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ABSTRACT

The dynamics of space objects in Low Earth Orbit (LEO)
is strongly determined by the effects of atmospheric drag:
this complex interaction, dependent on the physical prop-
erties of the atmosphere, comprises several of the pri-
mary sources of orbit uncertainty in LEO. However, most
atmospheric density models, both empirical and semi-
empirical, do not explicitly provide an estimate of the
uncertainty.

In this work, we propose a Deep Learning technique
based on the use of autoencoders, a family of artificial
Neural Networks (NN), to construct a grey-box model
of the dynamics of the thermosphere density field. This
gray-box model allows for a nearly real-time quantifi-
cation of the uncertainty in the dynamics using satellite
tracking data.

Building on the U.S. Air Force High Accuracy Satel-
lite Drag Model (HASDM), we develop a reduced-order
dynamical model of the thermosphere density: autoen-
coders can be used to construct a nonlinear embedding of
the high-dimensional, chaotic dynamics associated with
the physical space, mapping it onto a low-dimensional
manifold.

The Neural Network can be structured following the
encode-propagate-decode model so that the dynamics as-
sociated with the reduced-order model can be recon-
structed in tandem with the model reduction and decom-
position. The dynamics can be reconstructed via Deep
Symbolic Regression, leading to a nonlinear differen-
tial equation governing the system and can include space
weather effects (related to the F10.7 index) and geomag-
netic activities (related to the ap index).

Making use of such a grey-box model, the estimation of
the density field can be coupled with the dynamics of
tracked objects, leading to real-time calibration to deal
with both measurement and model uncertainties. The ob-
tained model, because of its explicit differential formula-
tion, enables one to take into account parametric uncer-
tainties, leading to a more informed uncertainty quantifi-
cation for a system of interest.

In the paper, we start by applying the proposed method-
ology to a simple, low-dimensional dynamical system
whose underlying model is explicitly known. After that,
the technique will be applied to model the dynamics of
the thermosphere density field.

Keywords: Machine Learning; Data-driven models; Un-
certainty Quantification; Space Weather; Space Situa-
tional Awareness; Thermosphere density; Satellite drag.

1. INTRODUCTION

In the context of the so-called New Space [27], Low-
Earth Orbit (LEO) is characterized by an unprecedented
increase in space traffic. The clearer example of this is the
launch of mega constellations [33, 28]. At the same time,
the dynamics of LEO satellites is strongly influenced by
atmospheric drag, which is also the largest source of un-
certainty in orbital motion: in fact, at LEO altitudes, at-
mospheric drag is one of the main forces acting on space-
craft and debris. Being particularly hard to model and
predict, the drag acceleration adrag is given in Equation
(1):

adrag = −1

2

CDA

m
ρv2rel

vrel
vrel

(1)

where CD, A, m are the drag coefficient, the effective
area and mass of the object; vrel is its velocity with re-
spect to the moving atmosphere, characterized by a den-
sity ρ.

Once the physical properties of a satellite or space de-
bris are given, the drag acceleration is therefore only a
function of the wind vector field and the density scalar
field1. Introducing spherical coordinates associated to the
Earth-centered inertial reference frame, such density can
be obtained from the evaluation of the underlying field
(Equation (2)):

1While a number of missions has been recently dealing with the col-
lection of wind data, this work focuses on the modelling of the density
field only.
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ρ = ρ(r, θ, φ, t) (2)

The density of the thermopshere is particularly difficult
to model because its behaviour is strongly coupled to the
space environment, particularly to the dynamics of the
ionosphere, magnetosphere and of the Sun, which are
by themselves difficult to predict [6]. Because of such
a context, it is interesting to restate the following quote,
given in [17]: “the central difficulty in climate change
science is that the dynamical equations for the actual cli-
mate are unknown. All that is available from the true
climate in nature are some coarse-grained observations
[..]. Thus, climate change science must cope with predict-
ing the coarse-grained dynamic changes of an extremely
complex system only partially observed from a suite of
imperfect models for the climate [20].” It should be clear
how such considerations associated to climate science are
equally applicable to the study of the thermospheric den-
sity field, and that the forecasting aspects are particularly
relevant in space engineering.

In fact, accurate orbit determination and uncertainty
quantification are required for the automation of space
operations, in particular in order to perform conjunction
assessment and collision avoidance [6]; in more general
terms, the increase in space traffic motivates the ability to
efficiently track and catalogue objects.

