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ABSTRACT

The Security in Space team of Airbus Defence and Space
Germany develops the Special Perturbations Orbit deter-
mination and Orbit analysis toolKit (SPOOK), a soft-
ware framework aimed at maintaining a catalogue of
space objects with information on their orbital ephemeris.
SPOOK can perform all the main activities of the Space
Surveillance and Tracking (SST) workflow, including ob-
servation planning, optical and radar measurement simu-
lation or processing of real world data, either from the
in-house Airbus Robotic Telescope (ART) or from third
parties, tracklet linking, tracklet correlation and orbit de-
termination. With the aim to include further object char-
acteristics into the catalogue, this paper describes how
this workflow is updated to add systematic object charac-
terization capabilities in SPOOK. In particular, this paper
focuses on attitude characterization using light curves. To
achieve this goal, two main new blocks have been added
to SPOOK: light curve simulation and shape-independent
attitude characterization – i.e., the shape of the object is
not taken into account to estimate its attitude state.

Keywords: Light curve; attitude determination; object
characterization; SPOOK.

1. INTRODUCTION

Not only is the space environment near the Earth more
populated than ever [9], but also the space debris pop-
ulation is expected to increase dramatically unless con-
siderable mitigation becomes possible [31]. Object char-
acterization, among the typical Space Surveillance and
Tracking (SST) activities, is paramount to enable miti-
gation processes such as Active Debris Removal (ADR).
E.g., the shape and attitude of a space object that is to
be deorbited need to be known so that a successful ADR
mission can planned.

Light curves – series of brightness measurements, closely
spaced in time, taken from a single object with an optical
telescope – encode the object characteristics of attitude,
shape, size and reflective properties of the surface. Thus,

they are one of the main resources available to perform
characterization of objects for which resolved imagery is
not possible – which is the case for most space debris
objects. Characterization of non-collaborative space ob-
jects has been explored for decades in the asteroid com-
munity [15, 16, 27]. To the present day, many techniques
therein have been transferred and adapted to the charac-
terization of man-made objects, and new ones have been
developed [8, 11, 14, 18, 21, 34].

This paper presents the integration of shape-independent
attitude determination techniques that use light curves as
measurements into the Special Perturbations Orbit deter-
mination and Orbit analysis toolKit (SPOOK), a software
framework developed at Airbus DS which can perform
multiple SSA-related tasks [20, 23]. The paper is struc-
tured as follows: first, after a brief summary of the ca-
pabilities of SPOOK previous to this work (Section 2),
the new capabilities of SPOOK are presented: light curve
simulation (Section 3), obtention of light curves from real
images (Section 4), light curve preprocessing (Section 5)
and attitude characterization (Section 6). The paper con-
cludes by discussing the results of the attitude determina-
tion pipeline of SPOOK on real and simulated examples
(Section 7).

2. BACKGROUND

SPOOK is a software framework with several distinct ca-
pabilities within the scope of SST and SSA. The main
capabilities are [20, 23, 24]:

• End to end pipeline to create and maintain a cata-
logue with the orbital ephemeris of space objects,
using radar and optical measurements;

• Simulation of radar and optical measurements of
objects with simple shape (homogeneous sphere or
randomly tumbling plate);

• Observation planning tools to program an optical
telescope;

• Sensor astrometric calibration based on the well
known ephemeris of specific objects;
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• Probabilistic conjunction assessment.

Furthermore, Airbus DS owns and operates the Air-
bus Robotic Telescope (ART), located in Extremadura,
Spain, with 40 cm of aperture and a rectangular field of
view of 2.15o × 1.43o [28].

3. LIGHT CURVE SIMULATION

SPOOK has sensor simulation capabilities that can be
used to produce synthetic astrometric measurements [23].
The present work has extended the benefits of this capa-
bility to the photometric type of measurements by adding
light curve simulating functionality into SPOOK.

To predict the measured light intensity reflected by a tar-
get object, which is then measured from an arbitrary ob-
server telescope, the first addition to SPOOK deals with
the modelling of 3D objects as polyhedrons represented
by their outer surface, which in turn is divided into trian-
gular facets. Each facet has its own reflective properties,
represented by a parametrized Bidirectional Reflectance
Distribution Function (BRDF). The second addition fo-
cuses on solving the shadowing problem, which, in short,
determines the contribution of each facet to total reflec-
tion, constrained by the shadowing that other facets of the
object may inflict upon itself. Finally, SPOOK has been
further extended with attitude modelling and propagation,
in addition to the orbital position and velocity. The rest
of this section describes how these problems have been
approached.
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Figure 1. Observation geometry projected on the plane
formed by the Sun, the object and the observer.

