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ABSTRACT

Matched filter is an exceedingly popular method in many
fields. In optical astronomy, the common application in-
cludes matching streak templates of various lengths and
orientations (shape hypothesis). We present a matched
filter modification suitable for shorter streaks (less than
ca. 100 px) that is faster than current state-of-the-art ap-
proaches.

The method is based on steerable filters. An input im-
age is represented by responses to K base filters. Fur-
thermore, the structure of the filters allows a recursive
reconstruction of longer streaks. This representation al-
lows computing the response of streak filters of arbitrary
orientation with a constant complexity.

We constructed a series of numeric experiments
to show comparative advantages. We compared our
method with the reference method (standard approach
with frequency-domain convolution). We used a semi-
synthetic dataset (500 samples) and real data (500 sam-
ples) for our experiments. Simulated streaks have length
∈ [20, 50] px, while K ∈ {2, 4, ..., 50}.

We have shown that the proposed method is more than
18 times faster than the reference method. Furthermore,
we show that the choice of the method has little influence
on the accuracy.

The proposed method has a favorable trade-off be-
tween memory and speed. Results are directly applica-
ble to a wide class of methods that rely on the convolu-
tion of short/medium steerable streaks. Furthermore, the
steerable representation is suitable for a subpixel accu-
racy search and offers access to additional information
beyond the streak template response.

Keywords: streak detection; steerable template;
matched filter; SQF.

1. INTRODUCTION

In this report, we present a method for finding a sequence
of K streaks in K frames (one frame per exposure). The
standard input for K = 3 is in Fig. 1.

We categorize the streak detection problem into two cat-
egories. The first category is designed for dealing with
long streaks. Long streaks are streaks that span most of

the image [24]; therefore, analyzing a single frame is ap-
propriate for detection. The second frame can be used for
background subtraction [23]. The second category is bet-
ter suited for dealing with short streaks. Shorter streaks
often appear in a sequence of subsequent frames, and the
joint information can be used to improve statistical detec-
tion accuracy.

We assume there is a single streaking object moving
through all images. We assume the meta-data of each im-
age contains additional information: The expected length
of the streak, the duration of exposure, and time of ex-
posure. We present the formal problem and the methods
in Sec. 2. Additionally, in this paper, we recognize the
overall importance of proper background suppression for
the streak detection problem. We describe the used data
in Sec. 3. We are learning the ranking of streak sequence
detection hypotheses in Sec. 4. Main experiments study
the accuracy and runtime of the methods in Sec. 5. We
conclude the paper in Sec. 6.

(a) First image (raw) (b) Second image (raw) (c) Third image (raw)

Figure 1: An example of a raw input triple. A short streak
(in red rectangle) is moving across the image triple.

1.1. Background Suppression

The goal of background suppression is to eliminate (or
reduce the influence of) all objects and imaging artifacts
that are not interesting. Background suppression can be
done by subtraction or by masking.

Background subtraction uses either a simulated [2] or a
real [23] data frame representing the static celestial back-
ground and subtracts such frame from the input data.
Subtraction (in theory) retains all information; however,
we observed that the state-of-the-art method [23]: (1)
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Creates artifacts, especially around stars. (2) Does not
model the dependency between transient sources from
the same object (moving/streaking transient source). An
alternative approach is modeling the background using
Gaussian Processes (GP) [4]. GP can model the fore-
ground and background from a single frame, allowing
subtraction in a single frame.

Background masking [24] replaces the image regions in
the frame by a “neutral” value, such as mean or median.
Unlike subtraction, masking is probably the only method
that can deal with imaging artifacts. Furthermore, mask-
ing allows a trade-off between removing bright objects
and preserving streaks. The fill-in after masking may
be viewed as a simple inpainting method [9]. A more
elaborate method would use higher-order statistical im-
age properties for inpainting, e.g., textural characteristics.
We do not consider such methods here because they could
create unwanted artifacts.

1.2. Long Streaks

We define a long streak as a streak that spans most of
the image (> 50% of image width in the streak direc-
tion). Therefore, taking multiple frames is unnecessary
(a streak will appear in at most two frames), and a single
frame is usually enough. Additional frames can provide
information for the background subtraction [23].

A simple solution to long streak detection is presented in
[21]. They use masking to remove stars (and other bright
objects). They try rotating the input frame and compute
the median across columns to detect streaks. The me-
dian is robust to outliers (residual stars). The most time-
consuming part of the method is the recomputation of
medians for different orientations. The angular space res-
olution needs to increase with an increasing frame size if
we wish to keep the angular precision. A short streak has
little effect on the median; therefore, the method is not
suitable for short streak detection.

The typical approach to long streak detection uses the
Radon transform [7, 24]. The Radon transform integrates
the signal along lines, without any early decision (un-
like in segmentation methods). Such an approach is op-
timal for the Gaussian distribution of background noise,
without additional sources (such as artifacts, stars). The
Radon transform requires a fine angular grid, which in-
creases the computational load. The authors demon-
strated the use of GPU [24] or the Fourier slice theorem
[7] as a viable option for speed up.

A single bright star can have a higher response than a long
faint streak since the integration is a linear map. A suit-
able solution is masking [24] because when a long streak
extends over a large portion of the image, the Radon
transform can recover it even if parts of the streak are cut-
off by masking. Alternatively, the method [19] uses dy-
namic programming and probabilistic formulation (non-
linear integration) and is able to deal with bright stars as
well. A modification of the method [2] uses a different

probabilistic formulation and subtracts a star catalog (sin-
gle frame approach).