In order to do this, a number of existing density mod-
els could be used. On the one hand, physics-based mod-
els, associated to the solution of the continuity, momen-
tum and energy equations are particularly accurate but
computationally expensive, because of the need to solve
Navier-Stokes equations and because of the associated
high-dimensionality [34, 30]. On the other hand, empir-
ical models are used to describe the average behaviour
of the atmosphere, via mathematical formulations aris-
ing from historical observations. While their evaluation
is really fast, making them suitable for the automation of
space operations, their accuracy and forecasting capabil-
ity are limited, particularly in the context of highly non-
linear phenomena, such as space weather events. Some
examples of empirical models are:

• the Drag Temperature Model (DTM-2013) model
[2]; it is a semi-empirical model describing the tem-
perature, density and composition of the Earth’s
thermosphere.

• the NRLMSISE-00 model [29]; it is an empirical
atmospheric model extending from the ground to the
exobase and is an upgrade of the MSISE-90 model.

• the Jacchia-Bowman 2008 (JB2008) model [16, 1];
based on Jacchia’s diffusion equations, it is an em-
pirical atmospheric density model making use of so-
lar and geomagnetic indices.

• the U.S. Air Force High Accuracy Satellite Drag
Model (HASDM) [40, 41], an empirical model cali-
brated using observations of calibration satellites.

A number of recent works have proposed a trade-off be-
tween the model accuracy and computational efficiency,
making use of Reduced Order Modelling (ROM) tech-
niques [24, 25, 26]. In line with such works, and fol-
lowing the aforementioned motivations, it becomes nec-
essary to build on existing atmospheric density models
to construct a grey-box model of the dynamics and effi-
ciently perform real-time calibration [11, 12] and uncer-
tainty quantification [10].

While there is a plethora of Reduced Order Modelling
techniques to be used, going from linear techniques to
approaches aiming at leveraging coherent structures as-
sociated to the flow [43, 32], the use of Machine Learn-
ing techniques, leveraging the power of Artificial Neu-
ral Networks (and Deep Neural Networks, in particular)
has emerged as a promising tool to perform Reduced Or-
der Modelling [13, 14], whose application is particularly
compelling in the field of fluid mechanics [3]. In par-
ticular autoencoders, a specific kind of Artificial Neural
Network, have been applied in order to deal with fluid
mechanics problems and perform flow field prediction
[9, 5, 15, 8, 23, 4].

The goal of this work is therefore the following:

we aim at using autoencoders to obtain a reduced-order
representation of the dynamical system governing the
evolution of the thermospheric density field.

This is done, among other things, to model the uncer-
tainty in the dynamics of the thermosphere density field,
which has direct implications on the uncertainty of the
dynamics of LEO satellites, and therefore on their po-
sition at the time of closest approach with other objects
[37].

This work is structured as follows:

• reduced-order modelling techniques both based on
linearity assumptions and on autoencoders (both
fully connected and convolutional) will be pre-
sented;

• results associated to a simple case study, the Chaotic
Lorenz System, used to demonstrate the capabilities
of the proposed methodology, will be given;

• results associated to the modelling of the thermo-
spheric density field will be given, after a brief dis-
cussion about the data used for this;

• the methodology will be expanded in order to con-
nect the given results with data-driven reconstruc-
tion of governing equations;

• conclusions and recommendations for future works
will be given.



2. METHODOLOGY

In order to overcome the high-dimensionality of physics-
based density models, Reduced-Order Modelling (ROM)
techniques can be used; in this way, the original high-
dimensional system is represented using a smaller num-
ber of parameters. In recent works, e.g. [24, 11], the or-
der reduction is performed making use of Proper Orthog-
onal Decomposition [35] (also known as Principal Com-
ponent Analysis). This technique makes use of Singular
Value Decomposition (SVD) in order to compute orthog-
onal basis functions (also called spatial modes), captur-
ing the dominant characteristics of the system. The main
limitation with this approach is its linearity: SVD is a fac-
torization technique of matrices, and therefore leads to a
linear mapping between the an high-dimensional and a
low-dimensional space. The thermospheric dynamics is
however highly nonlinear, and such Reduced Order Mod-
elling technique has limited accuracy, as outlined in [42].

2.1. Autoencoders

This is why in this work we propose to use autoen-
coders to represent thermospheric density data in a re-
duced space, making use of non-linear dimensionality re-
duction. In fact, autoencoders lead to a nonlinear em-
bedding of the high-dimensional field associated with
the physical space, mapping it onto a low-dimensional
manifold. Manifold learning relies on the manifold as-
sumption, stating that most real-world high-dimensional
datasets lie close to a much lower-dimensional manifold
[14]. We will assume this to hold for thermospheric den-
sity data as well.

