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ABSTRACT

Orbit determination is a crucial part of Space Situational
Awareness, especially, in the wake of upcoming mega
constellations and the general trend towards an increased
rate of orbital injections. While there are several initial
and statistical orbit determination algorithms, one key
aspect is the precise modeling of the process noise to
accurately capture the error between the used equations
to describe the orbit mechanics and reality. Two widely
used methods to model the process noise are state noise
compensation (SNC) and dynamic model compensation
(DMC). More recently, adaptive methods, such as
the covariance matching (CM) or adaptive state noise
compensation (ASNC), have been developed [1].

In this paper, an analysis of statistical orbit determination
using SNC, CM, and ASNC is shown. Hereby, the
Radar System Simulator (RSS) that was developed at the
Institute of Space Systems at the TU Braunschweig was
used to simulate typical scenarios. Therefore, tracklets
of an exemplary space debris object population were
simulated. Using these tracklets, the above mentioned
process noise methods were applied in combination with
multiple statistical orbit determination methods, such as
the Unscented Kalman Filter (UKF) or Cubature Kalman
Filter (CKF).

Primarily, the performed simulations have shown that the
process noise indeed is a critical aspect influencing the
accuracy of any orbit determination. In order to achieve
realistic results, i.e. convergence between estimated and
real state as well as a consistent covariance, realistically
reflecting the quality of the estimate, the process noise
needs to be tuned adequately for the respective situation.
Applying a tuning process of the SNC can significantly
improve the quality of the orbit determination and
achieve results that are closer to reality. Unfortunately,
the SNC needs to be tuned offline with a priori knowl-
edge of the adequate parameters. These correct tuning
parameters, however, are usually not known beforehand
for any given scenario. Therefore, adaptive methods
could be the key to perform accurate orbit determinations
regardless of the actual scenario.

This paper will show the results of process noise
variants in combination with different orbit determi-
nation algorithms with regard to the convergence of
estimated and real state as well as covariance truth. It
will conclude with a comparison of the three stated
approaches.

Keywords: TU Braunschweig; OKAPI:Orbits; Orbit De-
termination; Process Noise; SNC; ASNC; CM.

1. INTRODUCTION

With regard to the continuously increasing number of
controlled and uncontrolled, i.e. space debris, objects
in Earth’s orbit, orbit determination is one of the key
components of a Space Situational Awareness (SSA) pro-
cess chain and, thus, tracking the developments in the
space environment. Hence, it is constantly worthwhile
to improve the existing algorithms, such as the Extended
Kalman Filter (EKF), the UKF or the CKF. One aspect
affecting the performance of these precise orbit determi-
nation (POD) algorithms is the process noise. Traditional
models of the process noise are SNC or DMC, while more
recently CM or ASNC have been developed. While the
former have to be tuned offline according to the actual
situation, the latter adjust themselves adaptively. Poten-
tially, such adaptive methods could improve the perfor-
mance of orbit determination algorithms significantly. In
order to test these more recent developments in typical
orbit determination applications, adaptive process noise
models have been implemented within the RSS, a simu-
lator environment that was developed at the Institute of
Space Systems at the TU Braunschweig and is capable of
producing realistic observations and tracklets of space de-
bris objects (SDOs). Further, it allows the application of
different initial orbit determination (IOD) and POD algo-
rithms which includes modeling the process noise. Using
the traditional and more recent process noise models, a
variety of simulations have been performed to test their
performance.

In the following, there will be a short summary of the un-
derlying theoretical background and a description of the
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carried out simulations. Further, the results of these sim-
ulations will be shown and a conclusion is drawn at the
end.