Segmentation based methods [18, 13, 10, 4] are versa-
tile and fast. It is possible to detect multiple objects
and a wide variety of shapes. Unfortunately, the bina-
rization preprocessing (classification of pixels as either
background or foreground) introduces information loss
(early decision). A State-of-the-art method with a com-
plete pipeline is presented in [18].

1.3. Short Streaks

Shorter streaks span less than half (or a given percentile)
of the image. Taking several observations of the same
location will provide not only background information
but also additional observations of the same streaking ob-
ject. The multi-frame approach is therefore suitable for
the short streak problem. Short streaks are the main topic
of this paper.

A sub-category of these methods is the track-before-
detect approach. Such methods assume a set of streak pa-
rameters (length, width, and orientation). They align the
stack of images and find the brightest object(s) [20]; they
use the median to suppress stars. The stacking method is
resource hungry and is possible in cases where the set of
streak parameters is small [6]. The method can be modi-
fied with the particle filter [16] to decrease the computa-
tional time.

An alternative approach to track-before-detect first se-
lects candidates in individual frames (detect), then the
candidates are tracked in subsequent frames. While such
methods are faster in principle, it is possible that faint
streaks are not selected as candidates. Method LINE from
[22] is an example of a detect-before-track approach. An-
other method uses a modification of RANSAC [11]

The work [15] proves that the matched filter is the optimal
detection technique for maximizing signal-to-noise ratio
(SNR) in the presence of additive white noise. While the
optimality is a common argument for the matched filter
[17, 6], the white noise assumption is often not met. The
work [17] uses the matched filter on a single frame. The
method uses various heuristics to reduce false positives
from the background, but since the heuristics’ parameters
are cross-validated using simulated images only, they re-
port a large amount of false positives on the real data (pre-
cision 27%). The matched filter approach is compatible
with the stacking method, as demonstrated in work [6];
they also use multiple frames to suppress background.
The method [3] uses the matched filter with maximum-
likelihood to detect faint streaks.

Finding a sequence of streaks is a well-established prob-
lem, over the years, many solutions were designed. We
believe some aspects of commonly employed matched
filters received little attention. Instead of finding an opti-
mal filter, we examine a family of steerable filters [8] that



approximate the optimal filter, and for which the convo-
lution can be computed considerably faster. Steerable fil-
ter allows streak template rotation after convolution, by a
simple single-pixel computation, as detailed below. Their
main apparent weaknesses are greater memory require-
ments and filter class restrictions due to the steerability
requirement.

We use both the steerable filters and the standard tem-
plate, together with the stacking method. We show that
by using our steerable filter method, the decrease in the
accuracy is negligible, while the increase in speed is con-
siderable.

2. METHOD

We start by formally introducing the problem. We have
a sequence of images exposed in consecutive times I1:K ,
where 1 : K is condensed notation for I1, · · · , IK . We
assume there is a single streak sk in every single image
Ik. The image Ik has size m × n, where m is the num-
ber of rows and n is the number of columns. An example
of such a sequence is shown in Fig. 1. We further as-
sume the streaks originated from a single object moving
at a constant angular speed; therefore, we can constrain
the geometry of the sequence of streaks (orientation and
speed are constant). We solve the following task

s1:K = argmax
s1:K∈SKδ

F (I1:K , s1:K), (1)

where S = {(i, j, λ, φ) | i ∈ [1, · · · ,m], j ∈
[1, · · · , n], λ ∈ Sλ, φ ∈ [−π/2, π/2]} is a set of possi-
ble streaks, (i, j) is a streak centroid, λ is a streak length
from some set of lengths Sλ, φ is a streak orientation,
SK is a set of all streak sequences, and SKδ ⊆ SK is a
subset of consistent streak sequences. Streak sequence
sK = s1:K ∈ SK is consistent if the length and spac-
ing of the streaks are related according to the duration of
the exposure, the start of the exposure, and the expected
length. The ranking function F ranks a streak sequence,
and it is chosen according to our understanding of the
problem. The optimal ranking function F always assigns
the highest value to the best streak sequence.

The general method tries all possible streak sequences
sK ∈ SKδ , evaluates function F , and selects the globally
optimal streak sequence.

Streak sequences can be searched without the combinato-
rial explosion caused by growing K, based on the struc-
ture of δ. The number of combinations can still be large,
depending on the coarsity of the discretization of the sets
Sλ and Φ as shown in 2.5.

A simple choice for the function F is

Fr(I1:K , s1:K) =

K∑
k=1

r(Ik, sk), (2)

(a) standard template (b) steerable template

Figure 2: Visualisation of used templates, both with ori-
entation φ = 32◦. The standard template in 2a is created
by generating line segment with orientation φ = −32◦,
and convolving it with a 2D Gaussian (PSF). Steerable
template has parameters ρ = 1.44, L = 14 (parame-
ters are explained in Sec. 2.3). Note that the steerable
template is actually never computed during the detec-
tion procedure, the response to such filter is computed
directly from the base filter responses and combined by
(6), without repeated convolution. The steerable streak
filter domain is actually infinite, and the visualization is
discretized, and its domain clipped to a finite spatial in-
terval.

where r is the response of an image I to a streak filter T

r(I, s) =
[
I ∗ Tsφ,sλ

]
(is, js), (3)

where Tsφ,sλ is the streak filter (e.g., Fig. 2) that is param-
eterized by the length and orientation of a streak s ∈ S,
∗ is a linear convolution operator, and is, js is the middle-
point of the streak s. In this paper, we do not use (2), but
we learn the function F , as described in Sec. 2.4. The
function F computation speed is based on computing (3).

