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ABSTRACT

Sensor networks that cover the whole geosynchronous
object catalog in a single night are advantageous as they
allow for full surveillance. In sensor tasking, often
heuristic minimum local horizon elevation constraints are
employed to avoid observation attempts that yield little
return as the air-mass the reflected light from a space ob-
ject passes through increases significantly with increas-
ing zenith angle. Often when modelling the sensor’s mo-
tion between one viewing direction and other, a constant
repositioning time is used, which reduces the fidelity of
the model. In this paper, heuristic elevation constraints
are compared to using tasking based on rigorously de-
fined probability of detection. The results are shown in a
realistic 34 sensor setup using the Two Line Element cat-
alog. Then, a variable repositioning time is derived from
real world data, and the results of this modelled variable
repositioning time are compared to a constant reposition-
ing time.

1. INTRODUCTION

As the number of resident space objects (RSO) increases,
the need to track and maintain a catalog of their states and
uncertainties becomes essential for comprehensive Space
Situational Awareness (SSA). With a majority of observa-
tions of RSOs coming from a limited number of ground-
based sensors, this creates the need for an efficient and
effective sensor tasking scheme [2, 7]. Sensor tasking is a
well-investigated topic [10, 20, 21, 22, 23, 24, 25, 26, 27]
to just name a few. Schildknecht [19] and Alfano [28]
developed survey strategies based on the current cata-
log population without explicit information on particular
space objects. Follow-up observations are based on a cur-
rent catalog that requires being updated, as positional un-
certainties grow over time. This can be formulated as an
optimization problem: Hill et al. used a covariance-based
optical sensor tasking approach [25], Sunberg et al. lever-
aged the advantages of an information-based sensor task-
ing [26]. Jaunzemis et al. used an evidence-based task-

ing scheme [22], Linares et al. [24] and Little et al. [10]
investigated machine learning algorithms for solving the
sensor tasking optimization. Frueh et al. [7] developed
a scheme of sensor tasking fusing survey and follow-up
in a single framework based on weighted viewing direc-
tions. Little et al. investigated classical and AI-based
optimizers for the efficient solution [3]. Ackermann et al.
optimizes the total number and location of ground-based
sensors to view all GEO objects consistently every day,
including local weather effects and light pollution at the
sensor locations [11].

There are several limiting factors when using optical sen-
sors to make observations. Of special interest in this pa-
per is the comparison of heuristically imposed elevation
constraints and the probability of detection of RSOs in
a sensor network designed to provide complete cover-
age of the geosynchronous region in a single night. This
work will assume the probability of detection model de-
veloped by Sanson and Frueh, and the signal-to-noise ra-
tio (SNR) for CCD images developed by Merline and
Howell, 1995 [8, 14, 16, 15, 18, 17]. Secondly, When
considering the single and multi-sensor tasking problem,
the time it takes for the sensor to move from one viewing
direction to another, or the sensor’s repositioning time (or
slew time), changes depending on how far the reposition-
ing distance is. Modeling this effect as a variable repo-
sitioning time however can be computationally more sig-
nificant than just considering the repositioning time to be
constant, though the model will more accurate. Because
of the trade-off between computational time and simula-
tion accuracy, choosing to model a variable repositioning
time is not a trivial task [29, 2, 3, 30].

2. SENSOR TASKING AND LOCAL HORIZON
LIMITATIONS

2.1. Sensor Tasking Algorithm

When analyzing the sensor tasking problem, an algorithm
that chooses the viewing directions of each sensor must
be used. This paper uses a modified version of the sen-
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sor tasking algorithm presented in Frueh et al. in 2018,
shown in Eq. (1) [3, 7].

maxA =

l∑
g=1

mg∑
f=1

(
n∑

i=1

µ(X̃i)·

Pd(hf,g, X̃i) · d(hf,g, X̃i, Pi)

(1)

A is the total number of RSOs to be observed. l is the total
number of sensors observing in the time-frame, andmg is
the number of observations (or viewing directions) taken
by each sensor g. n is the total number of RSOs to be
observed in the time-frame. µ(X̃i) is an object i specific
value. This value can either be increased depending on
facts like observability of object i [12], if object i has
been observed or not (set as a 1 and 0 respectively), etc.
In this paper, all objects are initially set with µ(X̃i) = 1
and then changed to 0 once the object has been observed.
Pd(hf,g, X̃i) is the probability of detection of object i.
More detail on Pd(hf,g, X̃i) is in Eq. (4). d(hf,g, X̃i, Pi)
is the probability that object i falls within the FOV grid
choice centered at hf,g. For this paper, two Scenarios are
compared: the mean state of each object is considered,
and covariance is ignored (i.e., the mean state of each
object is the true state), and the covariance is considered
[3, 7].

3. MINIMUM ELEVATION VERSUS PROBABIL-
ITY OF DETECTION

3.1. Minimum Elevation Constraint

This paper studies the outcomes of how a pre-defined
minimum elevation constraint for a ground-based sensor
affects its performance in the sensor tasking problem. To
represent the RSOs in the optical sensor problem, a work-
ing frame must be chosen. Little and Frueh found that a
representation of the RSO’s states in hour angle and dec-
lination frame for optical sensors combines minimal lin-
earization errors with computational advantages avoiding
constant recomputation of the grid layout [9, 3]. A chang-
ing minimum elevation constraint (hmin) will affect the
FOR of the sensor (and a higher elevation constraint will
make the FOR smaller, respectively), and consequently
the total number of possible viewing directions. A com-
parison of how a pre-defined hmin changes the total pos-
sible number of viewing directions is shown in Fig. 1.