2. BACKGROUND

Within the POD algorithms based on Kalman filtering
generally two main sources for noise have to be taken into
account, the measurement noise and the process noise.
While the measurement noise is directly connected to
the measurement process and the corresponding sensor
systems, the process noise stems from modeling the real
world which inherently leads to uncertainties and noise.
This is due to complex orbit perturbations affecting the
space object dynamics and the corresponding accelera-
tions that can not be modeled perfectly. To account for
the unknown accelerations, the process noise methods
propagate a noise matrix alongside the propagated state
covariance. Afterwards both matrices are combined and
yield a larger covariance in comparison to the state co-
variance alone in order to account for the unknown errors
[2]. Often the measurement noise is known by the oper-
ators of sensor systems such as radars or telescopes and
can therefore be taken into account accordingly. In con-
trast, the process noise is usually not known and most of
the traditional models have to be tuned offline according
to the combination of SDOs and its properties, its orbit
and the used POD. A desirable solution to this could be
adaptive models that tune the process noise parameters
online as needed to represent the real, unknown magni-
tude of noise.

2.1. Process Noise

The process noise models that are used in Kalman filter-
ing, to compensate for the complex spacecraft dynamics
that cannot be modeled perfectly, can roughly be divided
into non-adaptive and adaptive methods. Further, SNC
and DMC are distinguished (see [3]).

The base of POD algorithms, such as the UKF or CKEF, is
an estimation of the state for a nonlinear dynamical sys-
tem [4]:

Tk41 = f(kaxk) + wg, (1)
yr = h(k,xy) + vg, 2

where x;, and y; represent the state and measurement at
point k respectively while wy, and vy, are the process and
measurement noise respectively. For a complete descrip-
tion of the UKF and CKF see, for instance, [4] and [5]
respectively. In the context of this work, the relevant
part is the process noise wy. The term SNC describes
the assumption that w(t) is white noise with a constant
covariance that is known [3]. This means that the state
dynamics are assumed to be influenced by a stochastic
acceleration with mean zero and constant standard devi-
ation. The resulting process noise covariance matrix, as

also used in the RSS, is described as [3]:

1 3 1 2
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where the standard deviation o is predefined by the user
and has to be tuned accordingly. For DMC an accelera-
tion described by a first-order linear stochastic differen-
tial equation is assumed [3].
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Another approach that can be used to model the pro-
cess noise is CM, covariance matching. As an adaptive
method, CM has the advantage to avoid the necessity of
a priori knowledge as is needed, for instance, in the SNC
method [6, 7]. This CM technique estimates the process
noise covariance from historical values of the state pre-
diction and state estimation and the corresponding state
innovation and residuals. Hereby, the considered values
can either encompass all historical values or all values
inside a specified window [7]. The specific formulation
of the CM technique exists in multiple versions [1, 7].
Within the RSS it is implemented under the assumption
of a steady state which leads to an estimated process noise
covariance of [1]:

=
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where N is the window length and % is the state innova-
tion, the difference between the real and predicted values
[7]. A state innovation scaling factor can be set as an ad-
ditional tuning parameter.

Both previously explained methods, SNC and CM, can
be combined into an adaptive state noise compensation,
the ASNC [1]. The same can be done for DMC and
CM to obtain an adaptive dynamic model compensa-
tion, ADMC. Analog to CM the ASNC approach starts
by calculating an estimated process noise covariance Qs
via Equation 4. For the next step a theoretical state in-
novation covariance Y g has to be calculated from the
Kalman Gain K and the measurement innovation co-
variance Py,  [11:

Y =Ky Py K (5)

It is needed to calculate a weighting matrix for the single
components of the final process noise covariance matrix
which is obtained, in accordance to Equation 3, by [1]:

Qr = %Atgégk %Ati@k 6)
A AzQr Aty

Hereby, the estimated matrix ék is obtained by solving

[1]
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and the diagonal matrix [1]

i Sps 0 0
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where N is again the window length as introduced in the
CM method.