These three additions enable the simulation of the the
complete observation geometry, shown in Figure 1 pro-
jected on the plane formed by the Sun, the object (O)
and the observer. The vectors are all unitary: ui is the
incident direction, toward the Sun; ur, the reflected di-
rection, toward the observer; and ub is the bisector of
the other two, a.k.a. Phase Angle Bisector or PAB; The
angle between ui and ur is known as the phase angle,
ϕ = ∠(ui,ur).

3.1. 3D Object Reflectance

Three dimensional objects are modelled within SPOOK
as an euclidean region bound by a closed set of triangu-
lar surfaces, called facets. This is, an object O is delim-
ited byNf facets with three vertices each, connected with
each other along their edges. A Bidirectional Reflectance
Distribution Function (BRDF) as defined by [19],

fr(λ,ui,ur) =
dLr,λ(λ,ur)

dEi,λ(λ,ui)
, (1)

captures the reflective properties of the different facets of
the object. The BRDF represented by fr gives the ratio,
in inverse steradians or sr−1, between the reflected spec-
tral1 radiance dLr,λ that leaves a surface element in the
direction ur, in Wsr−1m−3, over the spectral irradiance
dEi,λ incident on the surface element in the direction op-
posite to ui, in Wm−3. The differential form is com-
monly used to allow for contributions to the total Lr,λ
other than dEi,λ.

Figure 2 shows the same observation geometry from Fig-
ure 1, but from the point of view of a surface element
of the object with anisotropic directions uu and uv and
normal n. The angle pairs (θi, φi), (θr, φr) and (α, β)
are the (polar, azimuth) spherical coordinates, as seen by
the facet coordinate system with base [uu,uv,n], of the
incident, reflected and PAB directions respectively.
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Figure 2. The observation geometry for a surface ele-
ment.

Although several BRDFs exist with varying degrees
of complexity, from simple Lambertian to empirical
look-up tables, SPOOK implements the rather simple
Cook-Torrance (CT) and Ashikhmin-Shirley (AS) mod-
els, which account for specular and diffuse reflectance
and conserve energy notwithstanding. Additionally, AS
can model the anisotropy of the surface. They have been
chosen for their de facto acceptance in the literature rele-
vant to light curve modelling [10, 33]. For further details
on their implementation the reader may refer to [1, 7, 33].

1Hence the λ subscript indicating derivative over wavelength. From
here onward, the explicit dependency on λ will be dropped from spec-
tral quantities, as it will be implicit in the subindex – e.g. Li,λ(ui) ≡
Li,λ(λ,ui).



The Sun is assumed to emit black-body radiation, hence
irradiance reflected by each facet is obtained by integrat-
ing its BRDF multiplied by Planck’s law applied to the
Sun over the wavelength bandwith of interest,Bλ. There-
fore, the total irradiance Ea reflected from the object that
reaches the telescope, for a given observation geometry,
is computed in SPOOK from the contribution of each
facet, taking self-shadowing into account (see next sec-
tion). Apparent magnitude is then

mA = −2.5 log10
(
Ea
Ea,0

)
, (2)

where Ea,0 is the irradiance that would be received from
the Vega star under the same observation conditions.

Finally, SPOOK can additionally obtain the measured
photon flux Fa, by applying the transmissivity and quan-
tum efficiency curves of an arbitrary telescope; and the
associated signal to noise ratio (SNR), by further consid-
ering the inherent noise sources of a specific setup. The
instrumental magnitude measurement is then estimated as

mI = −2.5 log10 Fa , (3)

where Fa is commonly used as an approximation of Ea.

3.2. 3D to 0D Rendering

One of the bottlenecks of light curve modelling is the
computation of the non-shadowed area A of each facet.
In the particular case for convex objects,A = δ(θi, θr)A,
where A is the area of the facet and

δ(θi, θr) =

{
1 cos θi > 0 and cos θr > 0 ,
0 otherwise .

