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ABSTRACT

Multistatic radar systems are emerging as an important
tool for low earth orbit space surveillance. The improved
coverage and multiple observation perspectives provided
by multistatic systems lead to improved space debris de-
tection and orbit estimation accuracy. This paper inves-
tigates the influence of different baselines between two
radar nodes on the orbit estimation performance of space
targets. We consider briefly the influence of the field
of view and two different radar modes on the optimal
baseline. For our results we use the Posterior Cramer-
Rao Lower Bound, which generates a lower bound on
the expected error from any tracking algorithm. Hence,
our results are only comparable with each other. The
presented framework can be used to design a multistatic
radar network for given requirements on target detection
and tracking capabilities. 1
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1. INTRODUCTION

Modern society heavily depends on satellites. To avoid
a fatal collision between space debris and a functional
satellite, the position of debris has to be predicted for any
given point in time. Based on the prediction, an active
satellite is able to perform evasive maneuvers.
Space debris is observed with many resources. For in-
stance, observations are possible with optical methods [1]
like laser ranging [2] or radar.

Traditionally, a single large monostatic radar is used for
Space Surveillance. In [3] the benefits of multistatic
radars, like improved coverage and multiple observation

1The project underlying the presented results was funded by the Ger-
man Federal Ministry of Education and Research under the code 50 LZ
1503. The author is responsible for the content of this publication.

perspectives, are explained for the generic case. Recent
studies aim at applying the benefits of multiple radar sys-
tems to the observation of objects in space environment.
Existing radar networks include EISCAT (European
Incoherent Scatter Scientific Association), founded
originally for better modeling of the atmosphere. Tests
have revealed that the next generation of radars (EIS-
CAT 3D) will also be capable of observing space debris
[4]. Another example system is GRAVES (Grand
Réseau Adapté à la Veille Spatiale), which is a bistatic
radar especially designed for space surveillance [5].
The German state is developing a radar system called
GESTRA (German Experimental Space Surveillance
and Tracking Radar), which is designed to allow a more
flexible positioning of sensor nodes due to semi-portable
receivers and transmitters [6]. All of these systems
provide important information to avoid a crash between
space debris and a functional satellite.

To calculate the collision risk of space debris ob-
servations are required. The observations of this paper
are based on phased array radar network. The radar
observes an arbitrary object at n points in a given
time interval tn. These observations are used to derive
parameters of a model, which leads to the position and
the velocity of the object for any arbitrary future point i
in time ti. For the purpose of this paper it is sufficient to
model space debris trajectories using simple Keplerian
motion. This model does not consider perturbations like
effects from the moon, sun or inhomogeneity of the mass
distribution of the earth. Generally, six non-redundant
parameters are necessary to describe a Kepler orbit
without any additional perturbations. In this context,
the parameter vector (6 x 1), also called state vector,
consists of the position and the velocity of an object at
a given point in time. Estimating these six parameters
based on radar observations is crucial for planning
evasive maneuvers. Unfortunately, noise corrupts the
observations, leading to noisy parameters and inaccurate
collision risk calculations.

Beside noise the estimation accuracy is also affected by
the properties of the radars, like array size or dwell time,
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signal processing methods and many more aspects. Due
to the variety of variables, optimizing the performance
of a radar network for orbit estimation accuracy is a
highly complex task. This paper focuses on optimizing
the baseline between two radars for best orbit estimation
accuracy. Beside other factors, the optimal baseline is
also dependent on the field of view (FoV) and radar
modes. Hence, two different FoV’s, a search mode and
a track mode are taken into account. In Section 2 the
general simulation setup is explained. The calculation
of the state parameters and their accuracies is briefly
presented in Section 3, together with the results of our
simulations.

2. SIMULATION SETUP

The accuracy of parameter estimation is dependent on
many factors. Each radar parameter influences the out-
come. Furthermore, the constellation between a space
debris object and the node configuration has an impact
on the accuracy. Different constellations lead to different
lengths of observation times and different aspect angles,
which lead to different bistatic ranges. As a result the
Signal to Noise Ratio (SNR) and the detection probability
varies significantly for different constellations. To com-
pensate the effect of different constellations, we simulate
and observe multiple orbits for one month. The node con-
figurations regarding varying baselines are analyzed with
fixed radar parameters. To get a first insight on the in-
fluence of the field of view (FoV) and radar modes, three
basics setups are considered during the analysis of an op-
timal baseline.

