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ABSTRACT

Optical ground-based observations of objects in Earth or-
bit produce images where light from stars and satellites
may be spread over hundreds or thousands of pixels. This
paper addresses the challenges of detecting and locating
streaked objects with a new algorithm, and presents a new
plate-solving technique that is robust for images where
many stars may not be identified due to streaking. The
image processing techniques are demonstrated on a se-
ries of 15 observations from a ground-based telescope.
An average of 11.7 streaked stars were identified per im-
age with an average of less than 1 arcsecond of error in
star vectors.

Keywords: Space debris; image processing; optical ob-
servation; streak detection; plate solving; pattern match-
ing.

1. INTRODUCTION

Optical observations of faint objects in Earth orbit typi-
cally use long exposure times to gather as much light as
possible when tracking them. This causes stars to streak
over many pixels in the image, which makes detecting
and locating them difficult. Consistent detection and ac-
curate location of stars is important to be able to properly
identify them in a reference catalog and generate a precise
attitude estimate, which is used to calculate the directions
to other objects of interest in an image.

The standard method of detecting objects in black and
white images is to apply a simple threshold to each pixel
based on the noise level of the background [8]. The
threshold is typically chosen to be several standard de-
viations above the mean background so that the proba-
bility of detecting random noise is small. There are sev-
eral strategies to decrease the required threshold without
increasing false positive detections. If the point-spread
function (PSF) spreads over many pixels, detections may
be filtered such that groups of neighboring pixels are de-
tected together. Assuming noise in each pixel is indepen-
dent of its neighbors, the likelihood that several neigh-
boring pixels all exceed a threshold due to noise is small.
Gaussian smoothing is also commonly used to reduce
noise.

When streaks are expected in an image, the ability to de-
tect objects can be improved by evaluating groups of pix-
els together. Zimmer et. al. created a method intended for
Graphics Processing Units (GPUs) which uses a modified
Radon transform over the whole range of possible angles
(0◦to 180◦) and finds anomalies compared to what would
be expected from noise [15]. Vananti et. al. developed a
technique where the filter in the shape of a streak was ap-
proximated and convolved with an image [12]. By mod-
ifying the parameters of the filter, the best fits for each
streak can be estimated. Lastly, Schneider et. al. de-
rived a more rigorous mathematical model of a streak by
convolving a Point Spread Function with a rectangular
function [9], which was used in the algorithm given by
Dawson et. al. [3]. This algorithm characterizes a streak
by five parameters, and then searches the entire parame-
ter space by computing a log-likelihood of every possible
streak to occur in the image.

Once objects have been detected and located, the stars
in an image are used to perform a plate-solving proce-
dure. Plate-solving is similar to spacecraft attitude deter-
mination using a star tracker, except that a-priori knowl-
edge is expected to be available as ground-based obser-
vatories can record their azimuth and elevation during
an observation. Additionally, star trackers usually have
very limited memory and computing requirements, so al-
gorithms developed for them seek to minimize the size
of the stored on-board catalog and simplify the match-
ing strategy. Spratling and Mortari published a review
of many star tracker matching algorithms in 2009 [11].
The most common strategy is matching angles between
star vectors, or a similar property like the dot product, as
is done in Mortari’s Search-Less Algorithm [6]. Other
methods match properties of planar [2] or spherical trian-
gles [1] formed by star unit vectors. In 1997, Padgett and
Kreutz-Delgato [7] published a unique pattern-matching
algorithm, that projects star vectors onto a Cartesian grid.
Cartesian grids from the image and the reference catalog
must be aligned with each other to be matched, so the
grid’s x-axis is chosen to be the direction of the closest
star to the central star. But because star streaks often can-
not be precisely located in an image and are sometimes
left out of the pattern matching process altogether, it is
difficult to guarantee that the axis-defining star of the im-
age pattern will be correctly located so that the patterns
can be properly aligned for matching. A modified grid
algorithm that uses a polar grid was proposed in 2007 by
Lee et. al. [5]. With this method, the so-called ”pivot
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star” can be re-selected, increasing the probability that a
matching pattern will be found. Other methods using in-
formation similar to polar coordinates for matching pat-
terns have also been proposed that match the radial and
cyclic information of each star separately [14, 13].