2.2. Assessment of the covariance truth

While evaluating the results of the PODs, additionally to
absolute errors, such as deviations in radial, along-track
and cross-track directions, the consistency of the filter
and the resulting covariances is an important criterion as
well. Hereby, two general considerations apply. On the
one hand, the estimate errors should be acceptable mean
and the calculated covariance should match these errors.
On the other hand, the innovations of the filter should
have the same property and should be acceptable white.
The consistency of the filter can be evaluated using sta-
tistical tests. One option is the time-averaged Normal-
ized Estimation Error Squared (NEES), which is defined
as the following summation over all states & [8]:

K
_ 1 A\ =1 N
f =5 ; (Tp — k) Py (zk — 2) - (10)

Hereby, 2 is the estimated state of the filter with respect
to the true state x;. P is the covariance of the estimated
state. K - &, has a y2-distribution with a degree of free-
dom of K - n,, where n, is the dimension of the state
which is 6 for the 3 position and 3 velocity components
as relevant for the implementation in the RSS. Another
option is using the time-averaged Normalized Innovation
Squared (NIS) [8]:

K
_ 1 . _ N
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where ¥y, is the measured state. Further, g, is the propa-
gated and into the measurement space transformed state,
while the innovation covariance is Py, ;. In this case,
K - £, has a x?-distribution with K - n, degrees of free-
dom, where n, is the dimension of the measurement. In
this paper and the context of the RSS, the measurement
consists of 4 dimensions: Azimuth, Elevation, Range and
Range Rate. Both values resulting from the Equations
10 and 11 represent a summation of the squared Maha-
lanobis distances for each state k [2].

Based on these parameters, a Xg-test can be done. The
parameters K - &, or K - £, have to be in a certain accep-
tance interval around the expected value. The expected
value equals the degree of freedom of the y2-distribution
and equals 6 for the NEES, &;, and 4 for the NIS, &,
respectively. In this case the filter is consistent. If the
parameter is larger than the upper bound, the calculated

error might be too large or the covariance too small. In
this case the filter might be too optimistic. And by anal-
ogy if the lower bound is exceeded the filter might be too
pessimistic [8]. The distances between the expected value
and the lower and upper bounds of the acceptance inter-
val depend on the number of states k and the percentile
specified for the acceptance interval.

3. SIMULATIONS

In order to test and evaluate the previously described
methods to model the process noise, several simulations
have been performed within the RSS environment in
combination with the UKF and CKF. Hereby, errors in
position and velocity, the covariance matrices, and the
statistical tests for the covariance truth, NEES and NIS,
were taken into account for the evaluation. To provide
constant conditions for the simulations as far as possible,
the same objects were used to generate observations and
tracklets for the orbit determination throughout all simu-
lations. These objects were taken from the Meteoroid and
Space Debris Terrestrial Environment Reference (MAS-
TER) object population and listed in Tables 1 and 2.

Table 1. Physical properties of the objects used as basis
for the generation of observations and orbit determina-
tion.

ID Mass Diameter Mass to
O I R
[kgm™7]

823.6 2.125 232.193
2615 4.098 198.286
25.122

65.41 2.257 16.352

1
2
3800  6.368
4
S 4006 5643 160.170

Table 2. Orbit properties of the objects used as basis for
the generation of observations and orbit determination.
a: semi-major axis, €: eccentricity, i: inclination, €):
right ascension of the ascending node, w: argument of
the perigee.

1D a € 1 Q w

[l [km] -] [°] [°] [°]

1 7140.8 0.0072 98.60 258.88  4.31
2 71412 0.0001 98.53 1850 185.06
3 7147.8 0.0036 98.35 314.06 271.72
4 7140.0 0.0036 98.67 126.12 263.45
5 71489 0.0019 9848 314.18 262.37

All of these objects are, as can be seen from the orbit
parameters, in a Sun-synchronous orbit (SSO). While in-
cluding a range of mass to area ratios, big objects were
chosen, to guarantee high probabilities of good obser-
vations. In order to obtain observations the Tracking



and Imaging Radar (TIRA) that is located in Wachtberg
was simulated within the radar performance model of the
RSS. Hereby, the TIRA system was located at a longitude
of 16.03°, a latitude of 78.15° and an altitude of 445 m.
This corresponds to a radar site of the European Incoher-
ent Scatter Scientific Association (EISCAT) at Longyear-
byen. It was chosen to further optimize the conditions
for good observations of objects in an SSO. For all per-
formed simulations an observation campaign was carried
out over seven days, leading to approximately 100 000
detections and 500 reliable tracklets.