2.1. FoV Setup

The FoV describes the area in space, which is illuminated
by a radar. Within this area, observations of a space ob-
ject are possible. The extension of a FoV gets bigger for
higher orbits, as depicted in Fig. 1. Therefore, an object
is longer within the FoV if the object has a higher orbit. A
longer observation time is possible as a result. The extent
of the shown FoV is 15◦ in elevation and 90◦ in azimuth
with respect to the transmitter (Tx). The whole FoV can

Figure 1: Horizontal FoV of a radar - extension elevation
15◦, azimuth 90◦

not be scanned by a single Tx beam at once, because the
radar beamwidth is in our simulation 5◦ wide and not 15◦

x 90◦. To illuminate the whole FoV with just one beam
in a given time interval different approaches are possi-
ble. In this paper, we focus on a track mode and a basic
search mode. The track mode knows in our simulation
exactly where an object is located. Hence, the transmit-
ter only illuminates the spot where an object is predicted.
That is why, the track mode generate observations when-
ever an object crosses the FoV. While the track mode
requires information about an object, the search mode
works perfectly without any object information. The FoV
is searched by activating each beam position for a short
period of time, before moving to the next beam position.
Each beam position in this search is illustrated as a red
cone in Fig. 2 and is active for the dwell time. After

Figure 2: Search mode, vertical FoV - extension elevation
90◦, azimuth 15◦

this time, the next beam is activated. The extent of the
shown FoV is 90◦ in elevation and 15◦ in azimuth with
respect to the transmitter. A single radar node monitors
the whole FoV. Observations are only simulated if the ob-
ject is within the FoV and the timing of an active beam.
An optimal baseline is dependent on the orientation of the
FoV and the radar mode. To get a first understanding of
the impact on these factors on finding the optimal base-
line for orbit estimation accuracy, three different setups
are used in this paper. Setups I is a search mode with a
vertical FoV (see Fig. 2), setup II has a horizontal FoV
and a search mode and setup III is the track mode shown
in Fig 1. For later reference these setups are listed in Tab.
1

Table 1: List of setup parameters - each setup is tested
with all simulated length of baselines

Setup I Setup II Setup III
Radar mode Search Search Track

FoV elevation 90 ◦ 15 ◦ 15 ◦

FoV azimuth 15 ◦ 90 ◦ 90 ◦

2.2. Radar Setup

A horizontal baseline is the basis for all node configura-
tions under investigation. In Fig. 3 one configuration is



shown. One transmitter and receiver (Tx/Rx) is placed at
the first node and one Rx is placed at the second node.
Hence, in total, three sensors are available. Baselines be-
tween 50 to 950 km with steps of 50 km are tested. For
baselines higher than 950 km the simulation parameters
deliver an SNR below the detection threshold, such that
multistatic measurements are not possible. The center of
the network is placed in Germany.

Figure 3: Tested configuration- center of network is in
Germany

In Tab. 2 the specific radar parameters for this simulation
are listed, which apply to all measurements.

Table 2: Specific fixed radar parameters for this simula-
tion

average power 20000 Watt
dwell time 0.2 s

effective aperture size 3.5 m2

radar cross section (RCS) 5 m2

wavelength 0.2 m
beamwidth 0.0886 rad

range resolution 132.8 m
angle resolution 0.0089 rad

bandwidth 1 MHz

2.3. Orbit Setup

Each orbit has a different ground track. These ground
tracks vary due to earth’s rotation. There are some or-
bits, called repeat orbits, with constant ground tracks, but
these are not considered in this paper. To minimize the
influence of different ground tracks, multiple orbits and
multiple periods of these orbits are simulated within one
month. In the context of this paper, simulated Kepler pa-
rameters are used instead of real objects. The orbit in-
clination is between 45◦ and 90◦ in steps of 5◦ and the
orbit height is between 300 km and 1600 km in steps
of 100 km. For higher orbits the observed SNR is be-
low the threshold. Changing the radar parameter or using
different signal processing technique could alleviate this.
However, these topics are not discussed within this pa-
per. Also, orbits with a smaller inclination than 45◦ are
not considered. The limitation of the inclination is due to

the fact that the center of the nodes is placed in Germany.
In total, 140 Kepler orbits, but without modeled pertur-
bations, are taken into account. In Fig. 4 all considered
orbits are visualized.

Figure 4: 140 orbits are simulated for state vector estima-
tion

2.4. Simulated Observations for one Setup

For each of the 19 baseline configurations observations
are simulated of all 140 orbits (see Fig. 4) for a du-
ration of one month. If an observation is possible and
the SNR is above a given detections threshold of 11 dB,
an observation is generated. Each observation contains
three measurements, namely range, azimuth angle and
elevation angle. Doppler measurements are not consid-
ered here. The RCS is assumed to be constant. Based
on these observations the position and velocity of a space
object are estimated. We assume, that the association of
observation to object is solved. In addition, it is assumed
that the time synchronizations between different stations
is perfect.