In this paper, we describe a detection method that uses
a similar strategy to the line integration technique de-
scribed in [15], but which allows pixels to be grouped into
wider lines and uses cumulative sums to evaluate sections
of any length within each line. Then, a polar grid pattern
matching algorithm is presented that allows patterns to be
matched even if the star that defines the pattern’s axis is
different in the image pattern and catalog pattern. These
techniques are demonstrated on a series of images taken
with the POGS telescope.

2. METHODS

A 14-inch (35.6 cm) Corrected Dall-Kirkham telescope,
referred to as the Purdue Optical Ground Survey (POGS)
telescope is operated by the Space Information Dynam-
ics (SID) research group at Purdue University to col-
lect optical image data of objects in Earth orbit. Two
of the processing techniques for interpreting data from
these images are described and their effectiveness ana-
lyzed. Two types of observations are typical: sidereally
tracked images with stationary stars, and object-tracked
images where stars streak across the image. First, a novel
strategy of efficiently identifying faint streaking objects
in an image is described along with the method of dis-
tinguishing stars from other objects of interest. Second, a
new plate-solving algorithm used to accurately determine
the pointing direction (and therefore the directions to ob-
jects in images in the inertial reference frame) using large
numbers of identified stars is detailed.

2.1. Image Processing

To quickly detect arbitrary faint streaking objects, large
groups of pixels must be considered together, so that the
noise largely cancels out. If the variance of the local
background of the image is σ2, then the variance of the
mean of n background pixels is σ2/n due to the law of
large numbers. This fact allows the detections of streaked
objects with much lower SNRs than is possible with tradi-
tional image processing techniques that apply thresholds
to individual pixels, even with other filtering tricks. A de-
tection can be made when the mean of the data numbers
DNi for a group of n pixels exceeds a threshold based on
the local noise level σ.

1

n

n∑
i=0

DNi ≥ B + T
σ√
n

(1)

where B is the local background level and T would de-
fine the threshold in terms of the number of standard de-
viations of the mean of the group. If the background of

the image is subtracted, this expression can be simplified
for convenience.

n∑
i=0

DNi ≥ Tσ
√
n (2)

The challenge of doing this efficiently is that there are too
many possible combinations of neighboring pixels (that
is, streaks with different orientations and lengths) to con-
sider each combination separately. To do so comprehen-
sively would require an O(n2) algorithm, where n is the
number of pixels in an image, which would not be feasi-
ble for processing large images (4096x4096 px in POGS
case) at the same rate that the images can be produced.
The strategy implemented to mitigate this problem is to
take advantage of the simple geometry of streaks and the
fact that pixels in streaks that potentially overlap should
not have to be summed up multiple times. That is, if one
wishes to test if some group of pixels numbered {1, ...,
n} exceeds the desired threshold to decide if they make
a detection, there is no need to sum up the same pixels
again when testing a larger group of pixels numbered {1,
..., n + 1}, or an overlapping group like {2, ..., n + 1}.
Accomplishing this is somewhat memory intensive in the
pursuit of ”saving” already completed work, but all infor-
mation can be stored in arrays adding up to the same size
as the original image.

First, the background must be accurately estimated and
subtracted from the image, such that the expected value
of any pixel receiving no star or object signal is zero, and
pixels with data numbers below the background level take
negative values. The background is estimated iteratively,
beginning with the mean value of all pixels in the image.
In each iteration, pixels are added to a mask if they are
likely to have received signals from stars or objects, and
an improved background estimate is calculated from the
pixels not in the mask. The background is modeled as
a paraboloid. Two-dimensional polynomial coefficients
are estimated by a linear least squares procedure. The
iteration stops if no new pixels are added to the mask.