(4)

For non-convex objects, however, the computation of A
complicates greatly. SPOOK deals with this via the algo-
rithm called shadow projection, developed in-house. The
output of this algorithm is directly the productA cos(θr).
It works by comparing which facets are in front of each
other, both from the incident and reflected directions.
It then projects the covered portions of the facets, i.e.
the shadows, on top of the facets themselves, hence the
name of the algorithm; it then subtracts the area of the
projected shadows from the original area of the corre-
sponding facets. Shadow detection and subtraction uses
the polygon boolean operations of intersection and differ-
ence, respectively, which can be performed e.g. with the
algorithms from [30].

A necessary condition for the shadow projection algo-
rithm to work is that the facets that define O can only
intersect with each other at their borders – i.e. edges or
vertices.

Figure 3 gives a graphical explanation of the algorithm
applied to an object composed by the three facets F (1)

(blue), F (3) (brown) and F (3) (lilac), which extend in-
definitely along the direction perpendicular to the paper.
These facets and their projections are represented by solid
lines of the respective colour. The dashed lines are the
projection planes, symbolized by Ui and Ur, with nor-
mals ui and ur, respectively. Thick gray overlays repre-
sent shadows, and the also gray arrows track the shadow
projection between facets and from Ui to Ur. The projec-
tions are drawn with an offset to their respective planes, to
indicate the relative distance w.r.t. the illumination source
or the observer, a notion that is key to decide which of
the overlapping facets is shadowing the other. In this ex-
ample, facet F (1) is illuminated and visible, but has two
portions blocked, one by F (2) on the Ur plane, and the
other by F (3) on the Ui plane.
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Figure 3. 2D illustration of the shadow projection algo-
rithm.

In terms of speed, this algorithm needs to check twice
(once in each projection) the intersection of the 2-
combinations of the Nf set of facets. This is, it needs
to perform Nf (Nf − 1) polygon intersection operations
plus at most this many polygon subtractions (one per non-
empty intersection) and half as many i → r projections
(one per non-empty intersection onUi). Thus, for bigNf ,
the computation time scales with O(Nf

2). Furthermore,
the most resource-consuming parts of the algorithm can
be parallelized.

One final advantage of this algorithm is that areas visible
from the observer point of view, regardless of the illu-
mination condition, can be extracted without any addi-
tional computational effort. This is useful to account for
radiated light, typically more significant toward infrared
spectrum.

3.3. Attitude Propagation

Before this work, SPOOK could only propagate the po-
sition and velocity of a space object through time. Atti-
tude propagation, necessary for detailed light curve sim-
ulation, has been incorporated using quaternion repre-
sentation. The current implementation can only consider



torque-free attitude dynamics, by ensuring the conserva-
tion of angular momentum given the inertia tensor of the
object, together with a reference attitude and angular ve-
locity at a known instance of time. Thus, it is not yet
suitable to simulate long light curves of objects subject to
significant torques e.g. due to atmospheric drag.

4. LIGHT CURVES FROM IMAGES

This section discusses how light curves can be extracted
from real images within the framework of SPOOK, ART
and the SSA toolkit at Airbus DS by diverse means, de-
pending on the nature of the images from which the light
curves are to be obtained. In most cases, light curves are
obtained from series of images taken during a tracking
observation scenario. This is, the telescope pointing is
fixed to the sky coordinates of an Earth-orbiting object of
interest. Thus, in the images taken this way, the object
itself, together with any other objects in a similar orbit,
appear as a point feature, while the rest of objects in that
sky region, including stars and objects in different orbits,
appear as straight lines or streaks.

Two different methods to extract light curves from images
are available within the SPOOK pipeline:

• The first one is extraction by using the soft-
ware Astrometry24.net (A24N) by Sybilla Tech-
nologies [26], which is preferred whenever images
contain enough stars to perform astrometric reduc-
tion and extract apparent magnitudes, provided that
all the links of the pipeline work – i.e. A24N image
processing, plus SPOOK’s own tracklet linking and
correlation;

• The second method uses AstroImageJ (AIJ) [6], and
is applied when 1) the A24N solution fails or 2) the
images do not contain enough stars for astrometric
reduction (which actually triggers A24N failure) –
this is the case e.g. when drastic windowing is used
to increase frame rates.

5. LIGHT CURVE PREPROCESSING

This section focuses on each of the light curve processing
steps that lead to the obtention of detrended light curves.
These are:

1. atmospheric detrending,

2. range normalization and

3. polynomial fit.

The first step is only needed for instrumental light curves
– i.e. A24N already gives apparent magnitudes, hence
step 1 can be skipped when working with its output. The
same is true for simulated light curves.