3. RESULTS

This section presents the simulation results by comparing
the accuracies of the estimated state vectors. The eval-
uated metric is the Posterior Cramer-Rao Lower Bound,
which presents the lower bound of the achievable accu-
racy. Furthermore, there are no errors due to non mod-
eled perturbations. Consequently, the accuracies in this
paper are much lower than practically achievable. How-
ever, the results can be used for a relative comparison be-
tween node configurations.



3.1. Estimation of State Vector plus Accuracies

Commonly in tracking tasks, Kalman Filters are used to
obtain trajectories from measurements [7]. The Kalman
filter relies on a prediction and measurement update step.
We use Cowell’s Formulation and a fourth order Runge-
Kutta numerical integration scheme for predicting targets
exerting Keplerian motion [8]. Fig. 5 visualizes the up-
date scheme in use. For the initial detection no a priori
information is available and the first two detections are
used to generate a first estimate of the state vector. Else,
prior information is available from previous passes and
this information is used to improve the state vector es-
timate for the object under consideration. We apply the
PCRLB, generating a lower bound on the expected error
from any estimator tracking the target [9]. Hence, the
influence of the tracking algorithm is minimized. The
PCRLB generates very optimistic estimates of the state
vector, but allows to compare various node configurations
and to identify the most promising ones in an idealized
environment. The PCRLB leads to a lower bound for Σxx

after one pass.

Figure 5: Tracking steps listed for each pass

During one month several passes of the same object oc-
cur, which can be combined. The state vector estimation
from the prior pass can be used as prior information. If
perturbation errors would be implemented, the usefulness
of prior information would decrease much faster depend-
ing on orbit and radar parameters. In our case, using a
priori information increases the accuracy heavily. The
state of the previous pass is propagated according to a
Kepler orbit till tp, which is the first observation of the
current pass. For Σxx a different approach is necessary,
because the uncertainty of a Kepler orbit becomes non-
Gaussian after several hours in Cartesian space [10]. That
is why, a Monte Carlo Simulation is used to propagate the
uncertainties. It allows to approximate arbitrary distribu-
tions [11]. With the true state and the covariance Σxx, N
random samples (dimension 6 x 1) are generated. Each
sample is a realization of the estimated orbit. With each
realization the position and velocity of the object is cal-
culated for tp, such that for tp a point cloud of N possible

states is available. Based on this cloud Σpp is approxi-
mated, which is used as a priori information for the cur-
rent pass. Then the steps from Fig. 5 are repeated again.
At the end of one month, the last and final state estimation
of a month combines all information of all passes. Due to
different orbit node geometries the time of the last pass
varies for different orbits. Propagating all last covariance
matrices to the same final point in time would disturb the
comparison, because this would result in different prop-
agation errors dependent on the propagation time. The
covariance of the last pass is called Σx̂x̂ (dimension 6 x
6), which should be as small as possible for an accurate
collision risk assessment. Covariance matrices can be vi-
sually represented by an error ellipsoid. Therefore, Σx̂x̂

can be imagined as a 6D ellipsoid. Analyzing a scalar
value is easier to visualize than a 6D ellipsoid. We calcu-
late

V =
√
det(Σx̂x̂), (1)

which is proportional to the volume of the error in the 6D
state space. In the following, we call V error volume.

3.2. Error Volumes of all Setups

For each of the three setups (see Tab. 1) all of the 19 base-
line configurations are tested with all 140 orbits. For each
combination of baseline configuration and orbit, V (see
Eq. 1) is computed after one month of observations. This
results in a 140 x 19 matrix with error volumes for every
configuration, which are shown in Fig. 6. The x-axis de-
scribes the length of the baseline, which corresponds to
the side length of the baseline in Fig. 3. On the y-axis the
error volumes, symbolized by green dots, are plotted on
a log10 scale. The black dots mark the median of all 140
orbits for one configuration. The black boxes describe
the qartiles for the respective configuration. Evaluating
which configuration is the best, one can take three differ-
ent aspects into account. The easiest way is to look only
at the median. If the median of a configuration is lower,
one can say that this configuration is better. However, a
lower median error volume does not mean that all error
volumes are lower. One can take into account the black
box, which represents 50 % of all V . If this box is small
and the median is low, then 50 % of the simulated error
volumes are low. To calculate a precise collision risk for
all orbits even the highest V should be as small a possi-
ble. Thus, the third aspect is to look only at the maximum
of V . Weighting these three aspects (median, quantiles,
maximum) differently will lead to different conclusions.
This can be identified in Fig. 6. According to the first as-
pect, a 600 km baseline seems the best due to the lowest
median. However, the lowest quartiles are in the 250 km
case. The third aspect claims that 300 km baseline is the
best case. Between the maximum V in 300 km and 600
km is a difference of a factor 104. The question arises if
the effect of a 104 higher error volume is significant in
terms of higher collision probability. Giving a realistic
answer requires realistic error propagation of perturba-
tions effects. The effect is also dependent on the Kepler