The FOV for the grid-space created in Fig. 1 is 2.5◦
(which is used in the results section). The blue grids
represent the viewing directions of a sensor with no el-
evation constraint (h = 0◦), while the green grids rep-
resent the viewing directions a sensor with a 20◦ eleva-
tion constraint. The blue sensor system of h = 0◦ has a
total of 5073 possible viewing directions. On the other
hand, when increasing the minimum elevation constraint
to h = 20◦, or the green sensor system, the total num-
ber of possible viewing directions decreases to 3634. If

no other factors are included when observing the RSOs,
it is expected that increasing the minimum elevation con-
straint decreases the number of RSOs seen per observa-
tion period.

3.2. Probability of Detection

The probability of detection formulated by Sanson and
Frueh analyzes how noise values in the observation image
affect the readability of the RSOs image [8]. To formulate
this, the object’s irradiance and signal function going into
the optics of the sensor must be calculated:

Iobj(λ̄) = I0,Sun
A

ρ2
(
2Cd(λ̄)

3π
(sinα+ (π − α) cosα))

(2)

Here the irradiance Iobj(λ̄) for spherical objects (also re-
ferred to as object brightness in this paper) is in units of
watts per meter squared. I0,Sun is the irradiance of the
sun, and A is the area of the object. This work is assum-
ing all objects are spheres, so A remains constant. The
true size and shape of the RSOs vary significantly. Op-
erational satellites usually are attitude stabilized, thus the
assumption of a sphere (constant area A) can be justified
for the purpose of radiation effects. Debris objects usu-
ally do have significant attitude motion, allowing for an
averaged shape-attitude profile. Albeit usually the atti-
tude motion is not uniform, but as a first-order approxi-
mation the canon ball model can be justified [6]. Setting
all objects to a constant spherical shape allows for easy
computation of the irradiance of the objects, and gen-
eral assumptions about the probability of detection can
be made [3]. Cd(λ̄) is the diffuse reflection parameter at
an average wavelength (assumed to be 600 nanometers in
this work), and α is the Sun-Object-Observer phase angle
[4].

Ssig,obj ≈ (D − d)
λ̄

hc
exp(−τ(λ)R(ζ))Iobj(λ̄)L (3)

This work assumes that the sensors are equipped with
a charge-couple device (CCD) to capture the images.
Ssig,obj is the signal function of the irradiance passing
through the optics. D is the primary radius of the sen-
sor’s optics, and d is the secondary radius. λ is the av-
erage wavelength of light reflected off and h and c are
Boltzman’s constant and the speed of light constant re-
spectively (for the remaining of the paper, h will refer to
the elevation in the sensor’s azimuth, elevation frame).
τ(λ) is the atmospheric extension coefficient, Iobj(λ̄) is
the irradiance described in Eq. (3) and L is the loss func-
tion for the specific sensor. R(ζ) is an atmospheric model
used based on the zenith angle of the object. It is expected
that as elevation increases, the probability of detection of
an object increases on average as the light from the ob-
ject has less attenuating air-mass to pass through [8, 4].



(a) τ, δ frame with no elevation constraint (blue) and 20◦

minimum elevation constraint (green)
(b) α, h frame with no minimum elevation constraint (blue)
and 20◦ minimum elevation constraint (green)

Figure 1: Comparison of the effects of an elevation constraint on the sensor’s FOR. There is a significant decrease in
possible viewing directions in the working frame when comparing no elevation constraint system (blue) versus a 20◦ rigid
elevation constraint system (green).

The atmospheric effects are taken into account by R(ζ).
This leads to the following expression for the probability
of detection [8]:

Pd =1− 1

2

n=∞∑
n=−∞

Γ(n− g

2
, λobj,i + λS,i + λD,i)

n!

˙

erf

 n+ 1− t− µB,i√
2g(σ2

B,i + σ2
R,i)

− erf

 n− t− µB,i√
2g(σ2

B,i + σ2
R,i)


(4)

Here t is the user-defined threshold SNR value set for
each specific sensor based on its characteristics, µB,i and
σ2
B,i are the mean and variance of the number of back-

ground pixels, σ2
R,i is the variance of the readout noise,

and erf is the error function. In this work, t is defined
as three standard deviations of the Merline noise [3, 8].
Pd has a range from zero to one, with an object having
a Pd = 0 meaning there is a 0% probability of detecting
that object, and a Pd = 1 meaning there is a 100% prob-
ability of detecting that object. The Pd is calculated for
each object at each time. Then, a random number is cho-
sen from a uniform probability distribution C = U [0, 1].
If Pd ≥ C, then the object is considered detected at that
time, otherwise it is not detected.

4. REPOSITIONING TIME OF OPTICAL SEN-
SORS

When a sensor repositions to a new viewing direction
to make an observation, it must slew in the azimuth di-
rection and in the elevation direction. The time it takes
for this sensor to slew, or reposition, to the new view-
ing direction is called the slew time or the repositioning

time. The repositioning time in this work also considers
the time it takes for the sensor to fully decelerate from
repositioning, which is called the settling time. When de-
signing a sensor tasking formulation, repositioning time
needs to be considered. If repositioning time is consid-
ered constant, then the problem simplifies. However, a
constant repositioning time may not be a valid assump-
tion depending on how far the sensor has to reposition
to its next viewing direction. If the sensor only needs to
slew by one degree, then a constant repositioning time
may be over accounting for this, and more observations
can be made if the sensor tasking problem did not assume
a constant repositioning time. If the sensor needs to slew
170◦ however, a constant repositioning time may under
account for this, and the RSOs that the algorithm calcu-
lated to be in that viewing direction may not actually be
there, causing errors in the model. This section will ana-
lyze the benefits and drawbacks of both assuming a con-
stant repositioning time, as well as calculating and using
a variable repositioning time.