Regarding the SNC mainly two iterations of simulations
have been performed varying the tuning parameter o
(see Equation 3). Based on previous analyses, the stan-
dard deviation o was varied between 1 x 10~%m s—3/2
and 2 x 10~2ms~%/2. In both iterations this was done
in three equidistant steps, 9 x 103, 1.45 x 1072, and
2 x 1072ms~3/2 for the first iteration and 1 x 107,
1 x 1072, and 1 x 10~*ms~3/2 for the second iteration.
Hereby, the standard deviation was tuned separately for
each component of the state vector, three position and
three velocity components, leading to a total of 729 (36)
combinations for each of the two iterations.

For the CM and ASNC methods, three tuning parameters
have been taken into account:

1. Window length
2. State innovation scaling factor (SISF)

3. Propagated covariance scaling factor (PCSF)

Hereby, the window length was varied between 5 and 100
steps, i.e. the number of previous observations taken into
account, in combination with different state innovation
and propagated covariance scaling factors (no variation
between position and velocity components). Finally, in
a more elaborate analysis the ASNC method was evalu-
ated for component-wise variations of the state innova-
tion scaling factor in the same manner as described be-
fore for the SNC standard deviation. In this case, again
two iterations of simulations have been performed. First,
all components have been varied between values of 0.5
and 2/3 (2% = 64 combinations). Since, the influence of
the velocity components was negligible in the first itera-
tion, only the three position components were varied in
the second iteration. This time in five steps: 0.1, 0.2, 0.3,
0.4, and 0.5 (5 = 125 combinations). During these two
iterations, the window length and propagated covariance
scaling factor have been kept fixed at 5 and 1.5 respec-
tively.

4. RESULTS AND DISCUSSION

After describing the simulations, the results will be pre-
sented in the same order in the following, starting with
the variations of the tuning parameters for the SNC. For
a better comparability the majority of the results will be

shown for object number 2 which was randomly chosen.
Since the results are qualitatively very close for all ob-

jects, the corresponding results for object 2 are represen-

tative for all simulations. To evaluate the results three
plots will be shown for each simulation that is presented,
including the root-mean-square error (RMSE) of the po-
sition, the NEES, and the NIS. This ensures a complete
picture containing the overall accuracy and the covari-
ance truth. The RMSE between the estimated (2) and
actual state (x) is calculated over all states k, where K is
the total number of states:

RMSE = \/Zf—l(iﬁ — o) (12)

Regarding the SNC variations such a set of three plots
is shown for both of the iterations. Hereby, the RMSE
in the UVW coordinates is shown in the Figures 1 and
2 for iteration 1 and 2 respectively, the NEES is shown
in the Figures 3 and 4 for iteration 1 and 2 respectively
and the NIS is shown in the Figures 5 and 6 for iter-
ation 1 and 2 respectively. All these plots show the
results using the UKF and visualize the 729 combina-
tions for each iteration within a heatmap while the x-
and y- axis represent the corresponding combination of
the six standard deviation components that are varied
and the color depicts the error size. Since this type
of visualization might not be intuitive from the start, it
should be explained briefly. For both iterations three val-
ues were used to vary all six components of the stan-
dard deviation in all possible combinations. These three
values are represented by a “1” for the lowest value,
a “2” for the medium value and a “3” for the highest
value. An exemplary sequence of the digits “221131”
would represent a position components vector of
(1.45 x 1072,1.45 x 1072,9 x 1073)7 and a velocity
components vector of (9 x 1072,2 x 1072,9 x 10=%)T
for the first iteration.
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Figure 1. Position error in UVW (RMSE) of object 2 for
different combinations of the standard deviation compo-
nents that define the process noise for the SNC (UKF; 1.
iteration). The x-axis shows the combinations of the ve-
locity components, while the y-axes shows the combina-
tions of the position components. This heatmap displays
all 729 combinations. “1” = 9 x 10~ 3ms™3/2, “27 =
1.45 x 1072ms™3/2, “37 = 2 x 10~ 2ms~%/2,
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Figure 2. Position error in UVW (RMSE) of object 2 for
different combinations of the standard deviation compo-
nents that define the process noise for the SNC (UKF, 2.
iteration). The x-axis shows the combinations of the ve-
locity components, while the y-axes shows the combina-
tions of the position components. This heatmap displays
all 729 combinations. “1” = 1 x 107 %mgs™3/2, “2” =
1x107°ms™3/2, “37 =1 x 10~ 4ms~3/2,
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Figure 3. NEES of object 2 for different combinations
of the standard deviation components that define the pro-
cess noise for the SNC (UKE, 1. iteration). The x-axis
shows the combinations of the velocity components, while
the y-axes shows the combinations of the position compo-
nents. This heatmap displays all 729 combinations. “1”
=9 x 1073ms™3/2, “2” = 1.45 x 10 2ms%/2, “3” =
2 x 107 2ms%/2,