Then the image is divided up by lines made at some cho-
sen angle and spaced with some desired width, which
should be on the order of the width of the PSF (i.e. the
expected width of streaking objects), as shown in Figure
1.

Pixels between each of the lines are grouped together as
shown in Figure 2 and cumulative sums are computed
along each of those groups, as illustrated in Figure 3.

Then the sums of different groups of pixels along each of
those lines may be computed by a single subtraction of
two values in the cumulative sum. This reduces the num-
ber of operations needed for each ”test,” but a compre-
hensive check for all combinations would still be O(n2).
However, if one chooses to test for only streaks of a sen-
sible, finite set of lengths, virtually the same results may
be achieved. We propose choosing to test for streaks of
exponentially increasing numbers of pixels (10, 20, 40,



Figure 1. A small artificially generated sample image
with several streaks of various sizes and orientations is
shown.

Figure 2. The same image shown in Figure 1 is overlaid
with colored markers showing how pixels are grouped
into lines with a width of three pixels.

Figure 3. The cumulative sum of each of the lines from
Figure 2 is plotted in the third dimension.

80, 160, 320, etc.), essentially reducing the search for de-
tectable objects in an image to O(n log n), while main-
taining nearly optimal sensitivity to detect streaks near
the selected threshold T . This process should be repeated
for a variety of angles between 0◦and 180◦to increase the
chances that the cumulative sums will overlap a signifi-
cant portion of pixels in any detectable streaks in an im-
age.

Once all detections are made, the actual streak parameters
(position, length, orientation) are estimated with a quasi-
Newton iterative algorithm that fits a mathematical model
of a streak to the data numbers. Streaks are modeled as
a convolution between a Gaussian point spread function
and a 2-dimensional rectangular window as proposed by
[9, 3]. Using the same notation as in those papers, the
PSF is given by:

Π(H) = exp
(
− 1

2
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Π

)
(3)

where H is a location relative to the center of the PSF
and σΠ is the width of the PSF (in pixel widths).
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where l0 is the surface brightness of the streak (luminos-
ity per unit area), L is the length of the streak (in pixel
widths), andHx andHy are defined as:

Hx = cosφ0(x− x0)− sinφ0(y − y0) (5)
Hy = sinφ0(x− x0) + cosφ0(y − y0) (6)

where x and y are any location in the image. The intensity
of the streak at [x, y] is then:
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where σy is the width of the rectangular window function
(in pixel widths). Ideally, the PSF would be convolved
with a one-dimensional line, so σy may be an arbitrarily
small number. The width of the PSF then determines the
width of the streak and σ2

y << σ2
Π.

In sidereally tracked images, stars will all have very short
lengths and random angles, and orbiting objects will ap-
pear as long streaks. In object-tracked images, objects



will have short lengths and stars will all have nearly the
same length and orientation. Inevitably some stars will
be badly estimated due to their proximity to other stars or
their locations at the edge of the image.

2.2. Pattern Matching and Plate-Solving

Streaked stars with visual magnitudes greater than 12
have been identified in images from the POGS telescope,
and depending on the location in the sky and the expo-
sure time, hundreds of stars can be found in a single im-
age. We seek to maximize the number of stars used for
determining the pointing direction of the telescope since
the pointing error is expected to decrease as the number
of vectors used in plate-solving increases. As such, it is
inconvenient to implement restrictions in the matching al-
gorithm, such as requiring stars to be near the center of
the image or that the closest star to the central star in a
pattern is successfully located, as is the case with Padgett
and Kreutz-Delgato’s method [7]. The simple solution
is to implement a pattern-matching algorithm similar to
the grid algorithm, but in polar coordinates. Patterns in
polar coordinates can be convolved with each other and
matched with any orientation, as long as the central stars
of each pattern are the same.

