-
erations. As a result, accurate target spin state knowl-
edge will be required to successfully execute these mis-
sions. ADR and servicing will be particularly impor-

tant for geosynchronous earth orbit (GEO) where valu-
able longitude slots are limited and there are no natu-
ral de-orbit mechanisms to remove defunct satellites and
other debris. Without remediation, debris populations in
GEO and super-synchronous GEO graveyard orbits will
continue to grow, posing increased collision risks to ac-
tive spacecraft. Observations show that the spin rates of
defunct GEO satellites are diverse and can change sig-
nificantly over time [7, 9, 11, 15, 17]. Albuja et al.
[1, 2] found that the rotational dynamics of some of these
satellites are primarily driven by the Yarkovsky-O’Keefe-
Radzievskii-Paddack (YORP) effect. The YORP effect
is spin state evolution due to solar radiation and ther-
mal re-emission torques [16]. Using a YORP dynamics
model, Albuja et al. closely predicted the observed spin
down of the defunct GEO satellite GOES 8 and its sub-
sequent transition from uniform rotation to non-principal
axis tumbling [1].

Further investigation of tumbling YORP for the defunct
GOES satellites has uncovered rich dynamical behavior
[4]. Simulations have shown tumbling cycles where the
satellite transitions repeatedly between uniform rotation
and tumbling due to YORP alone, spin-orbit coupling
where the tumbling satellite’s rotational angular momen-
tum vector (pole) tracks and precesses about the sun/anti-
sun direction, capture into tumbling period resonances
where the satellite’s attitude is periodic in time, and sta-
ble tumbling states when internal energy dissipation is
considered. Recent radar and optical observations of
the defunct GOES satellites show consistency with these
simulated behaviors [3, 7, 8]. Light curves show that
GOES 8 began spinning up after its transition to tum-
bling [7], consistent with YORP-driven tumbling cycles
[4]. Doppler radar echoes for the tumbling GOES 8 and
GOES 11 satellites collected at NASA Goldstone suggest
their poles were near the sun or anti-sun directions in Feb.
2020 and Dec. 2019 respectively [3]. Radar and optical
observations also strongly suggest GOES 8 was in a 5:1
tumbling period resonance in Feb. 2020 [3]. GOES 8 was
likely in a tumbling resonance in Apr. 2018 as well [7].
Finally tumbling GOES 9 light curves collected in 2014
and 2016 show nearly identical structure [8], suggesting
the satellite’s tumbling state remained constant.

The above tumbling YORP simulations used Euler’s
equations of motion (i.e. the full dynamics). While
these dynamics revealed a number of YORP-driven be-
haviors, they do not explain why the behaviors occur.
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Also, these dynamics require short integration time-steps
to accurately propagate the motion, especially for rela-
tively rapid rotation, resulting in large computation times.
This makes the full dynamics ill-suited for long-term (i.e.
multi-year) simulations. In this paper, we outline alterna-
tive tumbling averaged dynamics models to understand
the reasons for the observed behaviors and to enable fast
exploration of long-term spin state evolution. More de-
tailed derivation and exploration of these models can be
found in Refs. [5] and [6], the former recently published
and the latter currently in review. Our approach is anal-
ogous to orbit averaging, which has proven invaluable to
studies of long-term orbital dynamics. In the remainder
of the paper, we will first describe our slowly varying os-
culating elements and their equations of motion. We then
discuss how these equations are averaged over the satel-
lite’s rotation. Summarizing results from Refs. [5] and
[6], the averaged models are then validated against the
full model and used to explore both general and resonant
tumbling YORP. We finish by discussing implications of
the results and providing conclusions.