Combinations of standard deviation

Comparing the first and second iteration all plots con-
cerning the first iteration show a pattern representing a
sensitivity of the results mostly with regard to the velocity
components of the standard deviation (x-axis). Hereby,
the lowest value for the y and z components yield the low-
est errors and the lowest standard deviation value for all
velocity components yields the best NEES (closest to the
ideal of 6) value. In contrast, the best NIS results (closest
to the ideal of 4) is obtained in iteration 1 by using the
highest standard deviation values for the velocity com-
ponents. However, the NIS value varies very little over
all 729 combinations. This observed pattern is not seen

in the plots regarding iteration 2. Here, more equally dis-
tributed RMSE, NEES and NIS values are found. Hereby,
the error is, generally, much lower in comparison with the
first iteration while the NEES, with values around 50 to
60 diverges much further from the ideal value. While
the same bigger discrepancy between ideal value and ob-
tained values can be seen for the NIS in the second itera-
tion, the differences between the iterations is only slight
in this case.
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Figure 4. NEES of object 2 for different combinations
of the standard deviation components that define the pro-
cess noise for the SNC (UKE, 2. iteration). The x-axis
shows the combinations of the velocity components, while
the y-axes shows the combinations of the position com-
ponents. This heatmap displays all 729 combinations.
“1”=1x107%ms™%/2, “2” = 1 x 107 °ms3/2, “3”
=1x10"*ms™3/2,
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Figure 5. NIS of object 2 for different combinations of
the standard deviation components that define the pro-
cess noise for the SNC (UKE, 1. iteration). The x-axis
shows the combinations of the velocity components, while
the y-axes shows the combinations of the position compo-
nents. This heatmap displays all 729 combinations. “1”
=9 x 1073ms™3/2, “2” = 1.45 x 107 2ms%/2, “3” =
2 x 1072ms~3/2.

To summarize the results of the SNC simulations, lower-
ing the values of the standard deviation components used



as tuning parameters within the first iteration yields bet-
ter results regarding the RMSE of the position and the
NEES, while the obtained NIS values worsen slightly.
Lowering these values much further, as done in the sec-
ond iteration yields much lower RMSE:s for the position,
but the filter consistency deteriorates, especially concern-
ing the NEES. Such high values for the NEES suggest a
too small covariance matrix and an accordingly too opti-
mistic estimate of the filter. Further, the optimal NEES
and NIS values tend to be obtained by opposing standard
deviation values. This is especially true for iteration 1
and it indicates that a trade-off has to be made here.

NIS

4.9325
4.9300
4.9275

4.9250

Combinations of standard deviation

L1121 181 L.211 L.221 ..231 ..311 ..321 ..331
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Figure 6. NIS of object 2 for different combinations of
the standard deviation components that define the pro-
cess noise for the SNC (UKE, 2. iteration). The x-axis
shows the combinations of the velocity components, while
the y-axes shows the combinations of the position com-
ponents. This heatmap displays all 729 combinations.
“17 =1 x 107%ms=3/2, “2” =1 x 10~ °ms~3/2, “3”
=1x10"*ms=3/2,