An autoencoder is a kind of Neural Networks that, with-
out any supervision (i.e., the training set is unlabeled),
takes an input x, encodes it as a vector z and then de-
codes it to x̂, which is a reconstruction of the input itself
[13]. It is made of two distinguishable parts (Figure 1),
an encoder Φ and a decoder Ψ, such that:

Φ : x→ z (3)
Ψ : z→ x̂ (4)

Because of their most common structure, in which inner
layers of the network are characterized by a smaller num-
ber of neurons, compared to the input and the output (i.e.,
undercomplete autoencoders), the vector z, associated to
the hidden layer of the network (also known as its bottle-
neck), is a latent, compressed representation of the input
vector x. In fact, learning an undercomplete represen-
tation forces the autoencoder to capture the most salient
features of the training data.

Figure 1. Schematics of shallow and deep autoencoder
[3]. The input x is reduced to z via the decoder; an ap-
proximation of the input x̂ is reconstructed from z via the
decoder.

The procedure can be thought as a generalization of di-
mensionality reduction techniques, such as Proper Or-
thogonal Decomposition. In fact, when using only one
layer for the encoder and the decoder, and when using lin-
ear activation functions to construct them (see left graph
in Figure 1), the procedure is equivalent to Single Value
Decomposition from which the matrices U and V arise.

2.2. Convolutional Autoencoders

A subcategory of autoencoders can be introduced: con-
volutional autoencoders perform the same task of fully
connected autoencoders, but making use of a slightly dif-
ferent technique. Their relevance for the problem at hand
can be understood because of their ability to deal with
spatially coherent information. In Convolutional Autoen-
coders, the layers of the network perform the sampling
and convolution operations.

While a fully connected architecture will be used to deal
with the Lorenz Systems (the reasons for this choice are
outlined in Section 3.1), for the compression of the ther-
mospheric density field convolutional autoencoders will
be used. The main reason behind this design choice is
that the convolution operation takes into account the rela-
tive position of the measured field: this is ideal for the
modelling of observed phenomena governed by partial
differential equations, in which local interactions drive
the evolution of the field [18, 19].

Convolutional Autoencoders (whose schematic network
is represented in Figure 2) are associated to quicker train-
ing and reduced probability of overfitting, compared to
fully connected networks, because of the reduced num-
ber of trainable weights in the model.



Figure 2. Schematic of a Convolutional Neural Network-
Autoencoder [15].

Being autoencoders, and in particular convolutional au-
toencoders, a special case of feedforward neural net-
works, they can be trained using the same techniques:
in this work, we make use of backpropagation and mini-
batch gradient descent. Moreover, in order to perform the
training, available data are divided into training and vali-
dations data; this is usually done in the context of neural
networks. The idea is that the network is trained against
the training data and at the same time its performance is
assessed against validation data [13]. The goal of this is
to avoid overfitting, i. e. to avoid the network to adapt
too much to the behaviour of training data and to main-
tain generalizability.

In order to perform the training of the autoencoders,
throughout this work the mean squared error is used as
a loss function (Equation (5)):

L(x,Ψ(Φ(x))) = ||x− x̂||2 (5)

3. RESULTS

3.1. Chaotic Lorenz System

We start by applying the proposed methodology to a dy-
namical system whose differential equations are explic-
itly known, and which is indirectly observed through an
high-dimensional embedding. We do this because we
are interested in reconstructing the dynamics of the low-
dimensional system which, being explicitly known, can
be propagated and compared to the results of the com-
pression associated to the use of autoencoders.

Following [7], we construct a high-dimensional problem
whose dynamics follows from the chaotic Lorenz system.
The highly nonlinear dynamics of the Lorenz System is
governed by the following set of equations:

ż1 = σ(z2 − z1)
ż2 = z1(ρ− z3)− z2
ż3 = z1z2 − βz3

(6)

This system has been chosen because, displaying chaos,

its dynamics has relations with the one of the atmospheric
density field2.

From it, we can construct a mapping between R3 and
R128, using six fixed spatial modes associated to Legen-
dre polynomials; in particular, such polynomials are eval-
uated along a uniform grid defined in [-1, 1]. We do this
since we are interested in observing high-dimensional
fields, to be compressed with autoencoders: we therefore
assume that the true three-dimensional dynamics is not
directly observed.