The main goal of this paper is increasing the speed of (3).
The implementation is based on (1), we use a learned
ranking function F to obtain the best streak sequence.
The reference method uses a general 2D template to
solve (3). Our proposed method uses a steerable approx-
imation of a streak template to solve (3).

We start by describing the image preprocessing in
Sec. 2.1, which is the same for both tested methods.
Sec. 2.2 details the reference and the proposed method.
The reference method is a standard brute force approach.
The proposed method, while functionally equal, uses a
steerable representation of a template and is designed to
be faster. Sec. 2.3 contains details regarding the steerable
templates. Finally, we present the learning of the ranking
model F (used by both methods).

Our data consists of triples of images (K = 3), hence our
streak sequences are streak triples t = (s1, s2, s3). The
implementation is prepared with this constrain. However,
the theoretical foundation of the approach has no such
limitation. Most steps could be used in their current form,
or with minimal modification.



2.1. Preprocessing

Broadly speaking, the goal of preprocessing is to sup-
press pixels in the background that could be mistaken for
a streak. We recognize two principal sources of such pix-
els. The first source is naturally contrasting objects, usu-
ally stars and streaks, for which we are not looking. The
second source is errors in the sensor, such as hot pixels,
dark pixels, and read-out errors (or broadly imaging arti-
facts).

During the computation of the filter response, the spa-
tial convolution aligns a filter with a portion of an im-
age, multiplies the values per pixel, and sums the prod-
ucts over all pixels. If the image contains some extreme
values, the response to the convolution is high even if the
overall image function shape does not match the filter.

We mitigate the impact of extreme values by construct-
ing a suppression mask of them. Pixels are marked as
extreme if the difference of their value from a reference
exceeds a threshold. Marked pixels are inpainted by a
neutral value (we use the median of the input image).

To define the reference value and the threshold, we need
to summarize the selected image statistics (median mI

and the standard deviation approximation σ̂I ). We ro-
bustly determine the standard deviation approximation σ̂I
of an image I pixel intensity by the median absolute de-
viation (MAD).

We detect bright stars as extreme pixels (|I −mI | < 2σ̂I
in every image). We mask pixels if there is a read-out
error (I − mI < −5σ̂I in at least a single image). We
use Alg. 1 to construct a mask of both artifacts and high-
intensity background objects.

We replace the maximum pixel intensity (clipping) with a
value γ that is high enough to preserve streaks and small
enough to reduce the effects of bright stars

Iclip(i, j) =


γ I(i, j)−mI > γ,

−γ I(i, j)−mI < γ,

I(i, j) otherwise.
(4)

Iclip(i, j) = min(γ, I(i, j)) for all (i, j). The clipping
is inspired by the method in [12], and it is the final step
of Alg. 2. Image clipping is used to limit the effect of
artifacts and high-intensity background objects that are
not captured by the mask from Alg. 1. We use the mask
to suppress the background in Alg. 2.

The final step is subtracting other images in a prepro-
cessed sequence

Ii = Ii −
1

2

∑
k∈{1,2,3}\i

Ik. (5)

1 function mask( I1, I2, I3):
// preprocessing algorithm

input : images I1,2,3 of size m× n
output: A binary mask of artifacts M of size

m× n
2 Ms ← true (m, n) ; // star
3 Mn ← false (m, n) ; // read-out

errors
4 Mnn ← false (m, n) ; // close to star
5 for i← 1 to 3 do
6 mI ← Median (Ii) ;
7 σ̂I ← 1.4826 ∗ Median (|Ii −mI | ) ;

// approximate σI for normal
distribution

8 Hs ← |Ii −mI | ≥ 2σ̂I ; // extreme
test, star

9 Hnn ← Hs ;
10 for win← [2, 3, 5] do
11 Imw ← medianWin (Iraw, win);

// median window
12 Hnn ← Hs OR |Imw −mI | ≥ 2σ̂I ;

// extreme test, star
13 end
14 Ms ←Ms OR Hs ; // star
15 Mnn ←Mnn AND Hnn ; // close to

stars
16 Mn ←Mn OR (Ii −mI) ≤ −5σ̂I ;

// single-side extreme test,
read-out error

17 end
18 M ← (Ms ANDMnn) ORMn ; // final

mask

Algorithm 1: Mask heuristic. A pixel is masked if it
is extreme in at least one image (Ms) and locally ex-
treme in some small window around the pixel (Mnn)
across all images. We split read-out mask and ignore
such pixels in every image (Mn).

2.2. Reference and Proposed Method

In this subsection, we describe the reference (standard)
and the proposed method in detail. Both are based on (1),
and the main difference is in how they compute (3). We
start by describing the reference method. Then, we de-
scribe our proposed method that is based on a steerable
representation of the streak template. Details about the
steerable template representation are in the next section.
The ranking is the same for both methods, and details are
provided in Sec. 2.4.

The reference follows (1). We iterate over angles,
lengths, and compute the responses for each streak tem-
plate in each image. Thus, we obtain K2 responses for
each streak sequence, and use the responses to evaluate
the function F (details in Sec. 2.4). The template is con-
structed by creating an oriented line segment that is con-
voluted with a Gaussian (approximate PSF), an example
is given in Fig. 2a. The FWHM (full width at half max-
imum) is around 5 px. The response to a template (ac-



1 function preprocess( Iraw, M , γ):
// preprocessing algorithm

input : A raw image Iraw of size m× n, to be
preprocessed

output: An image I , of size m× n, ready for
processing

2 I ← Iraw − medianWindow (Iraw, win);
// reduce constant background

3 mI ← Median (I) ;
4 I(M)← mI ; // artifacts are set

to the mean value
5 I(I > c)← c ; // clipping

Algorithm 2: Preprocessing heuristic, we use mask
M and clipping constant γ to increase the contrast
between a streak and background.

cording to (3)), is computed using the Fourier transform.
Given the length of searched streaks (up to 100 px), the
convolution in the frequency domain is much faster than
in the spatial domain. A summary is in Alg. 3.