2. DYNAMICS

The spin-orbit coupling observed in the full dynamics
simulations motivates development of our averaged dy-
namics in the rotating sun-satellite frame. We make the
reasonable assumption that the satellite directly orbits the
sun in a circular orbit at earth’s radial distance (i.e. 1
AU). This is valid because the satellite’s GEO orbit is
very small compared to the earth’s orbit around the sun.
We also neglect earth eclipses which are relatively infre-
quent and short-lived for GEO satellites, especially on the
multi-year timescales considered. Figure 1 illustrates the
rotating orbit frame used as the foundation of the aver-
aged model. The X̂ , Ŷ , and Ẑ axes points along the
ecliptic normal, orbital velocity, and sun directions re-
spectively. Earth’s heliocentric mean motion is denoted
by n. Figure 1 also includes the satellite’s rotational an-
gular momentum frame with unit vectors x̂, ŷ, and ẑ
whose orientation with respect to the orbit frame is de-
fined by the clocking angle α and coning angle β. Rota-
tion from the orbit frame to angular momentum frame is
given by a rotation about the Ẑ axis through α, followed
by rotation about the ŷ axis through β. The ẑ axis is
aligned with the rotational angular momentum vector H .
Rotation from the angular momentum frame to the satel-
lite body-fixed frame is given by the (3-1-3) Euler angles
φ, θ, and ψ [19].

The equations of motion for α, β, and the angular mo-
mentum magnitude H = |H| (see Ref. [5] for deriva-
tion) are given by,

α̇ =
My +Hn cosα cosβ

H sinβ
(1)

β̇ =
Mx +Hn sinα

H
(2)

ො𝑥

ො𝑦

Figure 1: Orbit and angular momentum frames [5]

Ḣ = Mz (3)

where (Mx, My , Mz) denote the external torque compo-
nents in the angular momentum frame.

An additional parameter is needed to describe the satel-
lite’s tumbling state. For this, we will use the dynamic
moment of inertia Id which defines the closed path that
the satellite’s angular velocity vector ω takes through the
body frame [12]. Mathematically, Id = H2/2T where T
is the rotational kinetic energy. Id must lie between the
satellite’s minimum Il and maximum Is principal iner-
tias because T is bounded for a given angular momentum.
The equation of motion for Id is given by,

İd =
2Id
H

M ·
(
I3×3 − Id[I]−1

)
Ĥ (4)

where I3×3 is the identity matrix and [I] is the satellite’s
inertia tensor. We can define another fundamental param-
eter, the effective spin rate ωe = H/Id.

For resonant tumbling, we must define an additional res-
onance angle γ that captures the phase offset between the
two fundamental satellite motions. In torque-free rota-
tion, a tumbling satellite’s motion can be described by a
pair of fundamental periods. Pφ̄ is the average preces-
sion period of the satellite’s long axis about the angular
momentum vector and Pψ is the rotation period of the
long axis about itself [18]. Pψ is also the period of ω
in the body frame. The Euler angle φ is generally non-
periodic and is driven on average by Pφ̄ whereas the θ
and ψ motions are periodic in Pψ and directly driven by
the linearly scaled time parameter τr [5, 6, 18]. When
Pψ/Pφ̄ = m/n where m and n are positive, non-zero
integers, the satellite is in a tumbling resonance. In such
cases, the attitude motion approximately repeats with pe-
riod ∆t = nPψ = mPφ̄. Taking ϕ̇ = 2π/Pφ̄ and
τ̇r = 2π/Pψ , the equation of motion for γ is given by,



γ̈ = nϕ̈−mτ̈r (5)

where ϕ̈ and τ̈r are functions of the satellite inertias, Id,
Ḣ , and İd [6].

The multi-facet solar torque model used in this work
is provided by Refs. [14, 20] and accounts for specular
as well as Lambertian diffuse reflection and thermal re-
emission. Thermal re-emission is assumed to be instan-
taneous. Also, self-shadowing and multi-bounce effects
are neglected. The net force fi on the ith facet is,

fi = −PSRP
[
{ρisi(2n̂in̂i − I3×3) + I3×3} · û

+ cdin̂i

]
Ai max(0, û · n̂i)

where PSRP is the solar radiation pressure, ρi is the facet
reflectivity, si is the specular fraction, n̂i is the facet
unit normal vector, û is the satellite to sun unit vec-
tor (aligned with Ẑ), Ai is the facet area, and cdi =
B(1−si)ρi+B(1−ρi) where B is the scattering coeffi-
cient (2/3 for Lambertian reflection). The operation n̂in̂i
represents a matrix outer product. The illumination func-
tion max(0, û · n̂i) ensures that facets do not contribute
if the sun is below their local horizon.

The solar radiation torque acting on the faceted satellite
model can then be calculated as,

M =

nf∑
i=1

ri × fi (6)

where ri is the satellite center of mass to the facet cen-
troid position vector and nf is the number of facets.