We will consider two mappings, one linear and one non-
linear, in which cubic terms are added to the linear terms:

x1(t) = u1z1(t) + u2z2(t) + u3z3(t) (7)

x2(t) = x1(t) + u4z1(t)3 + u5z2(t)3 + u6z3(t)3 (8)

In equations (7) and (8), the components of the un vec-
tors are the 128 evaluations of the nth Legendre polyno-
mial.

It is now possible to consider different initial conditions
of the Lorenz System, in order to obtain a number of 128-
dimensional observed trajectories to be divided, as usual,
into training and validation trajectories. In particular, we
make use of 1024 training and 10 validation trajectories,
associated to different initial conditions: this is done for
data augmentation purposes.

2In fact, the Lorenz system has been formulated as a simplified
mathematical model for atmospheric convection.



Figure 3. Reference trajectory and reconstructed one;
reconstruction error.

Since the input/output size is 128, and the latent space
dimension of the network is 3, we make use of fully con-
nected layers to tackle this problem; in fact, since the
mapping used to go from R3 and R128 is analytical, we
expect fully connected layers to reconstruct such relation.

Associated to the linear mapping given in Equation (7),
we make use of a linear activation function to construct
our autoencoder. As previously stated, such linear au-
toencoder mimics the behaviour of Proper Orthogonal
Decomposition (i.e., the encoder behaves like a matrix).
Once the autoencoder is trained, we can compare one of
its inputs, taken from the validation dataset, and compare
it to the decoded trajectory (Figure 3).

The two blue trajectories are the input and the decoded
one, while the red trajectory is their mismatch.

Input
Encoder

Flattening Layer
Densely-connected NN layer, 128 units,
hyperbolic tangent activation function
Densely-connected NN layer, 64 units,
hyperbolic tangent activation function

Densely-connected NN layer, 3 units (latent dimension),
hyperbolic tangent activation function

Decoder
Densely-connected NN layer, 64 units,
hyperbolic tangent activation function

Densely-connected NN layer, 128 units,
hyperbolic tangent activation function

Table 1. Structure of the fully connected autoencoder as-
sociated to the nonlinear mapping of the Lorenz system.

It is now possible to apply the same methodology for the
case in which the mapping between R3 and R128 is non-
linear (Equation (8)). In order to deal with this problem,
the structure of the autoencoder needs to be generalized:

for building it, we make use of five layers; moreover, we
substitute the activation function with the hyperbolic tan-
gent (Table 1). Before training, data are normalized, in
order for the network to be able to reconstruct their be-
haviour. Again, it is possible to compare validation inputs
with its decoded trajectory (Figure 4).

For this case the reconstruction error, smaller than before,
is in the order of 10−5.

Figure 4. Reference trajectory and reconstructed one;
reconstruction error.

We now focus on the latent space representation of data;
in fact, when using autoencoders, and in general when
dealing with dimensionality reduction, the interesting re-
sult, together with the ones used to assess the ability to
reconstruct the original data, are compressed data them-
selves, which can be thought as a byproduct of the au-
toencoder’s attempt to learn the identity function under
some constraints. In order to do this, once the network
is trained, it is possible to follow the conceptual steps as-
sociated to the reconstruction of the reduced-order trajec-
tory as outlined in Figure 5:

• first, associated to a fixed three-dimensional initial



Figure 5. Conceptual steps for the reconstruction of the reduced-order trajectory.

condition, the dynamics of the Chaotic Lorenz sys-
tem is given;

• via the analytical mapping the dynamics is lifted
from R3 to R128, leading to the observed trajectory,
used as an input to the autoencoder;

• finally, making use of the trained encoder, it is
possible to represent the trajectory associated to
the reduced-order representation given in the latent
space.

The decoder would match the analytical map from z to x
only in the case in which the bottleneck is z: this is not
the case in the given results. Nevertheless, the observed
trajectories are correctly reconstructed. The compressed
trajectory exhibit an attractor with a 2-lobe structure, like
the one of the original Lorenz attractor. Moreover, we
are not really interested in reconstructing the “true” tra-
jectory, as long as the one we are reconstructing contains
equivalent information.

The behaviour associated to the convergence, during
training, is represented in Figure 6.

Figure 6. Loss history associated to linear and nonlinear
mappings.

The first plot does not show the usual behaviour of con-
verging networks, because the validation loss is really
small, already from epoch one; this is because a linear
activation function has been used for the associated au-
toencoder. The second plot, associated to an autoencoder
with a nonlinear activation function, displays a clear con-
vergence.