Patterns are generated from detected objects in an im-
age that have been positively identified as stars that are
likely to be successfully matched. Such stars can be dis-
tinguished by all having similar streak lengths and ori-
entations relative to the image axes. Many stars may
be successfully detected, but if the streak properties are
not close to the most common lengths and orientations
found throughout the image, they are ignored. This can
result from stars streaking into or out of the image at the
edges (leaving only part of the signal inside the image),
or overlapping with other stars and getting estimated as
a single streak. From the list of nearly uniform streaks,
the brightest one is chosen to be the center of the pattern.
The second-brightest streak is chosen to define the pri-
mary axis of the polar coordinate grid, but the choice of
which star gets used to orient the pattern is not strictly
important. The brighter stars are more likely to be in the
catalog, however, and matching is easier if the axis star is
in both the reference catalog and the image. The central
star of a pattern generated from an image must be in the
reference catalog or no match can be made.

Spherical triangle properties are used to place each star
in the pattern. That is, the angles between the central star
and all other stars are used as radii in the polar grid, and
the angles are computed between the planes containing
each pair of vectors (the central star and the axis star, and
the central star and each other star). The interior angles
of planar triangles do not work well to place points in the
pattern, especially near 180◦ away from the axis star and
for images with large fields of view. Care must be taken
for stars beyond 180◦ from the axis star as interior angles
of spherical triangles are conventionally less than 180◦.
In other words, the interior angle may be clockwise or

Figure 4. An image taken by the POGS telescope is shown
with a pattern populated by 34 detected stars from the
image. Red X’s show the centers of all detected stars,
and the polar axis of the pattern is shown radiating from
the central star.

counterclockwise from the axis star, and all angles in the
pattern should be measured counterclockwise between 0◦
and 360◦. A simple way to test is to subtract the unit
vector of the central star from every other star unit vector
to get the relative vectors (which would be the sides of
planar triangles) and take the cross product of the axis
star’s relative vector with every other relative vector. If
the result points in the same direction as the central star’s
unit vector (i.e. the dot product is positive), the interior
angle is counterclockwise.

To generate a pattern, radial and angular bins are selected.
The size of the pattern and number of bins may be arbi-
trarily chosen depending on how many stars are expected
to be in each pattern. The POGS telescope has a 0.82488◦
square field of view and the reference star catalog used to
make matches is the Tycho-2 catalog [4] with 2.5 million
stars. For these conditions, 50 radial bins between 0.1◦
and 0.8◦ and 200 angular bins produced good results. The
pattern is represented as a 50x200 logical array in Matlab,
and stars are placed into the appropriate bin by changing
the corresponding entry from 0 to 1. An example of such
a pattern is shown in Figure 4.

To match with the reference catalog, a catalog pattern
must be generated. Since the approximate pointing di-
rection of the telescope is known a priori, only stars close
to that direction need to be considered. The matching al-
gorithm runs through the selected list of catalog stars in
order of increasing visual magnitude (decreasing bright-
ness) and generates a pattern with each one as the central
star. The patterns are convolved with each other to see
how well the patterns match. Visually, this is analogous



to placing one pattern over another and rotating it through
each of the angular bins. At each angle, the number of
filled bins that overlap is counted and used as a score.
If the maximum score between any two patterns exceeds
some threshold, then the patterns are said to match each
other at the angle where the maximum score was found.

Choosing the threshold is also arbitrary. If large bins are
used, random overlaps are expected more often in pat-
terns that shouldn’t match. But if a pattern is made with
too many small bins, uncertainty in star positions from
the image may cause them to be placed in the wrong bins,
especially at small radii. However, this method is robust
and works with a range of pattern sizes bin widths, as the
difference between matching scores and non-matching
scores is typically obvious. Defining a threshold as a frac-
tion of the number of matchable stars in the image pattern
(such as 30%) works well for large numbers of stars on
processed POGS images. Figure 5 visually depicts the
pattern from Figure 4 being compared to the catalog. At
any angle other than the correct matching angle, three or
fewer bins from both patterns overlap. At the correct an-
gle, 20 bins overlap.