5.1. Removal of Atmospheric Effects

In the case of an instrumental light curve obtained by a
ground observer, the measured magnitude is influenced
by atmospheric attenuation, which generally depends on
the airmass (amount of air in the line of sight) and the
wavelength of the light. In SPOOK the following atmo-
spheric attenuation model from [35] is used:

mA −mI = −k ·X + ZP− tf · (CI) , (5)

where X is the airmass, ZP is the telescope zero point
and CI is the colour index, which can be expressed e.g.
in Blue minus Visible (B−V ) or any of the other combi-
nations of the Johnson-Cousins type of colour filters [4].
The parameters k and tf are the slopes of the airmass and
colour index effects, respectively.

Within SPOOK, k, ZP and tf are calibrated with a lin-
ear least square regression against observations of known
stars during the same night. Then, the model from Eq. 5
is used to convert the light curve to apparent magnitude.

Two options exist within SPOOK. The first is to calibrate
with the Landolt standard stars [17], if the measurements
are taken with any of the Johnson-Cousins filters. The
second is to calibrate with the stars from the Gaia cat-
alogue, specially those for which the effective tempera-
ture is well defined [2]; these are used to calibrate those
measurements taken without any colour filter, so that the
transmissivity curve is panchromatic over the near-visible
light spectrum.

For the Gaia case, colour indices are not readily avail-
able, however. Nonetheless, theB−V index is estimated
from the effective temperature Teff of each star, in K, as
per Ballestero’s formula [3]. Whatever the case, airmass
is estimated from the zenith angle z of each star using
Hardie’s approximation [13].

5.2. Range Normalization

The second pre-processing step applied to instrumental
light curves is range normalization. Apparent magnitude
as calibrated with the aforementioned procedure mea-
sures the photon flux received at the telescope aperture
as if there was no atmosphere. However, it still captures
the changes in the distance relative to the observed ob-
ject, a.k.a. range ρ, in the form of brightness variations.
These are proportional to the inverse of the square of the
range. Thus the magnitude calibrated as if the object was
observed at a range of 1000 km can be obtained as

mA,1000 = mA − 5 log10 ρ+ 15 , (6)

where ρ is in km. This process can also be applied di-
rectly to mI → mI,1000 in case no atmospheric calibra-
tion is possible, to at least remove the effects of range.



5.3. Polynomial Fit

Having removed the influence of atmospheric attenuation
and range from a light curve, there are still some other ef-
fects that can influence its moving average and envelope,
such as time variations of the phase angle – e.g. for a
Lambertian sphere, measured brightness decreases with
higher phase angles, being the peak of maximum bright-
ness at 0 phase angle. SPOOK has a final detrending step
that computes a polynomial fit to the light curve and sub-
tracts it. Typically, a 1- or 2-degree polynomial suffices,
as the phase angle evolution itself from the point of view
of a ground observer changes smoothly over time2.

6. ATTITUDE CHARACTERIZATION

This section describes the SPOOK capabilities used
to characterize the attitude of an object based on its
light curve, without a-priori information on shape or re-
flectance properties. Two main attitude-related character-
istics can be extracted with SPOOK:

1. Synodic rotation period: if the object rotates around
itself at a stable angular velocity (i.e. around an axis
close to a principal axis), the first relevant output is
the dominant frequency or period of the light curve,
which corresponds to the synodic period of the ob-
ject.

2. Sidereal rotation period and axis: under certain ob-
servability conditions, it is possible to extract the
sidereal period of rotation and spin axis – i.e. in an
inertial frame.

6.1. Synodic Period

The first object characteristic that SPOOK can extract
from its light curve is the synodic period. When a light
curve has a marked periodical behaviour, the synodic pe-
riod is the time that the repeated pattern lasts. This defi-
nition applies mainly to objects that rotate around one of
their principal axes, hence producing light curves with
one single fundamental frequency. With tumbling ob-
jects, which rotate around an axis that is not parallel to
their angular momentum, two independent fundamental
frequencies shall be observed instead, one corresponding
to the rotation around a principal axis, and the other to
the average period of precession around that axis [22].
Light curves from objects with non-periodical attitude
behaviour (e.g. nadir-stabilized, actively controlled) will
not present significant periodic behaviour either.