Finally, we focus again on the first and last plots in Figure
5: while the exact trajectory of the reduced-order state,
associated to the Lorenz system’s set of equations, has not
been exactly reconstructed, the autoencoder is successful
in embedding the high-dimensional, observed field into a
low-dimensional space, whose decoding leads to an ap-
proximation of the recorded data. The fact that there is a
similarity between the Lorenz trajectory and the one as-
sociated to the latent space is an additional factor support-
ing the successful behaviour of the autoencoder. Because
of this, it is reasonable to now apply the same methodol-
ogy to a real-world problem, such as the thermospheric
density field.

3.2. Thermospheric Density

Dealing with a problem with more practical implications,
let us now apply the proposed methodology for the mod-
elling of the thermospheric density field. To do this, in
this section we make use of the U.S. Air Force High Ac-



curacy Satellite Drag Model (HASDM) data [41], derived
real time from accurate radar observations of multiple
calibration satellites3.

An alternative choice would have been to make use of
the DTM-2013 model data [2], available on the Space
Situational Awareness Space Weather Service Network4.
However, DTM-2013 available data cover only the time
interval October 2017 - April 2021, which are associated
to less than one solar cycle (Figure 7).

Figure 7. Solar activity history expressed via the F10.7
index [39]. The F10.7 time series is split into training
(blue) and validation (red) datasets.

On the other hand, the HASDM available data cover two
full solar cycles, going from January 1st 2000 to Decem-
ber 31st 2019, and are thus representative of the overall
behaviour of the density field. This is particularly rele-
vant for extrapolation.

For each day, the temporal resolution is 3 hours; the
database has a grid size of 10° latitude, 15° longitude,
25 km altitude (175 - 825 km) (Table 2).

Domain: Resolution:
Local solar time [hr] [0, 24[ 3

Latitude [deg] [-90, 90] 10
Longitude [deg] [0, 360[ 15
Altitude [km] [175, 825] 25

Table 2. HASDM data charateristics in the time interval
from January 1st 2000 to December 31st 2019.

3Last visited on 6th April 2021: https://spacewx.com/
hasdm/

4Last visited on 6th April 2021: https://swe.ssa.esa.
int/current-space-weather

Input
Encoder

3D convolution layer
8 filters, kernel size (3 3 3), ReLu activation function

Max pooling operation for 3D data
Pool size (2 2 2)

3D convolution layer
16 filters, kernel size (3 3 3), ReLu activation function

Max pooling operation for 3D data
Pool size (2 2 2)

Flattening
Densely-connected NN layer

ReLu activation function
Decoder

Densely-connected NN layer
ReLu activation function

Reshaping
3D upsampling, size (2 2 2)

3D deconvolution layer
16 filters, kernel size (3 3 3), ReLu activation function

3D upsampling, size (2 2 2)
3D deconvolution layer

8 filters, kernel size (3 3 3), ReLu activation function
3D convolution layer

1 filter, kernel size (1 1 1), ReLu activation function

Table 3. Structure of the convolutional autoencoder mak-
ing use of HASDM data for the modelling of thermo-
spheric density field.

As opposed to the Lorenz System, the dynamics of the
observed field is associated to a partial differential equa-
tion, in which local interactions are relevant for the evo-
lution of the density field. Because of this, convolutional
autoencoders, and in particular 3-dimensional convolu-
tional autoencoders are used. This means that the input is
a 3D tensor associated to polar coordinates.

The network is made of 4 convolutional and 2 fully con-
nected layers (Table 3). Dealing with hyperparameters,
after tuning, the latent state size has been set to 32. The
rectifier (ReLu) activation function has been used in all
the layers of the network.

Again, data have been normalized, making use of the
maximum density value in space and time: in this way
all the data used for the training are defined in [0, 1], and
the use of the ReLu activation function is justified.

https://spacewx.com/hasdm/
https://spacewx.com/hasdm/
https://swe.ssa.esa.int/current-space-weather
https://swe.ssa.esa.int/current-space-weather


Figure 8. Reference and reconstructed density field; re-
construction error.

Once the training is performed, it is possible to test the
performance of such autoencoder on a given dataset, for
example on the density field at 175 km altitude, on the
1st January 2000, at midnight5. Figure 8 represents the
comparison between the input field and the decoded one,
also via the error field, which in this case is the absolute
value of the difference between the two.