Once a pattern is matched, the stars in the pattern must be
identified. In the original grid algorithm [7] and the mod-
ified polar grid algorithm [5], only the central star in each
pattern is matched. To match multiple stars, a pattern is
made for each one to be matched in the image. Instead,
we propose the radius and angle information are used to
match each star in the pattern. To do this, the star that
defines the polar axis must be the same in both the image
pattern and the catalog pattern. The procedure to match
the patterns already indicates the correct relative orien-
tations of the patterns to within one angular bin width.
The radii to stars within that angle in each pattern can be
compared to find two that match.

Once a star from both patterns is positively identified, the
angles to all other stars in both patterns must be defined
relative to that star, simply by subtracting them.

~αi,cat = ~αi,cat − α0,cat i = 1, ...,m (7)

~αi,img = ~αi,img − α0,img i = 1, ..., n (8)

where ~αimg is a vector of m angles for stars in the im-
age pattern and α0,img is the angle of star that has been
chosen to define the polar axis in the image pattern, in de-
grees. ~αcat is a vector of n angles for stars in the catalog
pattern and α0,cat is the angle of the polar axis star in the
catalog pattern. Then twom×n arrays are computed that
measure the radial and angular errors between each pair
of stars in both patterns.

∆ri,j = ~ri,img − ~rj,cat (9)

∆αi,j =
[
(180◦+~αi,img−~αj,cat)%360◦

]
−180◦ (10)

where ~ri,img and ~rj,cat are vectors containing the radii for
the m stars in the image pattern and n stars in the catalog
pattern, respectively. ”%” is the modulo operator. The
modulo operation keeps the resulting angle differences in
the interval (-180◦, +180◦], since ”large” differences of
close to 360◦should in fact be considered small negative
differences. The angular errors are then scaled by the
appropriate radius.

∆αri,j = ~ri,img∆αi,j (11)

Lastly, the approximate combined squared differences in
both (radial and angular) directions are computed.

∆2
i,j = (∆ri,j)

2 + (∆αri,j)
2 (12)

The index of the minimum value in the ith row corre-
sponds to the catalog star that is the closest match to the
ith image star. Some stars will not have a match, so a
maximum cutoff value is selected to filter bad pairings.
A sensible cutoff depends on the size of the FOV and
how accurately stars can be located in images.

Image star vectors and catalog star vectors that have been
successfully matched are passed as inputs to Shuster’s
popular QUEST algorithm [10] to determine the orien-
tation of the field of view at the midpoint of the exposure.



(a) Orientation 1 (b) Orientation 2

Figure 5. 5(a): A pattern generated from an the Tycho-2 catalog (blue bins) is overlaid on the image pattern from Figure
4 (red bins) at an angle where the patterns do not match. 5(b): The same catalog pattern is rotated 16.2◦further to match
the image pattern. Overlapping bins are filled in black.

3. RESULTS

These techniques were tested on a variety of images taken
by the POGS telescope. For this paper, programs writ-
ten in Matlab were used on a series of 15 images track-
ing GPS satellite PRN-31 (NORAD-ID 29486) in June of
2020. Information about detected streaks including 176
successfully matched stars across the 15 images was col-
lected. For comparison, the standard method of applying
thresholds to pixels individually was also performed with
a 2x2 pixel spatial filter. Two example comparisons are
shown in Figures 6 and 7.

In Figure 6, all pixels in the streak were successfully de-
tected using the cumulative sum method, while the pixel
thresholding method caused the streak to get segmented
into several separate groups. Some of the groups appear
to be touching, but this is only the result of a ”buffer re-
gion” being added to the edges to capture the fainter parts
of a PSF or streak that would not be expected to pass the
threshold, but would still contain a part of the received
signal. Segmentation like this is a common problem as a
result of atmospheric effects and inherent noise causing
signals received on the ground to vary over time. Streaks
in real images do not have a perfectly consistent bright-
ness throughout, so applying individual pixel thresholds
fails to capture larger trends of pixels slightly brighter
than the background.