The GOES 8 shape model illustrated in Figure 2 was
used for all modeling assuming its known end of life
mass properties and geometry as well as reasonable op-
tical properties [5]. The principal axis body frame unit
vectors b̂1, b̂2, and b̂3 are labeled.

Figure 2: GOES 8 shape model [5]

3. AVERAGING

In order to average Eqs. 1 - 5, a few key assumptions are
made. First, we assume that the solar torque is a small
perturbation on the satellite’s torque-free, rigid body ro-
tation. We also assume that α, β, H , Id, and γ change
slowly compared to the satellite’s attitude motion, defined

by the (3-1-3) Euler angles φ, θ, and ψ. Note that γ only
applies in the resonant case. We then average Eqs. 1 -
5 over the satellite’s torque-free attitude motion [5, 18],
holding α, β, H , Id, and γ constant during this averaging
process. This fundamentally requires averaging the solar
torque components Mx, My , and Mz as well as İd.

(a) Sun direction in body-fixed frame

(b) Attitude in (τr ,φ) angle space

Figure 3: Non-resonant motion

For the non-resonant case, Pψ/Pφ̄ is irrational and the
satellite’s attitude motion is quasi-periodic (i.e. it does
not exactly repeat). An example is provided in Figure 3.
One could average Eqs. 1 - 4 over an arbitrarily long pe-
riod of time so that the all possible attitudes are reached.
This would be analogous to averaging over the path in
Figure 3a. Nevertheless there is a more efficient approach
that leverages the quasi-periodicity of the motion. In this
non-resonant case, the φ and coupled (θ,ψ) motions are
driven by different irrational frequencies. So we can av-
erage independently over these two motions. Consider-
ing Figure 3b, this is equivalent to taking an area average
over the (τr,φ) angle space. Given the two irrational fre-
quencies, the satellite attitude will approximately cover
this area uniformly over time. With this approach, we
convert an unbounded time average to a bounded area av-
erage. This area average can be conducted analytically or



numerically. Analytical averaging with the current solar
torque model requires approximating the facet illumina-
tion function to make the integrals tractable [5]. This
approximation reduces model accuracy to an extent but
yields direct solutions for the averaged quantities Mx,
My , Mz , and İd. Taking the numerical approach on the
other hand, one simply samples Mx, My , Mz , and İd on
a uniform grid in (τr,φ) angle space and computes the
average values. Note that this numerical approach does
not require approximations to the solar torque model and
allows for arbitrarily high fidelity formulations (e.g. ray-
tracing), provided that thermal re-emission is considered
instantaneous. For non-resonant averaging, Mx, My ,

Mz , and the product İdH are only functions of Id and
β for a given satellite. So for the numerical approach, 2D
lookup tables can be pre-computed, using interpolation
for simulation runs.

(a) Sun direction in body-fixed frame

(b) Attitude in (τr ,φ) angle space

Figure 4: Resonant motion with Pψ/Pφ̄ = 1

For the resonant case, the attitude motion is an approx-
imately periodic trajectory. A representative example is
shown in Figure 4 for the Pψ/Pφ̄ = 1 resonance. Here,
we average over one cycle of this resonant motion. Dif-

ferent prescribed values for γ = nφ − mτr will result
in different relative phasing between τr and φ, thereby
changing the shape of the trajectory in Figure 4a and
shifting it up or down in Figure 4b. Taking the analyti-
cal averaging approach would require evaluating distinct
sets of integrals for each resonance (i.e. each m, n com-
bination). Instead, we numerically average the resonant
trajectories over ∆t = nPψ = mPφ̄. For the resonant
case, Mx, My , Mz , and γ̈ are only functions of γ and β.