Such results represent the reconstruction behaviour of the
autoencoder on a subset of the three-dimensional tensor
given as an output by the autoencoder. As previously de-
scribed, these are obtained using polar coordinates to de-
fine the data used for the autoencoder training. In fact,

5We restrict the analysis to a fixed altitude for representability; the
output of the autoencoder is nevertheless a 3D tensor reconstructing the
density field on the altitude interval.

the convolution operation is associated to orthogonal di-
rections, and the information about the physical geometry
of the data is shared with the input data tensors. While
spherical convolution neural networks exist, more clas-
sical convolution techniques are still able to deal with
spherical coordinates, as these are associated to an or-
thonormal basis. The only limitation in the given results
is that the information about the periodicity of the field
in the longitude axis is lost; nevertheless, the represented
results do not display an increasing error in the regions
with longitude 0o and 360o.

As already done for the Lorenz system, it is also possible
to investigate the behaviour of the reduced-order repre-
sentation of the state of the system, once training is per-
formed. Figure 9 represents the evolution of the first two
components (out of 32) of the z vector, embedding the
density field.

Figure 9. Evolution of the first two components of the
reduced-order state z, associated to January 2000.



A visual similarity between the first plot in Figure 9 and
a two-dimensional Lévy flight can be detected. This may
be an additional confirmation of the underlying chaotic
nature of the dynamics of the density field: such random
process is in fact strongly related to the motion associated
to turbulent flows [38].

It should be clear how the trajectories given in Figure 9
define a set of data to be used in the reconstruction of a
governing differential equation. Moreover, making use
of state-of-the-art space weather forecasting techniques
[39], it is possible to extrapolate results in the future,
combining the grey-box dynamical model associated to
the reduced-order state compressed by the autoencoder
with solar and geomagnetic activity inputs associated to
future times.

During the training process, different batch sizes have
been considered to investigate the convergence be-
haviour; in Figure 10 it is shown how a bigger batch size
leads to smoother convergence.

Figure 10. Loss history associated to training. Batch size
8, 16, 50.

4. DATA-DRIVEN RECONSTRUCTION OF GOV-
ERNING EQUATIONS

In analogy with what has been shown with the Lorenz
system, the assumption here is that the density field is
governed by an ordinary differential equation associated
to the reduced-order representation of the system. The
prediction of the density field is therefore performed us-
ing its compressed representation, not the original state.

In other words, with the proposed methodology, once the
reduced order representation of the density field is ob-
tained, it is possible to construct an explicit differential
equation governing the evolution of the reduced-order
state, which is associated to the evolution of the ther-
mospheric density field: reduced-order model data of the
autoencoder can be used to generate expressions and ob-
tain best-fitting differential equations associated to the
autoencoder’s bottleneck governing the spatial and tem-
poral evolution of the density field.

Previous works aiming at modelling the evolution of the
thermospheric density field made use of Dynamic Mode
Decomposition ([12], [11]). While linearity may be a de-
sirable features in some contexts, it is a big limitation in
order to estimate the “true” dynamics (i.e., in order to best
fit the available state observations). In fact, we aim at re-
constructing a more general formulation of the dynamics,
in which the right hand side is characterized by nonlinear
functions, and in which the interplay between the state of
the system and control inputs is not neglected; the ability
to capture non-linearities in the dynamics is particularly
relevant during storms.

Symbolic Regression leads to nonlinear expressions:
with such technique, data are fitted using compact,
closed-form analytical expressions [21]. Making use of
Genetic Programming, expressions are generated to ob-
tain a differential equation fitting (reduced-order model)
data.

Symbolic Regression can be coupled with Sparse Regres-
sion to reduce computational cost and avoid overfitting.
Parsimonious models are constructed using sparsity-
promoting techniques [22]. In Figure 11 the relation be-
tween the use of autoencoders and the regression part of
the algorithm is shown: the latent representation of the
given data are used to construct best-fitting differential
equations, which can be expressed as a linear combina-
tion of nonlinear functions associated to Symbolic Re-
gression (Equation (9)).

It is worth underlying that, while it is possible to make
use of Deep Learning and Neural Networks for the re-
construction of differential equations as well [42, 36, 31],
this approach is more prone to overfitting, compared with
the use of Symbolic Regression.



Figure 11. Relation between the latent state represen-
tation of the autoencoder [7] and the observable ma-
trix Θ(Z), defined by Symbolic Regression, used to per-
form nonlinear parameter optimization and Sparse Re-
gression.