Regarding the CM method the analysis was, as mentioned
in Section 3, performed with respect to the scaling factors
PCSF and SISF as well as the window length. To repre-
sent the variation of the orbit determination methods as
well, the results for the CM are shown both for the UKF
and the CKF in this case. The following plots show the
results for 4 different combinations of the PCSF and SISF
while the corresponding simulations were performed for
a varying window length between 5 and 100 (5 to 50 in
one case) for the sliding window method of the CM. Once
more the results are analyzed by evaluating both the ab-
solute errors and the filter consistency parameters. There-
fore, the RMSE of the position error is shown in the Fig-
ures 7 and 8 for the UKF and CKF respectively while
the NEES values are shown in Figure 9 and 10 for the
UKF and CKEF respectively and the NIS values are shown
in Figure 11 and 12 for the UKF and CKF respectively.
Hereby, the x-axis shows the varying window length and
the y-axis represents the RMSE, NEES or NIS.

In the case of the RMSE, the results of the UKF and CKF
vary only very slightly. The lowest error can be achieved
by a combination of PCSF = 1.5 and SISF = 2/3 (yellow
data row). By setting the PCSF to 1 and increasing the

(Average) / -

SISF, the error increases as well. Additionally, the error
tends to increase, in general, with an increasing window
size. This trend would also be expected for window sizes
bigger than 50 in the case of the yellow data row. Simu-
lations with higher window sizes were not performed in
this case, since the window size was originally limited
to 50 for this analysis, but later increased to 100 for the
other parameter combinations.

As could already be seen in the results of the SNC anal-
ysis, the settings for the lowest error are not necessarily
the settings for the best results with respect to achieving
realistic results that are consistent with the covariances.
Therefore, it is important to evaluate the NEES and NIS
values for the same parameter combinations.
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Figure 7. Position error in UVW (RMSE) of object 2 for
different combinations of the SISF and PCSF that define
the process noise for the CM (UKF).
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Figure 8. Position error in UVW (RMSE) of object 2 for
different combinations of the SISF and PCSF that define
the process noise for the CM (CKF).

Comparing the NEES values for the UKF and CKF sim-
ulations, the values differ more significantly as was the




case for the RMSE. While the overall trends are similar
between the orbit determination methods, the best results
are achieved for a combination of PCSF = 1.0 and SISF
= 1.75 (green data row in Figure 9) for the UKF. In con-
trast, very good results with an NEES close to 6 can be
achieved for almost all combinations of the scaling fac-
tors in the case of the CKF by adjusting the window size.
For a window size of 5 the red and yellow data rows (Fig-
ure 10) show the best results, while the closest NEES to
the ideal value of 6 for a window size of 10 is obtained
by the blue data row (PCSF = 1.0, SISF = 1.25).

2 = PCSF=1.0,SISF=1.25
< PCSF=1.0,SISF=15
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Window length / -

Figure 9. NEES (AVG) of object 2 for different combina-
tions of the SISF and PCSF that define the process noise
for the CM (UKF).
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Figure 10. NEES (AVG) of object 2 for different combina-
tions of the SISF and PCSF that define the process noise
for the CM (CKF).

Finally, regarding the NIS the results of the UKF and
CKF are almost identical. In both cases, very good re-
sults with an NIS close 4 can be achieved with either a
low window size of 5 and a scaling factor combination of
PSCF = 1.0 and SISF = 1.25 or a higher window size of
50 or higher and a scaling factor combination of PSCF =
1.5 and SISF = 2/3. Additionally, a decreasing trend can

be seen clearly for the NIS with increasing window size
for all scaling factor combinations.
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Figure 11. NIS (AVG) of object 2 for different combina-
tions of the SISF and PCSF that define the process noise
for the CM (UKF).
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Figure 12. NIS (AVG) of object 2 for different combina-
tions of the SISF and PCSF that define the process noise
for the CM (CKF).