Figure 7 shows another case where barely any of the
streaks’ pixels are correctly identified with the individual
threshold method, as well as a false positive detection in
the lower left. The cumulative sum method successfully

captures both streaks and groups them properly. It is clear
from the yellow group that the angle at which pixels are
divided into lines does not align exactly with the angle
of the streaks, resulting in a ”step” shape to the group
of detected pixels. Additionally, some noise or imperfect
background estimation has caused pixels beyond the end
of the purple streak and above the yellow streak to be in-
cluded in the detections. However, after iteratively fitting
the mathematical streak model to the data numbers of the
detected pixels, good estimates of the lengths and angles
are calculated, as shown by the red lines. When streaks
touch the edge of the image, signal from another object,
or each other, even the iterative fitting procedure may fail
to accurately estimate their properties, and no attempt to
match them with the catalog is made.

The matching algorithm successfully identified an aver-
age of 11.7 stars per image in the Tycho-2 catalog. The
20 stars that were identified in the image from Figure 4
are labeled in Figure 8.

To evaluate how well the centers of the streaks are lo-
cated in these images, the unit vectors computed from the
176 image streaks that were positively identified as stars
were compared to the matched vectors from the Tycho-
2 catalog. The unit vectors from the catalog were ro-
tated into the image axes using the solution from QUEST.
The angles between them and the corresponding image
unit vectors were found to have an average of 0.9 arcsec-
onds of error with a standard deviation of 0.6 arcseconds.
Matched stars had visual magnitudes as high as 12.4, as
shown in Figure 3. The Tycho-2 catalog is reported to be
99% complete at magnitude 11 and only 90% complete
at magnitudes of 11.5 [4]. It is likely that fainter stars



(a) Cumulative Sums (b) Pixel Thresholds

Figure 6. 6(a): A close zoom to a part of an image from Figure 4 containing a streak is shown, with pixels detected by
cumulative sums marked in blue. 6(b): The same part of the same image shows detections by applying a threshold to each
pixel individually. Each group is marked with its own color for clarity.

(a) Cumulative Sums (b) Pixel Thresholds

Figure 7. 7(a): Another part of the same image shows two streaks detected by cumulative sums in purple and yellow.
The endpoints of the fitted streaks are marked by red dots and connected lines. 7(b): The same pair of streaks and the
threshold detections are shown.



Figure 8. The image from Figure 4 is labeled with the
stars that were identified in the Tycho-2 catalog.

were found (and correctly identified as stars) that are not
in the Tycho-2 catalog.

4. CONCLUSIONS

The cumulative sum method for streak detection is robust
against fragmenting streaks, and does well to detect all
pixels in a streak, unlike commonly used thresholding of
individual pixels. Long exposure times make overlapping
streaks more likely, and current methodology does not
allow such detections to be accurately estimated. Isolated
streaks that are completely detected have had magnitudes
as high as 12.4 and the iterative fitting procedure locates
them to an average error of 0.9 arcseconds. If the errors
are unbiased and attributable to image noise, the attitude
estimates are expected to be even more accurate than the
average error in the star vectors.

While overlapping streaks can cause even the brightest
stars in the image to be thrown out before the matching
procedure, the polar grid method works well as long as
the central star in the image pattern exists in the refer-
ence catalog. The polar grid method also allows for only
part of the pattern to be visible in the image while still
guaranteeing it will be matchable with the reference cata-
log. It is possible to quickly match large numbers of stars
(sometimes hundreds) in a single image. The ability to
detect, locate, and match large numbers of stars is impor-
tant to maximize the accuracy of the attitude solution.
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