Θ(Z) =

  (9)

5. CONCLUSIONS AND RECOMMENDATIONS

Convolutional autoencoders constitute a promising non-
linear reduced-order modelling technique, to be used in
the context of atmospheric density modelling. Moreover,
Deep Symbolic Regression can be used to obtain an ex-
plicit non-linear differential formulation of the governing
equations.

Once the explicit, interpretable differential formulation of
the system is available, i.e. both the one of the spacecraft
and the one associated to the reduced order model of the
density field, it is possible to:

• make use of available tracking data to perform real-
time calibration of the density field, e. g. via a
Kalman Filter.

• implement Uncertainty propagation techniques, e.
g. Polynomial Chaos Expansion, to take into ac-
count the non-Gaussianity of the probability density
functions, leading to an accurate computation of the
probability of impact. In this context, the use of
Symbolic Regression enables one to also take into
account the uncertainty associated to the reduced-
order model dynamics parameters, leading to the
state uncertainty of a spacecraft of interest. This ad-
ditional source of uncertainty can be used to refine
the computation of the probability of collision.
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DATA AND SOURCE CODE

The Python Implementation developed in the context
of this work will be made available at https://
github.com/strath-ace/smart-ml soon after
the submission of this paper.

REFERENCES

1. Bowman B. R., and Tobiska W. K., and Marcos F.,
and Huang C., and Lin C., and Burke W. (2008). A
new empirical thermospheric density model JB2008 us-
ing new solar and geomagnetic indices. Preceedings
of the AIAA/AAS Astrodynmics Specialist Conference.
10.2514/6.2008-6438

2. Bruinsma S., (2015). The DTM-2013 thermo-
sphere model, J. Space Weather Space Clim.,
10.1051/swsc/2015001

3. Brunton S. L., and Noack B. R., and Koumoutsakos
P., (2020). Machine Learning for Fluid Mechanics,
Annual Review of Fluid Mechanics, 52(1), 477–508.
10.1146/annurev-fluid-010719-060214

4. Bukka S. R., and Gupta R., and Magee A. R.,
and Jaiman R. K. (2021). Assessment of unsteady
flow predictions using hybrid deep learning based
reduced-order models, Physics of Fluids, 33(1), 13601.
10.1063/5.0030137

5. Bukka S. R., and Magee A. R., and Jaiman R. K.
(2020). Deep Convolutional Recurrent Autoencoders
for Flow Field Prediction, arXiv, 2003.12147

6. Bussy-Virat C. D., and Ridley A. J., and Getchius
J. W. (2018). Effects of Uncertainties in the Atmo-
spheric Density on the Probability of Collision Be-
tween Space Objects, Space Weather, 16(5), 519–537.
10.1029/2017SW001705

7. Champion K., and Lusch B., and Kutz N., and Brun-
ton S. (2019). Data-driven discovery of coordinates
and governing equations, Proceedings of the National
Academy of Sciences, 10.1073/pnas.1906995116

8. Erichson N. B., and Muehlebach M., and Ma-
honey M. W. (2019). Physics-informed Autoencoders
for Lyapunov-stable Fluid Flow Prediction, arXiv,
1905.10866

https://github.com/strath-ace/smart-ml
https://github.com/strath-ace/smart-ml


9. Fukami K., and Nakamura T., and Fukagata K.,
(2020). Convolutional neural network based hierar-
chical autoencoder for nonlinear mode decomposition
of fluid field data, Physics of Fluids, 32(9), 95110.
10.1063/5.0020721

10. Gondelach D., and Linares R., (2019). Atmospheric
Density Uncertainty Quantification for Satellite Con-
junction Assessment, arXiv, 1912.01069

11. Gondelach D., and Linares R. (2020). Real-
Time Thermospheric Density Estimation via Two-
Line Element Data Assimilation, Space Weather,
10.1029/2019SW002356

12. Gondelach D., and Linares R. (2021). Real-Time
Thermospheric Density Estimation Via Radar And
GPS Tracking Data Assimilation, Space Weather,
10.1029/2020SW002620

13. Goodfellow I., and Bengio Y., and Courville A.
(2016). Deep Learning, MIT Press

14. Gron A. (2017). Hands-On Machine Learning with
Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems, O’Reilly Me-
dia, Inc., 10.5555/3153997

15. Hasegawa K., and Fukami K., and Murata T. et al.
(2020). Machine-learning-based reduced-order model-
ing for unsteady flows around bluff bodies of various
shapes, Theoretical and Computational Fluid Dynam-
ics, 34, 367–383. 10.1007/s00162-020-00528-w

16. Jacchia L. G. (1970). New static models of the ther-
mosphere and exosphere with empirical temperature
profiles. SAO Special Report, 313.