4.1. Constant Repositioning Time

When using the sensor tasking optimization equation de-
veloped by Frueh et al. (2018), the time between obser-
vations, or the time between mg and mg−1 needs to be
defined [7]. This time can be different for each sensor
depending on characteristics like the number of images
taken, exposure time of those images, repositioning time,
etc. The time between observations (tobs) is given by the
following [7, 3]:

tobs = j · texposure + (j − 1) · treadout + trepos (5)

where texposure is the exposure time for each image j.
treadout is the readout time of each image, and trepos is



the time for the sensor to reposition to the specific view-
ing direction hf,g in the sensor’s FOR. In this work, it
is assumed that the readout time is smaller than the con-
stant repositioning time, or trepos > treadout. This as-
sumption allows for one of the images to be read while
the sensor is repositioning, hence why in Eqn. (5) the
readout time is multiplied by (j − 1) [7]. Eqn. (5) can
be rewritten to separate the repositioning time from the
image creation/processing time as follows:

tobs = timg + trepos (6)

where timg = j · texposure +(j−1) · treadout. Eqn. (6) is
used regardless of if the repositioning time is constant or
not, and for this work, it is assumed that timg is constant,
though can be different for each sensor.

If trepos is set constant, then the simulation becomes
computationally efficient. All the RSOs’ states can be
calculated beforehand at each mg for each sensor, be-
cause of the constant repositioning time. However, if the
repositioning time is not varying, then simulation errors
can occur. This work assumes two cases when comparing
the constant repositioning time:

1. Case 1: When the repositioning time is constant and is
not being compared to the variable repositioning time,
then the sensor tasking performance is the true perfor-
mance in the simulation, but it creates a model mis-
match when applied to an actual sensor.

2. Case 2: When the constant repositioning solution is
directly compared to the variable repositioning time
solution, which is the most realistic simulation to the
actual sensor, the optimizer solution is analyzed fur-
ther:

a. A: If the constant assumed for the repositioning
time is smaller than the actual variable reposition-
ing time for that mg , the sensor does not view the
objects at the time. The optimizer knows this and
will account for these ”missed” objects in future
viewing direction considerations.

b. B: If the constant assumed for the repositioning
time is smaller than the actual variable reposition-
ing time for that mg , the sensor does not view the
objects at the time. The optimizer does not know
this and assumes it detected the ”missed” objects,
even though they were never detected.

Case 1 will be used to analyze the results in Section 5.2,
while Case 2 will be used to analyze the results in Section
5.3.

4.2. Variable Repositioning Time

The problem becomes significantly more complex if a
constant repositioning time is not assumed. If the reposi-
tioning time is different for each viewing direction, then

this increases the computational time of the simulation.
Each RSO must now be propagated to the ”pseudo” time.
The ”pseudo” time for each viewing direction is not the
actual time that the observation is taken, but is the time
the observation would be taken if the algorithm chooses
this specific viewing direction. This is done for every
single viewing direction because each viewing direction
has its own repositioning time. To increase computa-
tional efficiency, RSOs that have a measurement uncer-
tainty near the viewing direction being analyzed (a mea-
surement standard deviation of 10) are propagated to that
”pseudo” time instead of all RSOs for that specific view-
ing direction. Then, the viewing direction grid is chosen
based on Eqn. 1, and the objects are actually propagated
to the true chosen time for this specific viewing direction.
This process is repeated until the observation period is
completed. With the variable repositioning time, the sim-
ulation computational complexity now increases with the
size of the FOV of that specific sensor: a smaller FOV
equates to more viewing directions and therefore more
”pseudo” times that need to be calculated, and therefore
more propagation times for the RSOs.

4.2.1. Repositioning Equation Formulation

A function to calculate the repositioning time based on
the change in viewing direction also needs to be defined.
The time for the sensor to reposition from grid at time
(f −1) to grid at time (f ), or trepos(hf,g) is given below:

trepos(hf,g) = ζ
√

max(| ∆α |, | ∆h |) (7)

Here, the change in azimuth and elevation (∆α and ∆h
respectively) is given as the form of ∆α = αf − αf−1
and ∆h = hf − hf−1 in units of degrees. ζ is a con-
stant that scales how long the repositioning time takes. It
is assumed that as the sensor is repositioning in the az-
imuth direction it is also repositioning in the elevation
direction at the same time, hence why only the maxi-
mum the combined viewing direction change is consid-
ered. This model is used to try to account for the ramp-up
and ramp downtime of the sensors slew. Once the sen-
sor has reached maximum velocity, it is assumed that the
speed will remain constant until the sensor arrives close
to the new viewing direction, then slow down. The actual
real-world repositioning system will be more complex,
but the model has been validated with the real reposition-
ing times of the Purdue Optical Ground Station (POGS).

4.2.2. Optimizing for a Variable Repositioning
Scenario

Rose (2020) analyzed several different repositioning
models based off the real world repositioning time from
POGS [1]. The most optimal repositioning model tested
is Eqn. (7). From there, two scenarios will be tested in
the variable repositioning analysis, shown in Section 5.3.



The first scenario will be using Eqn. (7), with ζ = 1 (in
this paper, only a comparison is shown with ζ = 1, a full
detailed analysis is shown in Rose (2020)) [1]. This sce-
nario is used to try to understand the affects of a variable
repositioning time when the trepos is not significantly
larger than timg , from Eqn. (6). The other scenario will
be using Eqn. (7), with ζ = 5 to represent a sensor that
has a slow repositioning rate.