To summarize the CM analysis, the RMSE is lowest for
the yellow (PSCF = 1.5, SISF = 2/3) and the blue (PSCF
= 1.0, SISF = 1.25) data row with a lower window size
while the RMSE tends to increase for all combinations of
the scaling factors with an increasing window size. Also
regarding the NIS the yellow and blue data rows achieve
the best results but for different window sizes. The gen-
eral trend for the NIS is a decrease with an increasing
window size. Comparing the UKF and CKF methods the
RMSE and NIS are almost identical for both filters. Only
regarding the NEES there are significant differences be-
tween the UKF and CKF and different combinations of
the scaling factors can yield a near-ideal NEES value for
different window sizes concerning the CKF. In combina-
tion with a relatively low position error, the best choice
concerning the UKF and the NEES value is represented
by the blue data row (PSCF = 1.0, SISF = 1.25) and an
either low window size of 5 or a high window size of




100. Analog to the SNC variations the parameter com-
binations that achieve the lowest RMSE for the position
are not necessarily the best choices regarding realistic re-
sults with respect to the covariances. However, regarding
the CKF a combination of a low window size, a PCSF of
1.5 and an SISF of 2/3 does indeed combine the lowest
RMSE, a very good NEES value and a decent NIS value.

In order to evaluate the results of the ASNC simulations
again the RMSE, NEES and NIS are shown. For an ad-
ditional comparison between the results of two different
objects, all results are shown for object 2 and 3. The re-
sults shown here represent the second iteration of vary-
ing the SISF position components between 0.1 and 0.5
as explained in Section 3. These results are visualized in
the same way as was done for the SNC simulations. In
this case the shown heatmaps show the results for all 125
combinations of the SISF with the lowest value 0.1 rep-
resented by “1” while the others are named accordingly
up to 0.5 being represented by “5”. These digit descrip-
tions are, analog to the standard deviations in the SNC
variations, used to depict the combinations of the SISF
components on the x- and y-axis. The following six plots
show the RMSE of the position in the Figures 13 and 14
for object 2 and 3 respectively, the NEES in the Figures
15 and 16 for object 2 and 3 respectively and the NIS in
the Figures 17 and 18 for object 2 and 3 respectively.
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Figure 13. Position error in UVW (RMSE) of object 2
for different combinations of the SISF components that
define the process noise for the ASNC (UKF). The x-axis
shows the combinations of the third position component,
while the y-axes shows the combinations of the two first
position components. This heatmap displays all 125 com-
binations. “1” =0.1, “2” =0.2, “3” =0.3, “4” = 0.4,
“5” =0.5.

While the general magnitude of the RMSE is slightly dif-
ferent for object 2 and 3 the pattern of the results is very
similar. In both above plots displaying the RMSE the best
results, i.e. the lowest error, is achieved in the lower left
area of the heatmap representing the lowest SISF values
for the different position components. In the case of ob-
ject 2 the lowest error is found exactly in the corner at the
combination “111” and regarding object 3 the lowest er-
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Figure 14. Position error in UVW (RMSE) of object 3
for different combinations of the SISF components that
define the process noise for the ASNC (UKF). The x-axis
shows the combinations of the third position component,
while the y-axes shows the combinations of the two first
position components. This heatmap displays all 125 com-
binations. “1” =0.1, “2”7 = 0.2, “3”7 =0.3, “4” = 0.4,
“57 =0.5.

ror is achieved by the combination “112”. However, the
differences between neighboring fields in the heatmap are
small.

Evaluating the heatmaps of the NEES values, the optimal
values (close to 6) can be found, fortunately, in the lower
left corner as well. Additionally, there is a pattern of bet-
ter and worse NEES values correlating especially with the
second position component. Regarding object 2 the best
NEES value is found for the combination “111” matching
with the lowest error. For object 3 the best NEES value
is found for the combination “121” corresponding to the
second lowest error.
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Figure 15. NEES (AVG) of object 2 for different combi-
nations of the SISF components that define the process
noise for the ASNC (UKF). The x-axis shows the combi-
nations of the third position component, while the y-axes
shows the combinations of the two first position compo-
nents. This heatmap displays all 125 combinations. “1”
=0.1, “27=0.2 “37=0.3, “4” =04, “5” =0.5.
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Figure 16. NEES (AVG) of object 3 for different combi-
nations of the SISF components that define the process
noise for the ASNC (UKF). The x-axis shows the combi-
nations of the third position component, while the y-axes
shows the combinations of the two first position compo-
nents. This heatmap displays all 125 combinations. “1”
=0.1, “27=0.2, “37=0.3, “4”7=0.4, “5” =0.5.