The proposed method is similar to the reference method.
The only major difference is in the representation of
the template and the computation of (3). We use an
extendible and steerable representation of the template.
Consequence of such a representation is a much faster
computation of (3).

Steerable streak templates can be decomposed into a set
of base filters, with the property that it is possible to ob-
tain a rotated response after the convolution, not before it,
unlike in the classical matched filter [5]. Steerable tem-
plate is given by the equation

Tφ(i, j) = <

[
L∑
l=0

tl exp(ilφ) · ql(i, j)

]
, (6)

where the complex base filter ql will be defined in (14),
and it is visualized in Fig. 3. Further details about the
base filter ql are provided in Sec. 2.3. The complex scalar
exp(ilφ) rotates the base filter ql, i is the imaginary unit,
· is the complex dot product, tl is a complex scalar that
encodes the filter shape, l is the order of the base filter,
and< is the real part of a complex scalar. Possible shapes
that can be encoded by tl are discussed in [8]. We are
interested in the line-segment shape that we use as our
steerable streak filter. The line segment is then given by
the following encoding of tl [8]

tl =

{
1 if l is even,
0 if l is odd.

(7)

Visualization of the steerable line segment (streak) filter
is in Fig. 2b. Note that L is much smaller than the size
of the streak filter Tφ, and that the method does not com-
pute a concrete response Tφ(i, j) for a given angle φ, but
rather a function of φ at every pixel (i, j). Evaluating
such a function for a given angle φ is then much faster

than the dot product of the rotated streak filter and the
image at position (i, j).

Specifically, we can compute the convolution in (3) much
faster if we use (6)

rφ(i, j) = (Tφ∗I)(i, j) = <

[
L∑
l=0

tl exp(ilφ) · [ql ∗ I](i, j)

]
,

(8)
for which we introduce a spatially varying function for
the convolution of the input image I with a base filter ql

f l(i, j) = [ql ∗ I](i, j), (9)

we call f l the feature of lth-order, and we use the features
to simplify (8) as follows

rφ(i, j) = <

[
L∑
l=0

tl exp(ilφ) · f l(i, j)

]
. (10)

As discussed in [8] and illustrated in Fig. 5 L is related
to the length of the resulting streak. Therefore, L induces
lengths discretization Sλ, and we can obtain response for
different lengths from Sλ recursively, by reusing the re-
sponse of shorter streaks

rlφ(i, j) = rl−1φ (i, j) + <
[
tl exp(ilφ) · f l(i, j)

]
, (11)

where r0φ(i, j) = f0(i, j), and rlφ(i, j) is response up
to the order l. The relation between the actual template
length λ and the order l, is explored in Subsec. 2.3. The
summary of the method is in Alg. 4.

trank

2.3. Steerable Template

This subsection explains the essential details of the pro-
posed method steerable template. We start by explain-
ing the form of the base filter ql. The rest of the subsec-
tion describes a machine learning approach that links the
length λ and the desired width w of the steerable streak
template with the maximal order L and the parameter ρ
of the base filter ql.

Due to the computational efficiency, we work in the fre-
quency domain. Let q̂l denote the discrete Fourier rep-
resentation of ql. We construct the q̂l in the following
way

q̂l(u) = p(u; ρ) ·
(

i
u

‖u‖

)l
, (12)

where u are coordinates in the frequency domain, p(u; ρ)
is the Poisson kernel (isotropic bandpass filter), l is the
order of the base filter, i is the imaginary unit, and ‖·‖ is
the Euclidean norm. The Poisson kernel is defined in the
following way

p(u; ρ) = F
(
ρcρ
2π

1

(x2 + y2 + ρ2)−3/2

)
, (13)



1 function reference( I1,2,3, Sλ, Φ):
// reference method

input : A triple of images I1,2,3 of size m× n,
preprocessed and mutually subtracted

output: the best streak triple t

2 Î1,2,3 ← FFT(I1,2,3) ; // FFT
3 tbest ← [] ; // best triple
4 tbest rank ← 0 ; // ranking value
5 for φ← Φ do
6 for λ← Sλ do
7 T̂ ← template ref(λ, φ) ;

// template
8 for i← [1, 2, 3] do
9 Ri ← IFFT (Îi � T̂ ) ;

// convolution
10 end
11 ts← generate triples(λ, φ) ; // SK

12 trank ← triples ranking(t, R1,2,3) ;
// Pstreak from (21)

13 trank ← Pstreak(t, R1,2,3) ; // (21)
14 if max(trank) > tbest rank then
15 idx← argmaxi(trank[i]) ;

// best triple index
16 tbest ← t[idx] ; // best triple
17 tbest rank ← trank[idx] ; // best

ranking
18 end
19 end
20 end

Algorithm 3: Reference algorithm.

where F is the Fourier transform, ρ is the scale, (x, y)
are spatial coordinates, and cρ is a normalization con-

stant. The term
(

i u
‖u‖

)l
is known as the generalized

Hilbert transform or higher-order Riesz transform [8]. Fi-
nally, the base filter ql is obtained from (12) by the inverse
Fourier transform F−1

ql(i, j) = F−1(q̂l(u)), (14)

we can also call the ql(i, j) the lth-order spherical
quadrature filter (SQF), its spatial visualization is shown
in Fig. 3.