The optimization strategy can easily be added into the
formulation developed by Frueh et al. (2018). Modify-
ing Eqn. (1) to consider the repositioning time weighting

function γrepo(hf,g), the following is derived:

maxA =

l∑
g=1

mg∑
f=1

(
n∑

i=1

(
µ(X̃i)·

Pd(hf,g, X̃i) · d(hf,g, X̃i, Pi) · γrepo(hf,g)

(8)

Where γrepo(hf,g) is the repositioning time weight func-
tion for all viewing directions in the FOR for sensor g.
γrepo(hf,g) can be defined as any function that consid-
ers the repositioning time of the sensor. The following
equation is used in this work to define γrepo(hf,g):

γrepo(hf,g) =

1 0 ≤ trepo(hf,g) < 1
1

C · trepos(hf,g)
+ (1− 1

C
) 1 ≤ trepo(hf,g)

(9)

C ≥ 1 (10)

γrepo(hf,g) =

1 0 ≤ trepo(hf,g) < 1
−trepos(hf,g) +max(trepos(hf,g))

max(trepos(hf,g))− 1
1 ≤ trepo(hf,g)

(11)

trepo(hf,g) is calculated using Eqn. (7). Because an opti-
mal γrepo(hf,g) function is unknown, several are tested in
this work. C is a constant value that changes the penalty
of the sensor choosing viewing directions that have a high
repositioning time.

With a lower C value, the optimizer will prioritize repo-
sitioning times that are significantly shorter and viewing
directions that are close to the current one. If the C value
increases, the optimizer will still value shorter reposition-
ing times over longer ones, but with less of an emphasis.

5. RESULTS

The sensor tasking optimization framework formulated
by Frueh et al. (2018) is used to compare results from
the single and multi-sensor tasking problems in this sec-
tion [7]. A simple greedy algorithm developed by Little
and Frueh (2019) is used to optimize the sensor tasking
framework equation in this section [3]. Finally, the non-
weighted and the additional variable repositioning weight
factor on the sensor tasking optimization framework for-
mulated by Frueh et al. (2018) and introduced in Section
4.2. The results of this section are split into two primary
sections: A constant repositioning assumption and a vari-
able repositioning framework.

5.1. Simulation Setup

For the object population of the RSOs, a two-line ele-
ment (TLE) catalog of the night of March 19th, 2019 was

chosen for the initial states of the RSOs to try to mini-
mize the differences in observation periods between dif-
ferent latitudes. This catalog was then reduced to ana-
lyze just GEO objects, assuming that GEO objects exist
with a semimajor axis of 39, 000km ≤ a ≤ 44, 000km
and an eccentricity of e ≤ 0.5. An Extended Kalman
Filter is used for uncertainty propagation, and the co-
variance of each object is transformed into the working
frame described in Fig. 1a. The initial mean state for
the RSO is assumed to be the state given by the TLE
set, and the initial covariance is defined for all RSOs as
P0, which is equal to σ2

x = σ2
y = σ2

z = 502km2/s2,
and σ2

V x = σ2
V y = σ2

V z = 1m2/s2. As for the RSO
specifics, though all RSOs have a variety of size, shape,
and reflection properties, a constant set is defined for all
of them, as precise information is mostly absent [3, 13].
All RSOs are modeled as spherical objects with a diame-
ter of one meter, and a diffusion reflection parameter (Cd)
of 0.26. The average wavelength of light reflecting off
the RSO is assumed to be 600 nanometers, and the ex-
tinction coefficient is assumed to be 0.56. As for the Ex-
tended Kalman Filter, the process noise is assumed to be
1× 10−6 and the measurement noise value is assumed to
be one-arcsecond [3].

For the Ground-based Sensors, there are several constants
that are assumed to be the same for all sensors. First, the
FOV used in studying the multi-sensor setup from Ack-
ermann et al. (2018) is assumed to be 2.5◦. The readout
time of the images is also assumed from the study to be
zero seconds, the exposure time (or ∆t from Eqn. 4) is set
to 0.25 seconds, and the number of images taken for each
observation time is 16 [11]. As for the optics, the primary
radius is 0.3556 meters, the secondary radius is 0.165 me-



ters, and the camera gain is set to 1.4. The pixel scale in
the CCD is 0.72 arcseconds per pixel, and the Quantum
Efficiency is set to 0.6. As for the noise properties for
calculating the SNR of an image, the readout noise is set
to 10 and the dark noise is set to 5. The total number
of background pixels per image is assumed to be 2000,
and the intensity of light for the background is assumed
to have a mean value of 1000 W/m2 [3, 8]. These values
correspond with Purdue Optical Ground Station (POGS).
The constant repositioning time and heuristic minimum
elevation constraint used in Section 5.2 will be presented
as the results are shown, as they vary depending on the
specific Scenario. The location for the multi-sensor Sce-
narios is taken from Ackermann et al. (2018). This multi-
sensor system was developed to observe all GEO objects
at least once each night. They vary between a latitude of
± 40◦, vary in altitude, and span all longitudes [11].

5.2. Pd Versus Elevation Constraint in the Sensor
Tasking Problem

To fully test the effects of elevation and the probability of
detection of RSOs, the algorithm described in Eqn. (1)
is used on a single sensor example. A simple greedy al-
gorithm is used, which will be both computationally ef-
ficient and will get close to maximizing the total number
of objects seen [3]. This analysis is split into two parts:
First, the single and multi-sensor tasking problem will be
analyzed assuming that the mean state of the object is the
true state. Secondly, the same analysis is conducted and
extended to include the uncertainty in the object’s states
using Eqn. (1).

5.2.1. Analysis Assuming The Mean State is the True
State

The sensor/sensors will try to maximize the number of
GEO objects seen at least once in the following three Sce-
narios:

1. Scenario 1: The RSOs will assume to have a Pd = 1
at all observation times

2. Scenario 2: The RSOs will have a variable Pd at all
times, but the sensor tasking algorithm will not take
this into account

3. Scenario 3: The RSOs will have a variable Pd at all
times, and the sensor tasking algorithm will take this
into account

First, the single sensor problem is studied. Each Scenario
in Fig. 2 - 4 was run at eight different latitude values for
the single sensor’s location and nine different minimum
elevation constraints.