Finally, the NIS shows a similar behavior as seen for the
SNC and CM simulation results. Overall the values vary
very little, but the general trend is opposed to the trend of
the NEES. The best value (closest to 4) tends to be found
further to the top right of the heatmap while there is a
pattern correlating to the second position component of
the SISF analog to the NEES.
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Figure 17. NIS (AVG) of object 2 for different combi-
nations of the SISF components that define the process
noise for the ASNC (UKF). The x-axis shows the combi-
nations of the third position component, while the y-axes
shows the combinations of the two first position compo-
nents. This heatmap displays all 125 combinations. “1”
=0.1, “27=0.2, “37=0.3, “4”=0.4, “5” =0.5.

Summarizing the ASNC simulation results, very good
overall results can be achieved for a window size of 5,
a PCSF of 1.5 and low values for the SISF position com-
ponents reflecting both a low RMSE for the position and
NEES and NIS values close to the optimal of 6 and 4
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Figure 18. NIS (AVG) of object 3 for different combi-
nations of the SISF components that define the process
noise for the ASNC (UKF). The x-axis shows the combi-
nations of the third position component, while the y-axes
shows the combinations of the two first position compo-
nents. This heatmap displays all 125 combinations. “1”
=0.1, “27=0.2, “37=0.3, “4”7=0.4, “5” =0.5.

respectively. While the RMSE shows a general trend of
decreasing values for decreasing SISFs for all position
components, the NEES and NIS seem to be especially
sensitive to the second position component. However, all
position components have a significant influence and val-
ues around 0.1 for the SISF for all three components yield
the best overall results.

5. CONCLUSION

To summarize the performed analyses and the respective
results, Table 3 shows the best results for the different
process noise methods extracted from the presented re-
sults. If not indicated otherwise, the results in the table
represent the simulations for object 2 and the UKF as or-
bit determination method. The lower half of the table
shows the used settings where N is the window length
and the last row shows the combination of the position
and velocity components of the standard deviation in the
case of the SNC and the combination of the position com-
ponents of the SISF in the case of the ASNC.

In the context of this work, the goal of the performed
analyses was an evaluation of the applicability of the
adaptive process noise methods, especially the newly de-
veloped method ASNC and a comparison with the SNC
as a more traditional method. While the results vary
slightly between different objects and orbit determina-
tion methods, the ASNC proved to have the potential of
achieving very good results for the carried out simula-
tions. The usage of the SNC can also lead to very good
results if tuned accordingly. This tuning needs a priori
knowledge which is the biggest disadvantage of the SNC
method. Generally, the CM and ASNC methods only
need the window length as a priori known tuning parame-
ter. This was countered by the additional implementation



Table 3. Summary of the best results for the different pro-
cess noise methods obtained in the simulations presented
in this work.

SNC cM ASNC
- UKE CKF Obj.2 Obj 3
R[E%E 0065 0.122 0042 0041 0034
N][E_}]as 5045 5016 6101 5700 5990
I\E_I]S 4665 3832 4333 4700 4.680
ﬁ - 5 5 5 5
P?_]SF - 10 15 15 15
SI_S]F - 125 23 van  var
C‘ﬁ‘b' 133111 - - 111 121

of the scaling factors for the propagated covariance and
the state innovation (PCSF and SISF) since this leads to
parameters that have to be set correctly before any simu-
lation and therefore need a priori knowledge. In further
simulations and analyses it would, therefore, be valuable
to evaluate the CM and ASNC methods more compre-
hensively without these scaling factors. Alternatively, it
might be even better to find settings for these factors that
are generally applicable and thereby account for errors in
the models in an adequate way. Additionally, the analyses
should be extended by including a bigger object popula-
tion and range of different orbits in order to evaluate the
different process noise methods in a broader context.
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