Figure 6: Setup I: FoV 90 x 15◦, search mode - Effect of length of baselines on parameter estimation for all 140 tested
orbits - black dots mark the median for each configuration, black boxes describe the quartiles for each configuration

Figure 7: Median error volume for all three setups and all tested baselines (see Fig. 3) - colored dots mark the median of
all 140 orbits for each configuration and each setup, error bars describe the quartiles for each configuration



parameters. These two topics should be investigated in
future work.

To compare all three different setups only the median and
the quartiles are shown in Fig. 7 due to aspects of clarity.
The green dots mark the median of setup I, red symbol-
izes setup II and blue represents setup III (see Tab. 1).

Setup III has in all configurations the lowest median
and the lowest quartiles. In setup III the influence of
the baseline extend seems to be negligible compared
to setup I and II. In setup II the median volume of all
configurations is in between an interval of 105. The
lowest quartiles in setup II are with a 400 km baseline
and in setup III with a 250 km baseline. A baseline
between 200 and 600 km seems to be a good choice in
all three setups. Here the medians are nearly equally
low. As mentioned before, the effect of a higher error
volume in terms of higher collision probability must be
analyzed in further studies. For now, one can say, that
in general a vertical FoV is better than a horizontal FoV,
because setup I has always lower quartiles than setup II.
The question arises why this is the case. One explanation
is shown is Fig. 8. Here all error volumes are plotted

Figure 8: Error volume sorted by orbit inclination for
each setup - colored dots represent median error volume,
number above dot display number of observed orbits with
same inclination

against the inclination of the simulated space objects
and the median is visualized for all three setups. The
number above the median marks the number of observed
orbits with the same inclination. As it can be seen, setup
I observes 171 orbits with an inclination of 45◦ while
setup II observes none. Furthermore, at 85◦ and 95◦
inclination the medians are much lower in setup I than
in setup II. Because of that, we conclude that a vertical
FoV is better for orbits with a low/high inclination than
a horizontal FoV. It should be mentioned that this result
could change if another dwell time or search pattern is
implemented.

For completeness, the error volumes are also plotted
against the orbit height in Fig. 9. Again, only the me-
dian is plotted for all three setups and the number above
it marks the number of observed objects. Most orbits can
be observed between 600 and 1400 km orbit height. At
first sight, it seems to be surprising that orbits lower than

Figure 9: Error volume sorted by orbit height for each
setup - colored dots represent median error volume, num-
ber above dot display number of observed orbits with
same orbit height

600 km height are observed worse. Due to a shorter range
to the radar a higher SNR signal is achieved and a higher
accuracy should be possible. However, lower orbits lead
also to shorter observation time per pass. This example
highlights the importance of radar resource management.
An adaptive radar dwell time or a different radar mode
are beneficial for different orbit parameters, because the
object can be observed longer and the higher SNR signal
will deploy its full potential.
To sum it up, in all three setups a baseline between 200
and 600 km is favorable. The track mode has a higher
impact on orbit estimation accuracy than the baseline be-
tween two stations. However, a track mode is not always
possible since it requires prior information about an ob-
ject and claims all radar resources. That is why, a search
while track mode seems to be promising. We are working
right now on further studies in this direction.

4. CONCLUSION

The purpose of the paper was to determine the optimal
baseline between two radar nodes for orbit estimation ac-
curacy. Hence, we varied the baseline of two radar nodes
between the ranges 50 to 950 km. We simulated obser-
vations to multiple space objects and estimated their state
vectors. Especially, the accuracy of the state vector using
the PCRLB was analyzed. Furthermore, we implemented
a search mode, a track mode, a vertical FoV and a hori-
zontal FoV to consider their impact on the optimal base-
line. This study has shown that in all setups a baseline
between 200 and 600 km was favored. The second major
finding was that a vertical FoV was preferred compared
to a horizontal FoV in our simulations. Another result
of this study indicates that the track mode has a higher
impact on orbit estimation accuracy than the baseline
between two stations. However, a track mode requires
prior information and claims all radar resources. Since
the research was limited to relative comparison between
different setups, it was not possible to develop a state-
ment in terms of collision risk analyss. The presented
framework lays the groundwork for future research into
radar network optimization. Beside the optimal baseline,



radar parameters, signal processing techniques or radar
resource management can be optimized to minimize col-
lision probability in space.
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