Fig. 2 shows the first Scenario: The RSOs are assumed to
have a Pd = 1 at all observation times. As the elevation

Figure 2: Scenario 1: The RSOs will assume to have a
Pd = 1 at all observation times. This is the ideal case and
does not represent the real world, but more of a ”limit” on
the total performance of the sensor.

constraint for all latitudes tested decreases, the total num-
ber of GEO objects seen at least once increases, which is
expected. Because Pd = 1, there is no limiting factor
on the detectability of the objects as elevation decreases.
The only focus is the total possible viewing directions.
As the minimum elevation constraint decreases, the total
number of possible viewing directions increases.

Figure 3: Scenario 2: The RSOs will have a variable Pd

at all times, but the sensor tasking algorithm will not take
this into account. This is the worst-case Scenario, and
performance decreases significantly as the minimum ele-
vation constraint decreases.

The second Scenario is shown in Fig. 3 and investi-
gates the importance of taking into account the probabil-
ity of detection in the sensor tasking optimization prob-



lem. Fig. 3 shows the results if the algorithm does not
take into account the probability of detection of the ob-
jects when choosing an optimal viewing direction, but
the total number of unique objects observed does take
into account the probability of detection. For all latitudes
tested, as the minimum elevation constraint decreases, the
total number of unique RSOs also decreases. Because the
algorithm is not taking into account the Pd of each object,
once it has chosen all the viewing directions at higher el-
evations, it will choose the viewing directions at lower
elevations, thinking that it is the optimal choice (because
there are more objects now at those lower elevations with
a µ(X̃i) = 1, which increases the weighting preference
on that viewing direction). This implies, that a hard con-
straint on the minimum elevation (or a higher minimum
elevation constraint) would improve the performance of
the sensor’s ability to see the most amount of objects if
the sensor does not take into account the probability of
detection.

Figure 4: Scenario 3: The RSOs will have a variable Pd

at all times, and the sensor tasking algorithm will take this
into account. When the sensor is taking Pd into account,
the performance increases as the minimum elevation con-
straint decreases, up to around 25◦ - 30◦ in this case.

For all latitude values tested in Fig. 4, it appears that once
the minimum elevation constraint decreases to around
25◦ - 30◦, the total number of unique objects seen stays
relatively constant. This is due to the decreasing Pd val-
ues: for the entire solution space, once the elevation of
the RSO decreased to a certain value (around 25◦ - 30◦ in
this case), the probability of detection of that object be-
comes low. Because of the trend shown in Fig. 4, an ele-
vation constraint is not useful when the sensor takes into
account the probability of detection of the objects. The
difference in performance at all latitudes and elevation
constraints between Scenarios two and three shows that
if the probability of detection of the objects is taken into
account, the performance of the sensor increases without
having to have a rigid minimum elevation constraint.

To fully determine the effects of the probability of detec-
tion on the sensor tasking problem, an analysis of more
than one sensor needs to be done. The following will in-
vestigate the probability of detection on the multi-sensor
tasking problem. The analysis will study the multi-sensor
system set up by Ackermann et al. (2018) [11]. This sec-
tion will be split up into the three Scenarios described
above, and the same new two-line element catalog of the
night of March 19th, 2019 is used for each Scenario.
More specifically, each of the three multi-sensor Scenar-
ios will be run twice: one set will have all the sensors
have a constant elevation constraint of 25◦, and the other
set will have no elevation constraint.

Figure 5: hmin Comparison for Scenario 2 in the Multi-
Sensor System. When the Pd is not taken into account
in the algorithm and there is no rigid elevation constraint,
there is a significant loss in the multi-sensor tasking per-
formance.

The results showed Fig. 5 are consistent with the con-
clusions made in the previous sections: when the prob-
ability of detection is not going to be considered in the
sensor tasking algorithm, it is best to employ rigid ele-
vation constraints on the sensors to achieve adequate re-
sults. The difference in performance between Scenario
2 with and without an elevation constraint shown in Fig.
5 is too much to ignore. Without a rigid elevation con-
straint in a sensor tasking algorithm that does not account
for the probability of detection, the performance dimin-
ishes greatly.

When analyzing Fig. 6, the conclusions are consistent
with the previous sections: when the probability of de-
tection is taken into account into the sensor tasking algo-
rithm, a rigid elevation constraint will not significantly
change the performance, and in this case, actually de-
crease the performance, though very slightly. The only
simulation difference between the red and blue lines of
Scenario 3 is that the blue line has a rigid elevation con-
straint, and the red line does not. These results make
sense because the rigid elevation constraint of 25◦ is



Figure 6: hmin Comparison for Scenario 3 in the Multi-
Sensor System. When Pd is taken into account, there is
no need to have a rigid elevation constraint on the sensors.

fairly strict. There is no significant computational dif-
ference between the multi-sensor system with the 25◦ el-
evation constraint on each sensor’s FOR and the multi-
sensor system with no elevation constraint. Overall, the
following conclusions can be drawn: if the probability
of detection is considered and modeled in the single and
multi-sensor tasking problem, then a heuristic elevation
constraint is not necessary. However, if the probability
of detection is not considered, then a rigid elevation con-
straint of around 25◦ - 30◦ is recommended.

5.2.2. Analysis Considering Uncertainty in RSOs’
States

The conclusions drawn from Section 5.2.1 assume that
the mean state of the object retrieved from the Two-Line
Element catalog is the actual state of the object. Now, the
same analysis as before is done, but now uncertainties
in the RSOs’ states are considered. This increases the
complexity of the problem, but also represents the real-
world system with greater detail.