With the averaging methodology now established, we can
validate the resulting models against the full dynamics.
Here, we generate the averaged quantities for both aver-
aged models numerically. For the full dynamics, we use
Euler’s equations of motion and quaternions for our atti-
tude coordinates [19]. Propagation is done with Matlab’s
ODE113 integrator with equal tolerances set for both the
full and averaged models. For the first example, pro-
vided in Figure 5, we validate the general non-resonant
tumbling averaged model. Starting both models with the
provided initial conditions, we propagate the motion for
three years. The satellite initially spins up and proceeds
into more energetic tumbling. In Figure 5b, Id/Is = 1
denotes uniform rotation about the maximum inertia axis,
the dashed grey line at Id/Is = Ii/Is denotes the separa-
trix between the short axis (SAM) and long axis (LAM)
tumbling modes, and Id/Is = Il/Is denotes uniform
rotation about the minimum inertia axis. As the evolu-
tion proceeds, β gradually increases while α circulates
rapidly. Once β passes through 90◦ (i.e. pole perpendicu-
lar to the sun direction), the satellite starts spinning down
and returning towards uniform major axis rotation. For
both models, the satellite then briefly spins up in uniform
rotation with the pole moving rapidly towards the sun di-
rection. The satellite then spins back down and transi-
tions to tumbling where another cycle begins. Overall,
the averaged model closely follows the full model evolu-
tion. Comparing simulation run times with 1e-12 relative
and absolute tolerances, the full model required 70 min
for this three year propagation while the averaged model
only required 3 s. This is roughly a three order of magni-
tude decrease in computation time.
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Figure 5: Non-resonant averaged model validation (αo =
95◦, βo = 50◦, Id/Is = 0.62, 2π/ωe = 40 min)

Now we will validate the resonance averaged model
against the full dynamics model for the Pψ/Pφ̄ = 1 reso-
nance. For the full dynamics model, the initial resonance
angle γo = φo − τro is prescribed by setting τro = 0
and solving for the corresponding φo. This is also how
γ is defined for the averaged model [6]. Both models are

propagated for 30 days with the initial conditions and re-
sulting evolution provided in Figure 6. We see that the av-
eraged model follows the full model closely initially, but
the models begin to diverge as the simulation progresses
particularly for γ and α. This is due in large part to our
averaging assumption of holding Id constant. Just off
the resonance, the true trajectory becomes quasi-periodic
which this averaged model does not consider. Neverthe-
less, the averaged model captures the general behavior
of the full model. Also, in terms of run time for 1e-10
absolute and relative tolerances, the full model required
roughly 27 s while averaged model required roughly 1 s.
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Figure 6: Resonant averaged model validation (αo = 0◦,
βo = 45◦, γo = 300◦, 2π/ωe = 20 min) [6]

For a better overall comparison of the full and resonance
averaged models, we can compare their resonance cap-
ture behavior. The satellite will remain captured in the
resonance if γ oscillates about a fixed value and only es-
capes when γ begins circulating. For this analysis, we
define escape when |γ(t) − γo| > 6nπ, in other words
when γ has progressed through three circulation cycles.
Figure 7 shows the Pψ/Pφ̄ = 1 resonance capture con-
tours for both models. Here, we simulate both models
over a grid of (βo, γo) values for 10 days. We see that the
general capture behavior of the two models agrees well
with slightly higher overall capture probability for the av-
eraged model. Again, this is likely due to our fixed trajec-
tory averaging approach which results in slightly greater
stability. Interestingly, we see for extreme β values that
capture does not occur for either model. There is also a
gap along γo ≈ 160◦ where the satellite is not captured.
This behavior will be explained in the following section.

Figure 7: Full and averaged model capture in Pψ/Pφ̄ = 1
resonance for ≥10 days. White regions show escape. [6]

4. RESULTS

With the two averaged models validated, we can now
use them to explain and efficiently explore the long-term
tumbling behavior outlined in the introduction. First, we
will investigate why we observe tumbling cycles in the
full and averaged dynamics. Figure 8 shows the signs
of the quantities İd, β̇, and ω̇e for GOES 8 with black
regions denoting negative values and white denoting pos-
itive. Also included in Figure 8 is an averaged model run
shown in red. Starting at the green dot, İd is negative
which pushes the satellite across the separatrix (dashed
line) and further into tumbling. Crossing the separatrix,
β̇ switches from negative to positive, which pushes the
satellite pole away from the sun. Also ω̇e becomes pos-
itive, spinning the satellite up. This behavior continues
until β passes roughly 90◦. At this point, İd becomes
positive and ω̇e becomes negative. These combine to de-
celerate the satellite and push it back towards uniform
rotation all while the pole continues moving away from
the sun. Crossing the separatrix in the upward direction,
β̇ becomes negative, pushing the pole back towards the
sun. At this point, the satellite spin rate begins increasing
as the satellite briefly returns to uniform rotation. When
β decrease below 90◦, İd becomes negative. This pushes
the satellite back into tumbling where process repeats it-
self for the next tumbling cycle.
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Figure 8: Signs of GOES 8 averaged quantities with av-
eraged model evolution overlaid. Black and white denote
negative and positive values respectively. [5]