By varying the parameters ρ and L, the steerable streak
filter changes its width (Fig. 4) and effective length
(Fig. 5). Variable ρ is the scale of the isotropic band-
pass filter in (12). This corresponds to the observation in
[8] “As the maximum order of SQF used increases, the
kernel1 corresponding to the maximal solution increases
in size and orientation selectivity”.

We did several numerical experiments, where we tried
various combinations of scale ρ and the maximum order
L. We empirically observed a direct proportion between
the scale ρ of the p(u; ρ) and the width w of the steerable

1The kernel corresponds to our steerable streak filter Tφ in (6)

1 function steerable( I1,2,3, Sλ, Φ):
// steerable filter method

input : A triple of images I1,2,3 of size m× n,
preprocessed and mutually subtracted

output: the best streak triple t

2 F1,2,3 ← SF(I1,2,3) ; // steerable
features (9)

3 tbest ← [] ; // best triple
4 tbest rank ← 0 ; // ranking value
5 for phi← Φ do
6 R1,2,3 ← zeros(m,n) ; // responses
7 for λ← Sλ do
8 for i← [1, 2, 3] do
9 Ri ← SFresp(Fi, Ri) ; // (11)

10 end
11 t← generate triples(λ, φ) ; // SK

12 trank ← triples ranking(t, R1,2,3) ;
// Pstreak from (21)

13 if max(trank) > tbest rank then
14 idx← argmaxi(trank[i]) ;

// best triple index
15 tbest ← t[idx] ; // best triple
16 tbest rank ← trank[idx] ; // best

ranking
17 end
18 end
19 end

Algorithm 4: Steerable filter algorithm.

streak filter. We used these observations to fit a linear
regression model that maps a width w to scale ρ

ρ(w) = a1w + a0, (15)

where ρ is the scale of the isotropic bandpass filter, w is
the expected width of a streak and a0, a1 are the param-
eters of a linear regression model. A visualization is in
Fig. 6.

We also empirically observed the relation between length
λ and order L. We tried different scales ρ, iterated over
maximum orders L, and observed the resulting length in
Fig. 7a. Fig. 7a shows that for a fixed ρ, the maximum

Figure 3: Spatial representation of the base filter ql
from (12), left to right are orders (l) from 0th to 4th. The
top row is the real part, the bottom row is the imaginary
part.



(a) ρ = 1 (b) ρ = 2 (c) ρ = 10

Figure 4: Steerable streak filter shown with different
scales ρ. We set L = 8 in every image.

(a) L = 8 (b) L = 16 (c) L = 64

Figure 5: Steerable streak filter shown with different
maximal order L.

order L is a linear function of the length

L(λ,w) = λb(ρ(w)), (16)

where b is the slope of the linear function. We observed
the values of b in Fig 7b (numeric simulation). We ex-
perimentally determined the following model for b (fitted
function in Fig 7b).

b(ρ(w)) =
c0

ρ(w) + c1
, (17)

where c0, c1 are the parameters of polynomial regression.

Finally, we can compute a set of discrete lengths Sλ, for
a given maximal L. We use the inverse of (16) and plug
in all l ∈ {0, 2, 4, . . . , L}

Sλ =

{
l

b(ρ(w))

∣∣∣∣l ∈ {0, 2, 4, . . . , L}} . (18)

In summary, given the desired maximal length λ, and
width w of a steerable streak filter, we have the neces-
sary function for obtaining the maximum order L in (16),
scale ρ in (15), and the set Sλ in(18).

2.4. Streak Sequence Ranking

Both methods compute a ranking value for all streak se-
quences from SKδ , and select the best streak sequence.
We designed a nontrivial ranking function F in (1) that is
able to calibrate to our data, templates, and preprocess-
ing. Without loss of generality, we assume that the num-
ber of elements of a sequence (both image and streak) is
fixed to K = 3, therefore, the streak sequences are streak
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Figure 7: The plots show the relation between length λ,
scale ρ, and the maximum order L. Fig. 7a shows relation
between length λ of a steerable streak filter, and maxi-
mum order L, when scale ρ is fixed. The relation is a line
with a single parameter b(ρ). The circles of various col-
ors show different measurements, while the red lines are
fitted linear functions (best viewed in zoomed-in PDF).
Second Fig. 7b shows the inverse relation between b and
ρ. The blue circles show measurements, the red curve is
a fitted function from (17).

triples t = (s1, s2, s3). Streak triple t is located in an im-
age triple I1,2,3. We further assume that the streak triple
t has orientation φ, middle points (i, j)1,2,3, and length
λ.

We introduce a ranking function Pstreak(t) =
F (I1, I2, I3, t) for triples, where we omit the input
image triple for simplification. Function Pstreak(t)
represents our learned belief that a streak triple t is a true
positive triple (the higher Pstreak, the better). We start by
describing a suitable feature representation of the triple
t, then we explain how we construct the model.

Based on the streak triple parameters, we compute a tem-
plate with orientation φ and length λ. We collect re-
sponses at each of the streak’s middle points in each im-
age. In total, we have nine different responses denoted
r

r =

[
r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

]
, (19)

where rkI ,kt is the response in the image kI ∈ {1, 2, 3}
of the streak middle point with index kt ∈ {1, 2, 3}. The
diagonal elements of r are the responses of streaks in their



images, and the other elements are the responses of the
background (in the streak positions).

We assume that true positive triples shall have (1) high re-
sponses for kI = kt (diagonal), (2) the diagonal elements
of r are similar, and (3) the other elements (background
responses) are close to zero. A true negative triple breaks
any of these conditions.