As the main spectral analysis tool to estimate synodic pe-
riods, SPOOK uses the generalized Lomb–Scargle (LS)

2This might not be the case for a space observer.

periodogram [29], because of its adaptability to non-
equispaced data3 and its natural extensibility to accom-
modate more complex models.

The generalized LS is obtained by fitting a polynomial
plus a Fourier series of the form

Fnp,nh
(A, f, t) =

np∑
k=0

Akt
k

+

nh∑
j=1

(
Anp+2j−1 cos 2πjft+Anp+2j sin 2πjft

)
(7)

to the data. Here, np ≥ −1 indicates the degree of the
trend polynomial, while nh ≥ 0 indicates the number of
harmonic terms of the Fourier series4 with fundamental
frequency f . A ∈ Rm is the vector that stores the coef-
ficients, with m = 1 + np + 2nh. The generalized LS
periodogram is equivalent to

PLS(f) =
1

2

(
χ2
0,0 − χ2

0,1(A, f)
)

, (8)

where χnp,nh
(f) is the weighted least squares (WLS)

cost of the linear parameters to the data at each frequency,

χ2
np,nh

(A, f) =
∑
i

(
Li − Fnp,nh

(A, f, ti)

σi

)2

, (9)

where L = {Li} ∈ Rn is the vector of n measurements
(either flux or magnitude) at times {ti}, with standard
deviations {σi}, for all i ∈ [1, n].

As indicated by [29], the LS periodogram can be fur-
ther generalized with multiple polynomial and harmonic
terms, by using χ2

np,nh
with np > 0 and/or nh > 1 in-

stead of χ2
0,1 in Eq. 8. Incidentally, minimizing χ2

np,0

leads to the polynomial fit of the previous section.

Using the PLS from Eq. 8, which is an approximation
to he power spectral density of the signal, the synodic
period can be identified as the inverse of the frequency
that corresponds to the greatest common divisor of all
the detected peaks in the periodogram. Alternatively, the
more straight forward WLS approach can be used to cal-
culate the periodogram with nh > 1, so that the highest
peak corresponds to the best fundamental frequency fit.
Therefore, for principal axis rotators (e.g. spin-stabilized
spacecraft), the LS periodogram can be used to obtain the
synodic period of their light curve.

It is common that the detected fundamental frequencies
correspond not to the total time by which the object per-
forms a full revolution, but to an integer division of it,

3Note that some telescopes may not produce measurements at an ex-
act constant frame rate, and light curves my have unavoidable arbitrary
gaps due to e.g. a pier side change of the telescope mid-observation.

4When np = −1, the polynomial part is removed, while nh = 0
eliminates the Fourier series part.



most commonly two [18]. This is due to the fact that ob-
jects with axial symmetry may repeat the same reflection
pattern more than once in one full rotation – e.g. a cylin-
der rotating around an axis perpendicular to its length
would produce a light curve whose pattern repeats ex-
actly every half revolution.

Furthermore, with light curves whose average sample
rates do not comply with the Nyquist criteria w.r.t. alias-
ing, the capability to estimate the correct synodic period
becomes impaired. According to [29], it is still possible
to uniquely extract the real fundamental frequency of a
non-equispaced, under-sampled (in average) signal, de-
spite aliasing. Nonetheless, in practice, for only weekly
non-equispaced light-curves, aliasing still poses impor-
tant difficulties.

Once a synodic period candidate T has been extracted
from a light curve sampled at times ti, in order to inspect
it manually, SPOOK can generate its phase plot – it plots
the light curve against its phase, defined as

pi =
ti mod T

T
. (10)

The most straightforward application of the phase plot is
to visually inspect whether the periodic behaviour pattern
has significant secondary harmonics or not, which can
give a hint at whether the extracted period corresponds
e.g. to a half rotation instead of a full one.

6.2. Sidereal Spin Axis and Period

The attitude of principal axis rotators can be defined with
a rotation axis in inertial frame, represented by a unit vec-
tor or e.g. a pair of right ascension and declination angles,
and a rotation rate or period. Within SPOOK, these pa-
rameters can be estimated from a light curve by means
of the epoch method, adapted from the asteroid commu-
nity [11, 12]. Hall et. al. applied the epoch method to re-
cover the spin rate and axis of several space debris objects
from their light curves. The main appeal of this method is
that no a-priori knowledge about the shape or the reflec-
tive properties of the object is needed. Its main drawback,
however, is that the attitude of tumbling objects cannot be
characterized, and that it can only be used under specific
observation conditions [12].