5.2.3. Single Sensor Analysis

In this section, only Scenario 2 and Scenario 3 described
in Section 5.2.1 are shown, as Scenario 1 was used as a
proof-of-concept for the simulation. Fig. 7 and 8 shows
the results of Scenario 2 and Scenario 3 when uncertainty
in the RSOs’ states are considered.

Fig. 7 shows a similar trend as in Fig. 3. When Pd is
not considered, the performance of the sensor decreases
as the elevation constraint decreases. However, in Fig. 7,
there appears to be a maximum in performance for this

Figure 7: Scenario 2: The RSOs will have a variable Pd

at all times, but the sensor tasking algorithm will not take
this into account. Uncertainties in the RSOs’ states are
included in the analysis.

specific sensor Scenario when the rigid elevation con-
straint is set at around 25◦-35◦ for all latitudes tested,
with a majority of the latitudes tested having a maximum
between 30◦-35◦. This may just be due to where the sin-
gle sensor system is located and the specific TLE catalog
used, but further testing has to be done, as well as how the
uncertain states affect the multi-sensor tasking system.

Figure 8: Scenario 3: The RSOs will have a variable Pd

at all times, and the sensor tasking algorithm will take
this into account. Uncertainties in the RSOs’ states are
included in the analysis.

Fig. 8 shows a similar trend as in Fig. 4. When Pd is con-
sidered, the performance of the single sensor increases as
the rigid elevation constraint decreases until around an el-
evation constraint of 25◦-30◦, then performance increase



is minimal. The results when adding uncertain states to
the RSOs is consistent with the results when the mean
state is assumed to be the true state for the single sensor
system.

5.2.4. Multi-Sensor Analysis

Now, the multi-sensor system is analyzed similar to Sec-
tion 5.2.1, but now the calculation of the CDF at each
observation is done. The same multi-sensor system de-
veloped by Ackermann et al. (2018) is implemented, and
the same 1187 object set used in Section 5.2.1 for the
night of March 19th, 2019 is studied. Scenario 2 and Sce-
nario 3 are analyzed and compared side-by-side to each
other, shown in Fig. 9 and Fig. 10.

Figure 9: hmin Comparison for Scenario 2 in the Multi-
Sensor System. Uncertainties in the RSOs’ states are
considered. There is a significant difference between the
results due to Pd not being considered. The 34 sensor
system does not observe all GEO objects when adding
uncertainty in the RSOs’ states. The dotted line is the to-
tal number of GEO objects to be observed (1187 in this
example).

A few conclusions can be drawn from Fig. 9. The most
relevant one is that when the uncertainty in the RSOs’
states is considered, the multi-sensor system developed
by Ackermann et al. (2018) does not observe all 1187
GEO objects for this night. This, however, is assuming
Pd is not considered by the algorithm. For both cases ran
for Scenario 2, with and without a rigid elevation con-
straint, the multi-sensor system was not able to detect all
GEO objects, with 1101 objects detected when all sensors
have a 25◦, and only 599 objects detected when no rigid
elevation constraint is employed, which is almost half as
less as when the uncertainty is not considered, shown in
Fig. 5.

Fig. 10 also shows that the multi-sensor system does not
observe all GEO objects. 1112 objects are observed for

Figure 10: hmin Comparison for Scenario 3 in the Multi-
Sensor System. When Pd is taken into account, there is
no need to have a rigid elevation constraint on the sensors.
The 34 sensor system does not observe all GEO objects
when adding uncertainty in the RSOs’ states. The dotted
line is the total number of GEO objects to be observed
(1187 in this example).

Scenario 3 when there is a 25◦ rigid elevation constraint
on the sensors, while 1138 objects are observed when
there is no rigid elevation constraint. The performance
of Scenario 2 and Scenario 3 when there is a 25◦ ele-
vation constraint is very similar, with only eleven total
objects observed differences. This is consistent with Sec-
tion 5.2.1 where the CDF was not calculated and simu-
lated for the observation period. The difference between
both of the Scenario 3 results is also consistent with that
from Section 5.2.1, and as expected, the performance of
the sensors with no rigid elevation constraint is slightly
better than the performance with a rigid elevation con-
straint, though small.

When considering the uncertainty in the objects’ states,
the Ackermann et al. (2018) does not observe all cat-
aloged GEO objects on the night of March 19th, 2019.
Therefore, complete coverage of the GEO regime is not
reached. As well, if a sensor system does not consider
the probability of detection when choosing viewing direc-
tions, then a rigid elevation constraint of 25◦-35◦ is rec-
ommended and has been shown to produce results close
to the system that does model the probability of detec-
tion. If the probability of detection is modeled, however,
then no rigid elevation constraint is needed if there are no
natural obstructions near the sensor.

5.3. Variable Repositioning Analysis

This section will now look at the single sensor tasking
problem, but now comparing the constant repositioning
solution with the more real-world variable repositioning



model (case 2). The results in this section will be split up
into two main focus areas: First, a comparison between
several constant repositioning assumptions will be made
with the true variable repositioning model. The perfor-
mance will be compared for the two repositioning mod-
els of ζ = 1 and ζ = 5, where ζ is the constant multi-
plier from Eqn. (7) that determines how large of a factor
the repositioning time is relative to the image processing
time from Eqn. (6). Due to the limit of this paper, only
the analysis, results and conclusions of ζ = 5 will be
shown, while just a comparison of the results from ζ = 1
to ζ = 5 will be presented. The analysis and results for
ζ = 1 can be found in Rose (2020) [1]. Then, the sen-
sor tasking problem will consider various weight models
on the variable repositioning time. These weight models
will be compared to the unweighted variable reposition-
ing time for both ζ = 1 and ζ = 5 repositioning models,
where just a comparison with ζ = 1 will be discussed.