We define rv = vec(r), where the function vec is the
matrix vectorization. We define the variables

x = (rv, tri(rvr
T
v )), (20)

where the function tri returns a vector of upper trian-
gular elements of the input matrix rvr

T
v . Our feature

space mapping maps responses r into features x, which
are monomials of the responses up to the degree of two.
Such feature space is rich enough to capture the ex-
pected standard deviation and expected mean value of
any combination of responses r, which captures our in-
tuition about the problem (low difference between streak
responses, sufficiently high cumulative streak response,
and low background responses, or constantly high back-
ground responses). We normalize the feature vectors x,
to have zero mean and unit variance. The simplest rank-
ing model (2) would use the cumulative response of triple
V t, but such a model does not use all available informa-
tion and it is not robust. Undesirable configurations, such
as a strong residual artifact in a single frame, would gain
high rank.

We learn Pstreak as a multinomial logistic regression
model with the logit link function [1]

log
Pstreak(t)

Pbackground(t)
= b0 +

B∑
i=1

bixi(t), (21)

where Pbackground(t) = 1 − Pstreak(t) is the complemen-
tary (probability) function that t is false positive, B is the
length of the vector b, bi are the vector b elements, xi
are features that represent the input triple t, and their ex-
planations follow. Function Pstreak(t) domain is [0, 1] due
to the choice of the logistic model, and can be consid-
ered a probability function of a random sequence t being
a streak sequence.

Our learning objective function is

derr(y{N}, r{N};b) =

1

N

N∑
j

1(ŷ(xj ;b) 6= yj) + η

B∑
i

|bi|,
(22)

where N is the number of training samples, 1 is the in-
dicator function, η is the regularization hyperparameter,
and ŷ is a binary classifier

ŷ(x;b) =

{
1 if b0 +

∑B
i=1 bixi(t) > 0,

0 otherwise.
(23)

The LASSO regularization term η
∑B
i |bi| is known to

perform variable selection and yields sparse models [1].

2.5. Complexity

In this section, we discuss an approximate theoretical
time complexity. We later report the runtime of the imple-
mentation. Since the implementation is in MATLAB, and
it is unlikely that the deployment of the method would be
in MATLAB, we added this section to show the method
potential. The complexity analyse assumes a constant
number of images (triple), and a constant number of rank-
ing model parameters.

The reference method specific preprocessing (FFT) takes
O(mn log(mn)). The processing time of Alg. 3 takes
O(mn log(mn)LÂ) where Â is the number of angles,
we evaluate, and L is size of the set Sλ (see (18)).

The proposed method specific preprocessing (steerable
features construction) takes O(mn log(mn) +mnL) (in
the frequency domain). The processing time of Alg. 4
takes O(mnLÂ).

The cost we pay for the overall speedup is a greater mem-
ory cost. The steerable streak template representation has
memory requirements O(mnL).

3. DATA

Experiments are based on a real dataset. We start by man-
ually annotating the real dataset. Manually annotated real
data are then used for obtaining a semi-synthetic dataset.

Images were obtained from the observatory located in
the Niefla mountains (Ciudad Real, Spain), details are in
[14]. The effective image size is 512(V)×512(H), and
exposure times are ranging from 2.16 to 7.68 s. The tele-
scope has activated sidereal tracking.

We performed the experiments on a machine with the
processor Intel Core i7-5820K CPU @ 3.30GHz × 12
and memory 64 [GiB].

3.1. Annotation

We have manually annotated 500 images in the following
manner

• Perform preprocessing for an image triple using
Alg. 2.

• For each image in the triple with a visible streak,
manually mark the endpoints ek1,2 of the visible
streak with a pixel accuracy, where 1, 2 are the in-
dexes of endpoints, and k ∈ {1, 2, 3} is the index of
the image.

• Mark the virtual end-points ek1,2 = NaN of an unob-
servable streak. We use NaN (not a number) to in-
dicate an unknown location of the streak’s endpoint.



We manually annotate endpoints because endpoints offer
higher visual contrast than the centroids. We use only im-
age triples where all streaks are visible. Once we exclude
triples that do not contain fully observable streak triples,
we have 273 images.

Endpoints are used to recover centroids that are more
practical for evaluation

ok =
ek1 + ek2

2
. (24)

The manually annotated dataset serves two purposes, (1)
we use it for generating semi-synthetic dataset, (2) we use
it for real-data testing.

3.2. Semi-synthetic Dataset

Semi-synthetic dataset mixes real background images
with synthetic streaks [18]. Our semi-synthetic dataset is
created from annotated images. Pixels with streaks (ac-
cording to annotation) are replaced with the mean back-
ground value. Such an image is considered a background,
although barely visible streaks might be still present.
Thus, any false positive detection can actually be true
positive (just invisible to the annotator).

The synthetic streak shape is a convolution of a simple
line segment with a 1D Gaussian (perpendicular to its di-
rection). FWHM (full width at half maximum) of PSF is
set to 5 px.

We define signal-to-noise ratio (SNR)

SNR =
A

σ̂
, (25)

where σ̂ is background noise approximation by MAD,
and A is the amplitude of the synthesized streak.

We sample synthetic streaks with a random orientation
from [−π, π], SNR ∈ [0.5, 2], and length ∈ [20, 50] px.
Distance between streaks in a sequence is computed from
the exposure and observation time. Synthetic streaks
are added to the background images, thus creating semi-
synthetic images.

Hence, we can generate any number of streaks on a re-
alistic background. Both ranking and speed experiments
use the semi-synthetic dataset, because we have higher
control of parameters of the experiments.