With the averaged models, we can also efficiently explore
how the satellite’s dynamical evolution could be affected
by different end of life configurations. One significant
degree of freedom is the final solar array angle. For the
GOES 8-12 satellites, the solar array rotates once per day
around the satellite’s long axis (b̂3 in Figure 2) axis to
track the sun [21]. The final angles for these satellites dif-
fer because they were shut down at different local times
[8]. These differing angles were found to significantly
affect the satellite’s long-term uniform spin state evolu-
tion [8]. With the current averaged models, we can read-
ily extend that analysis to the tumbling regime. Figure 9
shows the relevant averaged quantities versus β and the
end of life solar array angle θsa for the given SAM tum-
bling state. As we vary θsa (i.e. rotate the array around
the b̂3 axis), the averaged quantities change considerably,
most notably Mx, Mz , and İd. Furthermore, for GOES
8’s particular end of life inertias and principal axes, Mx,
Mz , and İd approach zero across almost all β values for
θsa near odd multiples of 45◦. This echoes the structure
observed for the uniform spin averaged torques [8].

(a) Mx

(b) My

(c) Mz

(d) İd

Figure 9: GOES 8 averaged terms vs. β and end of life
solar array angle θsa (Id/Is = 0.98) [5]

Another behavior discussed in the introduction was spin-
orbit coupling with H tracking and precessing about the
rotating sun direction. For GOES 8, we find that for the



majority of the tumbling regime, |Mx|, |Mz|, << |My|
[5]. So the most of the torque goes into driving α. This
is demonstrated by Figure 5c, where α circulates rapidly
while the other parameters evolve much more slowly.
Consulting Figure 1, ŷ is along the Ẑ × Ĥ direction (i.e.
perpendicular to both of these directions). So as Ẑ rotates
in inertial space, ŷ follows. This tends to make Ĥ move
perpendicular to Ẑ, resulting in sun-tracking precession.

In full model simulations, the satellite was often indefi-
nitely captured in tumbling resonances due to YORP with
Pψ/Pφ̄ = 1:1 and 2:1 being most common [5]. The reso-
nance averaged model can help explain dynamical behav-
ior in the vicinity of these resonances. Figure 10 shows γ̈
for the 1:1 resonance. Also included are five averaged
model trajectories. Note the γ̈ = 0 manifold running
through the contour which separates the positive and neg-
ative regions. Considering cases 1 and 5 which have β
values near 0◦ and 180◦, γ̈ does not change sign. So γ
quickly decreases for case 1 and increases for case 5, re-
sulting in circulation and escape from the resonance. For
case 2, the satellite starts near the γ̈ = 0 manifold which
in this region is stable because dγ̈/dγ is negative. So
γ oscillates around the stable manifold and remains cap-
tured for an extended period of time. The behavior for
case 3 is similar, only with larger oscillation amplitude
due to the greater initial distance from the γ̈ = 0 man-
ifold. Finally, for case 4, the satellite is initially placed
near the unstable γ̈ = 0 manifold. Initially, γ̈ is positive
and γ increases. The solution then passes through the
narrower γ̈ < 0 region, which cannot sufficiently slow
γ. Given the vertical asymmetry between the positive
and negative γ̈ regions, γ continues increasing and begins
circulating, causing the satellite to escape the resonance.
Taken together, these cases help explain the resonance
capture behavior observed in Figure 7. Escape is virtu-
ally guaranteed for extreme β values because the γ̈ = 0
manifold does not intersect these regions. Also, the hori-
zontal escape region for γo ≈ 160◦ in Figure 7 is caused
by proximity to the unstable γ̈ = 0 manifold.