5.3.1. Comparison of Constant and Variable
Repositioning

In this section, the comparison of the assumed constant
repositioning time to the real-world variable reposition-
ing time will be made. For this section, three constant
repositioning times will be analyzed: First, the ”A to B”
constant repositioning time will be modeled. This ”A to
B” repositioning time is calculated by finding the time it
takes to reposition the sensor from any grid ”A” to any
other grid ”B” using Eqn. (7). This is done for all view-
ing directions and is then averaged. This repositioning
time will be less than the maximum possible reposition-
ing time, which means that the system might not reach a
specific viewing direction based on the assumed constant
repositioning time. Therefore, Case 2A and Case 2B de-
scribed in Section 4.1 will be studied to analyze the prob-
lem. The other two constant repositioning times that will
be studied assume that the constant repositioning time is
greater than or equal to the maximum possible reposi-
tioning time, and therefore no viewing direction can be
missed when repositioning. More specifically, two con-
stants will be studied, the constant repositioning time cal-
culated be assuming that max(| ∆α |, | ∆h |) = 180◦ at
all times, or the maximum time assuming no unwinding
is modeled, and max(| ∆α |, | ∆h |) = 360◦ at all times,
or assuming that this is the absolute maximum time with
unwinding in the system. These two repositioning mod-
els will be referred to in this paper as ”no unwind max”
and ”unwind max”, described in Tab. 1.

Table 1: Maximum Constant Repositioning Time Mod-
els. The formulation is derived from Eqn. 7.

Constant Repositioning Time Model Repositioning Time Calculations

no unwind max max(| ∆α |, | ∆h |) = 180◦

unwind max max(| ∆α |, | ∆h |) = 360◦

All these repositioning times will be studied for the test
Scenarios of ζ = 5 described in Eqn. 7 and Section 4.

The single sensor that is is located at a latitude of 19.29◦
and a longitude of 166.61◦, for the night of March 19th,
2019 [11].

5.3.2. Sensor with Constant Repositioning Multiplier
ζ = 5

The constant repositioning times used for this section
with Constant Repositioning Multiplier ζ = 5 is shown
in Tab. 2.

Table 2: Constant Repositioning Time Models for con-
stant repositioning multiplier ζ = 5. These times are
calculated based on Eqn. (7).

Constant Repositioning Time Model Repositioning Time [sec]

A to B 42.98
no unwind max 67.08

unwind max 94.87

In this Scenario, the ”A to B” constant repositioning time
is calculated to be around 42.98 seconds, with the max-
imum calculated repositioning time being around 67.08
seconds. This allows for the comparison of a Scenario
where trepos is significantly larger than timg from Eqn.
(6), where timg = 4 seconds. The ζ = 5 model is also
the model that closely models the POGS sensor.

Figure 11: ”A to B” Constant Repositioning Time, ζ = 5.
This Constant Repositioning time is equal to about 42.98
seconds, for this sensor system.

Fig. 11 shows the results when Case 2A and Case 2B ap-
ply to an assumed constant repositioning time for ζ = 5.
For Case 2A and Case 2B, the total number of observa-
tions for the night was 726. Several conclusions can be
drawn from Fig. 11: if the sensor knows that it ”missed”



a viewing direction and takes it into account, then the per-
formance is close to the performance of the actual, vari-
able repositioning model. However, if the algorithm does
not take the missed viewing directions into account, then
the performance of the sensor decreases. In Case 2A, the
total number of viewing directions missed is a larger per-
centage of the total of observations made, but the system
still has plenty of other opportunities to observe the ob-
jects it did miss. From Rose (2020), ζ = 1 has similar
results as ζ = 5 [1].

Now, the ”no unwind max” and the ”unwind max” mod-
els will be compared with the true, variable repositioning
model. The assumed repositioning time for these models
is around 67.08 seconds and 94.87 seconds respectively.
The results are shown in Fig. 12.

Figure 12: Comparison of the maximum and the unwind-
ing maximum repositioning time (calculated from Eqn.
(7)) for ζ = 5. It is assumed that the maximum slew
distance is 180◦, and twice the unwinding maximum is a
slew distance of 360◦.

Fig. 12 shows that the performance of the assumed con-
stant repositioning models are similar to the true, vari-
able repositioning model. The total number of observa-
tions made for the constant repositioning models were
480 and 346 for the ”no unwind max” and the ”unwind
max” models respectively. However, in Fig. 12, both
the ”no unwind max” and the ”unwind max” models per-
form worse than the variable repositioning model. When
ζ = 5, the repositioning time is generally greater and
therefore is a larger factor in the sensor tasking problem.
Therefore, it is expected that if the repositioning time
becomes a greater factor, then the variable repositioning
model will generally produce a more optimal result than
the assumed repositioning times that are greater than the
maximum calculated repositioning times. These results
were not shown for the ζ = 1 case, as the repositioning
time was not a significant factor in the sensor tasking [1].

For ζ = 5, if the constant repositioning time is less than
the maximum repositioning time, then like for ζ = 1, if

the algorithm does not consider when its constant repo-
sitioning is less than the actual repositioning for an ob-
servation, then there is a decrease in performance. If
the algorithm does account for this, then the performance
is similar to that of the true, variable repositioning time.
For an assumed constant repositioning time that is greater
than the maximum, there is a small difference in solutions
between ζ = 1 and ζ = 5. If ζ = 5, then the assumed
constant repositioning times that are larger than the max-
imum calculated repositioning times perform worse than
if ζ = 1 [1].