The accuracy testing dataset uses a smaller set of angles
(precisely 10 angles) that both the reference and proposed
methods check. This means we can evaluate the samples
at a reduced computational cost. We took care to make
the whole process very similar to the case, where the an-
gle set is much larger. Synthetic streak sequence orien-
tation was sampled from the small set of angles, but the
orientation was subsequently uniformly distorted by one
degree. Angular distortion preserves the effects of uni-
form angular sampling and discretization.

3.3. Training Data

Training data are solely for learning the ranking func-
tion F . Learning requires negative samples (back-
ground/artifact triples) and positive samples (real streak
triples). Training data are similar to the semi-synthetic
data, the main difference is that they are sets of nega-
tive/positive triples, not images. There is 107 training
samples in total.

We start by taking the real annotated images to ob-
tain the background image triples (same as the semi-
synthetic dataset). We sample 107 random streak triples
in the background images (background samples). Sam-
pled triples are represented by (19), given we sample in
background images, we can assume that the responses in
(19) are dominated by background noise/artifacts (there
is no actual streak). The streak triple sampling is strati-
fied for background image triples, streak orientations, and
streak lengths. Even if the background images contain
residual streaks (invisible to the annotator), they will be
just a small fraction of all samples, and they will impact
the learning minimally.

We artificially modified the background samples to im-
prove the quality of training. One quarter of the back-
ground samples were unmodified (negative samples), one
quarter had added a synthetic response in a single frame
(single row in (19)) to imitate a background with resid-
ual artifacts (more challenging negative samples). The
rest had added synthetic streak response (positive sam-
ples with SNR ∈ [0.5, 2]). Together, these samples form
our training data, where both negative and positive sam-
ples are equally represented.

4. RANKING LEARNING

This section describes the training of the parameters bi
in the ranking model (21). We use the training data that
are described in Sec. 3. During training, we train several
models (21), and select the best one.

We used the training data to train the model (21) with the
objective function (22). We learned several models for
various regularization constant η, and we used LASSO
[1] to yield sparse models. We selected the best model
(trade-off between accuracy and generalization).

Model selection for the reference method is illustrated in
Fig. 8. Note that the number of parameters decreases as
the regularization constant η increases. We can see a sud-
den drop in the number of parameters in the nonzero pa-
rameters, marked with the green circle. We looked at the
associated 14 nonzero coefficients and discovered an in-
tuitive interpretation of the selected parameters. Positive
parameters are associated with the diagonal response ele-
ments ri,j=i, streaks with high response were easily dis-
tinguished by the model (21). Negative parameters are
mainly associated with r2i,j 6=i, and partially with ri,j 6=i.
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Figure 8: Model selection for reference method. The blue
line is model error from cross-validation. The red line is
model complexity (number of nonzero-coefficients). The
selected model has a green circle. Selection was based on
this plot, and our inspection of learned parameters.

Learned ranking model, therefore, rejects stationary ob-
jects with high response.

After reference model selection, we fixed the number of
parameters, and learned the proposed model. We united
the number of parameters (both models had 14 param-
eters), so that the comparison between the two learned
models, and thus the methods, is fair.

The selected ranking models were complex enough to in-
clude second-order monomials that we assumed can com-
pensate nonsuppressed artifacts.

5. RESULTS AND DISCUSSION

Our main goal was to prove that the proposed method
is considerably faster, and the restricted class of steer-
able templates creates only a mild decrease in accuracy.
We start by presenting the accuracy evaluation. Sub-
sequently, we analysed the real data accuracy, which
had very similar results for both methods. Therefore,
we tested more challenging semi-synthetic data (SNR
∈ [0.5, 2]), and found out that the proposed method ac-
curacy is similar to the reference method. Finally, we
measured the runtime, and we determined that the convo-
lution with steerable filters is 18 times faster.

5.1. Accuracy Evaluation

Both Alg. 3 and Alg. 4 find a streak triple t. For the eval-
uation of the results, we use the mean distance between
the ground truth and the detected centroids of the streak

triple

de =
1

3

3∑
k=1

∥∥okt − okgt∥∥ , (26)

where okt is found centroid, okgt is the ground truth, and k
is the image index. We say that the evaluation is success-
ful if de < θR = 15px.

We observed that detections that have incorrect orienta-
tions also have large de. Therefore, we use only de for
the evaluation. Our evaluation is more taxing on the long
streaks, because an error in direction results in a greater
increase of the mean distance between the centroids.

The accuracy results are summarized by true positive
rate (TPR). TPR is the ratio between true positive (cor-
rectly classified) and positive samples. We do not study
negative samples, because it is principally impossible to
distinguish between a background (true negative) and a
streak sequence that is invisible to an annotator (false
negative).

5.2. Real Data Accuracy

Note that since the manual annotation process is not per-
fect, both methods could recover streaks that are possibly
superior to manual annotation. Overall, in all annotated
cases, both methods detected the positions, even though
the validation was trained on the semi-synthetic training
data. The mean distance for each sample can be seen in
Fig. 9, although the proposed method appears to be a little
more accurate, the difference is small.

In our opinion, the lack of failures shows that manu-
ally annotated data is not directly suitable for validation
evaluation. Real samples with small SNR are both in-
accurate and hard to obtain, moreover, each sample is
costly (manual annotation). Manual annotation is, there-
fore, mainly suitable for generating background images
for semi-synthetic data.

5.3. Semi-synthetic Data Accuracy

The TPR results are in Fig. 10. Cumulatively, the pro-
posed method had lower accuracy by 0.5%. Given the
number of samples and the advantage of the reference
method, the difference seems negligible. This result sup-
ports our previous assumption that filter selection is less
important than model selection.