Figure 10: GOES 8 resonance-averaged γ̈ contour with
five overlaid runs (Pψ/Pφ̄ = 1). [6]

With indefinite resonance capture observed in full model
results [5], determining the amount of time a satellite
could remain captured is important. With the full model,
this would be computationally expensive to investigate.
Instead, we can use much faster resonance averaged
model. Figure 11 shows the capture durations for the 1:1
resonance. Here, the averaged dynamics for each initial
βo and γo value were propagated until γ began circulat-
ing. The longest capture duration (∼283 days) occurs
along the stable γ̈ = 0 manifold near case 2 in Figure 10.
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Figure 11: GOES 8 averaged resonance capture duration
(Pψ/Pφ̄ = 1). [6]

For non-resonant tumbling states, γ rapidly circulates due
to the irrationality of Pψ/Pφ̄. So upon encountering a
resonance, the initial γ value is essentially random. As a
result, for a given β, the capture duration and spin state
change a satellite will experience can be considered prob-
abilistic. While only the 1:1 resonance was explored here,
higher order resonances (e.g. 2:1, 3:2) can easily be stud-
ied [6].

5. DISCUSSION

The tumbling YORP dynamics explored above have a
number of implications. First of all, the tumbling cy-
cles observed in Figures 5 and 8 demonstrate the po-
tential variability of defunct satellite spin states. For
ADR and servicing, satellites in slow, uniform rotation
will be easier to grapple and de-spin than those spinning
rapidly. Similarly, slow rotation will reduce collision
risk for the ADR/servicing spacecraft and save fuel and
time required to de-spin. As a result, these missions will
benefit greatly from accurate long-term spin state predic-
tions to identify future windows where a target satellite
is uniformly rotating as slowly as possible. Taking the
simulation results above for example, one such window
would be during the brief return to uniform rotation in



Figures 5 and 10. It would advantageous to let YORP de-
celerate target satellites as much as possible, saving the
ADR/servicing spacecraft fuel and time. With numerous
potential targets, one might plan to de-orbit the slowest
spinning targets first, waiting for windows of predicted
slow rotation to de-orbit others.

There is strong evidence that GOES 8 has been cap-
tured in a tumbling resonance at least once since 2018
[3, 4]. In these resonances, a satellite’s attitude motion
is nearly periodic. For general tumbling on the other
hand, the attitude motion does not repeat. ADR/servicing
spacecraft would have an easier time grappling a tum-
bling satellite with periodic rotation, especially if aim-
ing for a particular feature on the satellite. For example,
Northrop Grumman’s Mission Extension Vehicle (MEV)
docks with the apogee kick motor nozzle and concentric
launch adapter ring commonly found on GEO satellites
[10]. Taken together, the GOES 8 observations and po-
tential advantage of resonant tumbling over general tum-
bling for ADR/servicing motivate further dynamical and
observational studies to investigate whether these reso-
nances are common among the tumbling defunct satellite
population.

The results in Figure 9 suggest that the end of life solar
array angle can greatly affect GOES 8’s long-term spin
state evolution. The significance of end of array angles
for the GOES satellites is further supported by the dy-
namical and observational findings in Ref. [8]. This in-
dicates that satellite designers and operators can poten-
tially dictate post-disposal spin state evolution with fac-
tors other than the spin state at shutdown. For example,
careful setting of end of life solar array angles could be
used to reduce spin rates and spin rate variability, making
future capture and de-orbit easier. Also, much of the high
area-to-mass ratio (HAMR) debris near GEO is thought
to be multi-layer insulation from defunct satellites and
rocket bodies [13]. Reduced satellite spin rates may also
reduce the formation rate of these HAMR objects.

6. CONCLUSIONS

In this paper, we outlined both resonant and non-resonant
tumbling averaged rotational dynamical models and ap-
plied them to defunct GEO satellites subject to solar
torques. These models capture the behavior of the corre-
sponding full dynamics while reducing computation time
by up to three orders of magnitude. More importantly, the
averaged models clearly explain the behavior of the full
model, enhancing understanding of long-term rotational
dynamics. Overall, these averaged models promise to fa-
cilitate broad studies of defunct satellite and rocket body
rotational dynamics to advance space situational aware-
ness, active debris removal, and satellite servicing. While
the current work was limited to solar torques, the aver-
aged models can be readily extended to other perturba-
tions such as internal energy dissipation and gravity gra-
dient torques. These perturbations will be incorporated
into future studies.
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