5.3.3. Optimizing with Repositioning Time
Considerations

Now, the optimizers described in Section 4.2.2 and Eqn.
(8) using the single sensor system will be analyzed to
study the benefits and drawbacks of considering the vari-
able repositioning time in the sensor tasking framework.
As in Section 5.3.1, the repositioning calculations us-
ing ζ = 1 and ζ = 5 will be tested. From here, four
weighted repositioning time optimizers will be analyzed
and compared to the unweighted variable repositioning
time. These optimizers use the constant value described
in Eqn. (9) that change the amount of weight given to the
repositioning time, and are described as ”C”. The con-
stant Cs that are used are C = 1, C = 2.5, C = 5. The lin-
ear weighted repositioning model described in Eqn. (11)
is also analyzed alongside the C values.

5.3.4. Sensor with Constant Repositioning Multiplier
ζ = 5

The sensor with the repositioning calculation of ζ = 5 is
analyzed. This model increases the overall repositioning
time between viewing directions, so it is expected that
there will be some differences between these weighted
models and the weighted models described for ζ = 1 in
Rose (2020) [1].

Because the repositioning time is greater in Fig. 13, it
is expected that the total number of viewing directions
should decrease from the ζ = 1 case shown in Rose
(2020) [1]. For the unweighted solution, a total of 6220
observations, while C = 1, C = 2.5, C = 5, and the linear
model had a total of 8444, 7239, 6866, and 7628 obser-
vations for the night respectively. The total number of
observations is also displayed in Tab. 3.

The total number of observations is indeed less, but not
significantly, and hence why in Fig. 13 the optimizers
do not perform significantly better than the unweighted
solution. C = 1 is also significantly less than all other
optimizers. This is due to the weight on the reposition-
ing time being too heavy. In fact, in the model where
the repositioning time from one viewing direction to an-
other is larger (ζ = 5), C = 1 performs worse than the
same weight model in the Scenario where the reposition-
ing time is smaller from one viewing direction to another



Figure 13: Comparison of Repositioning Weight Func-
tions for ζ = 5. For this example, the weight models de-
scribed in Section 4 do have performance increase above
the unweighted solution, besides the constant weight
value C = 1 model described in Eqn. (9).

Table 3: Total number of observations for weighted repo-
sitioning models for constant repositioning multiplier
ζ = 5.

Weighted Repositioning Model Total Number of Observations

Unweighted Model 6220
C = 1 8444

C = 2.5 7239
C = 5 6866

Linear Model 7628

(ζ = 1, in Rose (2020)) [1]. In Fig. 13 however, all
the weighted optimizers besides C = 1 do perform bet-
ter than the unweighted solution. This suggests that the
model can be optimized when repositioning time is con-
sidered and if the repositioning time is large enough to
play an important factor. However, the weighted mod-
els that do outperform the unweighted model do not out-
perform significantly. This suggests that, as stated in the
previous sections, the variable repositioning factor is not
too significant of a factor to consider in the sensor task-
ing formulation. This will have to be studied further for
sensors where the timg is a larger factor in the observa-
tion process, as described in Eqn. (6). In this analysis,
timg was small and therefore allowed for a large number
of observations to be made. If timg was larger, fewer ob-
servations would have been made, and therefore the time
saved from choosing viewing directions that result in a
low repositioning time would have been a greater factor
in the sensor tasking problem.

6. SUMMARY

This paper analyzed the sensor tasking optimization for a
single electro-optical sensor and a multi electro-optical
sensor network for complete coverage of the geosyn-
chronous region. The goal of this paper is to understand
the optical and physical assumptions on a ground-based
sensor, and how these assumptions affect the single and
multi-sensor tasking problem. First, what is the effect of
the probability of detection on the sensor tasking, espe-
cially when compared to rigid elevation constraints? Sec-
ondly, can the framework from Frueh et al. (2018) be
expanded towards complete coverage of the GEO regime
[3, 7]? Are the assumptions of Ackermann et al. (2018)
correct [11]? Finally, how much of a benefit is there to
modeling the computationally expensive variable reposi-
tioning time in the sensor tasking framework to achieve
more accurate simulation models? If incorporated, can
an optimizing strategy be developed to improve the per-
formance of the sensor tasking problem?

6.1. Conclusions

In this paper a sensor tasking framework for complete
coverage of the geostationary (GEO) objects has been in-
troduced. The focus of the investigation was laid on two
specific aspects. First: Is it advantageous to have a rigid
heuristic minimum elevation constraint or should rather
be a probability of detection model be employed. Sec-
ondly: Should the exact repositioning time of the sensor
be taking into account, at a significant computational cost
or are average repositioning times sufficient? In both as-
pects the target function is to reach a complete coverage
of the entire GEO region within 24 hours.

In this paper it has been shown that a computation of
the probability of detection is advantageous in all cases
and makes a minimum elevation constraint obsolete. For
the case where the probability of detection was not calcu-
lated, the maximum performance of the single sensor was
achieved with an elevation constraint between 25◦ - 35◦,
and beyond that, the performance decreased significantly.
Performance is worst, when neither, elevation constraint
nor probability of detection is used.

For the variable repositioning time, several models have
been developed and cases were studied. In the cases that
were investigated, when the constant non-exact reposi-
tioning time used in the sensor tasking optimization is
less than the true maximum repositioning time of the sen-
sor, there can occur a significant decrease in performance.
Performance for the complete GEO coverage case is not
significantly impacted by a constant non-exact reposi-
tioning time in the sensor tasking optimizer, when this
time is larger than the actually longest true repositioning
time of the sensor.

In terms of full GEO coverage, using a system of 34
ground-based distributed optical sensors with a field of
view of 2.5◦ elevation constraint as proposed Ackermann



et al., no full coverage of all known GEO objects can be
reached when non-negligible uncertainty in the object’s
states is assumed, even when including exact probability
of collision computation. Full coverage could be reached
when object states were assumed to be exactly known.
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