17. Kutz J. N., and Brunton S. L., and Brunton B. W.,
and Proctor J. L. (2016). Dynamic Mode Decompo-
sition: Data-Driven Modeling of Complex Systems.
10.1137/1.9781611974508

18. Licata R., and Mehta P. (2020). Physics-informed
Machine Learning with Autoencoders and LSTM for
Probabilistic Space Weather Modeling and Forecasting,
17th Conference on Space Weather - 100th AMS Annual
Meeting, 10.13140/RG.2.2.17039.74401

19. Licata R., and Mehta P., and Tobiska K. (2020).
Data-Driven HASDM Density Model using Machine
Learning, Earth and Space Science Open Archive,
10.1002/essoar.10505213.1

20. Majida A. (2012). Challenges in climate science and
contemporary applied mathematics, Communications
on Pure and Applied Mathematics, 65, 920–948

21. Manzi M., and Vasile M., (2020). Discovering Un-
modeled Components in Astrodynamics with Symbolic
Regression, IEEE Congress on Evolutionary Computa-
tion, 10.1109/CEC48606.2020.9185534

22. Manzi M., and Vasile M., (2020). Orbital Anomaly
Reconstruction Using Deep Symbolic Regression, 71st
International Astronautical Congress

23. Maulik R., and Lusch B. and Balaprakash P. (2021).
Reduced-order modeling of advection-dominated sys-
tems with recurrent neural networks and convolu-
tional autoencoders, Physics of Fluids, 33(3), 37106.
10.1063/5.0039986

24. Mehta P., and Linares R. (2017), A methodology for
reduced order modeling and calibration of the upper at-
mosphere, Space Weather, 10.1002/2017SW001642

25. Mehta P., and Linares R., and Sutton E. (2018),
A Quasi-Physical Dynamic Reduced Order Model
for Thermospheric Mass Density via Hermitian
Space-Dynamic Mode Decomposition, Space Weather,
10.1029/2018SW001840

26. Mehta P., and Linares R. (2020), Real-Time Ther-
mospheric Density Estimation from Satellite Position
Measurements, Journal of Guidance, Control, and Dy-
namics, 43(9), 1656–1670, 10.2514/1.G004793

27. Muelhaupt T. J., and Sorge M. E., and Morin J., and
Wilson R. S. (2019), Space traffic management in the
new space era, Journal of Space Safety Engineering,
6(2), 80–87. 10.1016/j.jsse.2019.05.007

28. Murakami D. D., and Nag S., and Lifson M.,
and Kopardekar P. H. (2019). Space Traffic Man-
agement with a NASA UAS Traffic Management
(UTM) Inspired Architecture, AIAA Scitech 2019 Fo-
rum, 10.2514/6.2019-2004

29. Picone J. M., and Hedin A. E., and Drob D. P., and
Aikin A. C. (2002). NRLMSISE-00 empirical model
of the atmosphere: Statistical comparisons and scien-
tific issues, Journal of Geophysical Research: Space
Physics, 107(A12), 1468. 10.1029/2002JA009430

30. Qian L., and Burns A., and Emery B., and Foster
B., and Lu G., and Maute A., and Richmond A., and
Roble R. G., and Solomon S., and Wang W. (2013). The
NCAR TIE-GCM: A community model of the coupled
thermosphere/ionosphere system, Geophysical Mono-
graph Series, 201, 73–83. 10.1029/2012GM001297

31. Rackauckas C., and Ma Y., and Martensen J., and
Warner C., and Zubov K., and Supekar R., and Skinner
D., and Ramadhan A., Edelman A. (2020), Universal
Differential Equations for Scientific Machine Learning,
Research Square. 10.21203/rs.3.rs-55125/v1

32. Ramezanian D., and Nouri A. G., and Babaee H.
(2021). On-the-fly Reduced Order Modeling of Passive
and Reactive Species via Time-Dependent Manifolds,
arXiv, 2101.03847

33. Reiland N., and Rosengren A. J., and Malhotra R.,
and Bombardelli C. (2021), Assessing and minimizing
collisions in satellite mega-constellations, Advances in
Space Research, 10.1016/j.asr.2021.01.010

34. Ridley A. J., and Deng Y., and Tóth G. (2006). The
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