Possible interpretation of these (perhaps surprising) re-
sults, is that the streak sequence feature representation is
sufficiently rich in information to compensate for the dif-
ference in the templates. Further research is needed.

Fig. 10 also shows that the methods behave differently for
different ranges of SNR. The proposed method is slightly
more precise for the lower ranges of SNR. A possible



Figure 9: Annotated data error.

explanation is that the reference method is slightly over-
trained for the higher SNR range or the proposed method
is more suitable for low-SNR streaks. Both are topics for
future research.

5.4. Runtime

We show that the proposed approach provides a substan-
tial speed-up of the convolution. Other parts are mea-
sured as well, but computing convolution is an integral
part of almost any method, and we gave it the most at-
tention. Keep in mind that the proposed method requires
more costly preprocessing (mainly memory wise). We as-
sumed that preprocessing will be slower for the proposed
method, while convolution will be much slower for the
reference method. The results are in Tab 1.

The convolution was more than 18 times faster. The pre-
processing time for the reference method was negligible
(just Fourier transform of the input image), and the pro-
posed method had greater requirements. Given the over-
all runtime requirements, the proposed method prepro-
cessing does not hinder performance. The speedup of the
full algorithm, including the ranking and preprocessing,
was still significant at 40%.

The ranking in its current form is very time consuming,
because it checks every streak sequence in the search
space, and its current implementation is not yet suitable
for deployment. Overhead time includes indexing/triple
selection and was not directly optimized in our current
implementation.

6. CONCLUSIONS

In conclusion, the proposed method is a faster alterna-
tive to the reference method, with minimal loss of ac-

part standard [s] proposed [s]
preprocessing 1.12 1.83

image 1.10 1.12
method 0.02 0.71

processing 510.67 359.47
convolution 164.71 8.83

ranking 222.79 226.68
overhead 123.18 123.96
complete 511.79 361.30

Table 1: Overhead includes indexing/triple selection. The
difference is only in method preprocessing time (the pro-
posed method is slower), and convolution time (the pro-
posed method is faster).

Figure 10: True positive rate (TPR) for semi-synthetic
data. Note that for SNR ∈ [0.5, 0.8], TPR is actually
better for the proposed method. Overall, the reference
method achieves slightly better results (0.5% better).

curacy. The only drawback is the increased memory re-
quirements.

The convolution with the steerable template was 18 times
faster than the standard convolution (with FFT). More-
over, the steerable convolution can produce a response
on-demand for just a few selected pixels (just like spa-
tial convolution). This could be leveraged in more ef-
ficient algorithms that dynamically control the search
space. Any method that employs the standard template
could be improved by the steerable template.

It should be also noted that the steerable template can rep-
resent a much wider range of shapes than just the streak
segment [8]. Moreover, the steerable representation is
a compressed representation of the template, and can be
used in various machine learning algorithms.

The proposed method has a low loss of accuracy when
using our ranking model that uses all available informa-
tion.



The proposed method has higher memory requirements,
and they increase with the length of processed streaks.
The proposed method is therefore excellent for shorter
streaks. Longer streaks (> 100 px) might require split-
ting the input images.

A relatively simple decrease in runtime would be
achieved by selective ranking. Most triples could be re-
jected by a simpler, thus faster ranking model. As a re-
sult, the validation would take a fraction of time. The
steerable representation is suitable to produce various
features, which could be used for early rejection. This
is a topic for a further improvement of the implementa-
tion. Note that the standard approach is not suitable for
this approach.

Finally, the method is implemented for triples (due to the
source of data), but could be easily generalized to se-
quences of arbitrary length.
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19. R. Šára and V. Cvrček. Faint streak detection with
certificate by adaptive multi-level Bayesian infer-
ence. In 7th European Conference on Space Debris,
2017.

20. T. Yanagisawa and H. Kurosaki. Detection of faint
GEO objects using JAXA’s fast analysis methods.
Transactions of the Japan Society for Aeronautical
and Space Sciences, Aerospace Technology Japan,
10(28):29 – 35, 2012.

21. T. Yanagisawa and A. Nakajima. Detection of small
LEO debris with line detection method. Transactions
of the Japan Society for Aeronautical and Space Sci-
ences, 47(158):240–248, 2005.

22. T. Yanagisawa, H. Kurosaki, H. Banno, Y. Kitazawa,
M. Uetsuhara, and T. Hanada. Comparison between
four detection algorithms for GEO objects. In Pro-
ceedings of the Advanced Maui Optical and Space
Surveillance Technologies Conference, 2012.

23. B. Zackay, E. O. Ofek, and A. Gal-Yam. Proper
image subtraction—optimal transient detection, pho-
tometry, and hypothesis testing. The Astrophysical
Journal, 830(1):27, 2016.

24. P. C. Zimmer, M. R. Ackermann, and J. T. McGraw.
GPU-accelerated faint streak detection for uncued
surveillance of LEO. In Advanced Maui Optical and
Space Surveillance Technologies Conference, 2013.

http://www.sciencedirect.com/science/article/pii/S0273117719307392
http://www.sciencedirect.com/science/article/pii/S0273117719307392
http://www.sciencedirect.com/science/article/pii/S0273117719307392

	Introduction
	Background Suppression
	Long Streaks
	Short Streaks

	Method
	Preprocessing
	Reference and Proposed Method
	Steerable Template
	Streak Sequence Ranking
	Complexity

	Data
	Annotation
	Semi-synthetic Dataset
	Training Data

	Ranking Learning
	Results and Discussion
	Accuracy Evaluation
	Real Data Accuracy
	Semi-synthetic Data Accuracy
	Runtime

	Conclusions