The epoch method is based on the assumption that the
synodic period is the time it takes the phase angle bisector
(PAB) to perform a full rotation around the object body,
from the object point of view. The method then exploits
this assumption to calculate the difference between the
synodic period and the sidereal period – i.e. the time it
takes the object to perform a full rotation around itself
relative to the inertial frame. This difference becomes
a function of the sidereal period itself, together with the
direction of the spin axis. Thus, one can estimate the vari-
ations of the synodic period as measured using a sliding
window along the light curve, and then fit these variations

to the model of the synodic-sidereal period difference to
estimate the sidereal spin axis and rate [11].

First, the Lomb–Scargle periodogram is computed on the
whole light curve to estimate the average synodic period,
as explained in the previous section. Then, a time window
size is chosen to perform the time-varying estimation of
the synodic period. Typical values are between 2 and 8
times the average synodic period. Shorter time windows
lead to worse resolution on the period estimation, due to
the wider peaks in the frequency domain, but are more
sensitive to fast synodic period changes. Once the win-
dow size is chosen, SPOOK slides it along the light curve
at {tk} time locations, for k ∈ [1, nT ]. At each evalu-
ation time, it fits the best synodic period, together with
the necessary polynomial and harmonic coefficients, to
the model of Eq. 7, as per the weighted least squares re-
gression of Eq. 9, as seen in the previous section. Thus,
the nT synodic periods T = {Tk} are estimated by min-
imizing χ2

np,nh
(1/Tk) at each window. SPOOK solves

this optimization problem with the trust region algorithm
from [5], limiting the values of T to a small region around
the estimated average synodic period.

Once the varying synodic periods {Tk} have been ob-
tained, SPOOK performs a non-linear WLS to fit the
model of the synodic period over time as a function of the
sidereal period of rotation TS and the spin axis direction,
which is represented as a right ascension and declination
pair [11].

On the one hand, this method can only be used on light
curves obtained in an observation scenario where the
PAB changes significantly over time, but where the ob-
ject itself has a sidereal rotation rate significantly faster
(so that the core assumption is observed). On the other
hand, due to the aliasing limitations of the Fourier-based
sliding period search, the object needs to rotate slowly
enough for its sidereal rotation rate to be significantly
smaller than the average sample rate of of the light curve,
which is conditioned by the exposure time needed for a
good enough signal to noise ratio (SNR) and the readout
time of the telescope. Therefore, the applicability of this
method is constrained significantly by the observation ge-
ometry and the specifications of the sensor used.

7. RESULTS

7.1. Real Light Curves

This section demonstrates the preprocessing capability of
SPOOK on an instrumental light curve from the morn-
ing of 2019-10-06, measured with ART and reduced with
the AstroImageJ method. The light curve, shown in Fig-
ure 5, belongs to the ISO satellite with Cospar 1995-
062A, which has a highly eccentric equatorial orbit, with
perigee in LEO and apogee at twice the altitude of GEO.
One of the images used to obtain this light curve is shown
in Figure 4. The exposure time for the whole series of



images was 0.2 s, and every four pixels were binned into
one. The ISO satellite is the dot at the centre of the trian-
gle in the middle of the image. The rest of point features
are stars, which do not appear as streaks due to the short
exposure time and slow velocity of ISO in the component
orthogonal to the telescope pointing.

In Figure 5, the faded blue squares correspond to the in-
strumental magnitude, while the red triangles are the ap-
parent magnitude calibrated at a range of 1000 km. The
black curve is the fit of a 2nd order polynomial of time
to the latter. The abscissa shows UTC time in hh:mm.
The time step between observations is between 2.33 and
2.51 s, except for the gap in the middle.

Along the entire night, more than 12000 independent
stars were observed and identified against the Gaia star
catalogue from [2], spread along 220 different images
properly reduced with A24N. All these stars were used
to fit the model from Eq. 5 to the measured mA − mI

offset computed by A24N using a linear regression. Fig-
ure 6 shows the effective temperature distribution of these
stars, which is used to obtain the B − V colour index
from Ballestero’s equation [3]. Figure 7 shows the fit-
ted trend for the night. In this figure, blue points are
(mA −mI)measured + tf · (B − V ) for each star observa-
tion, while the black line is the trend −k ·X + ZP. For
this night, k ' 0.2747, ZP ' 22.68 and tf ' 0.4805.

The instrumental light curve of ISO, shown in blue in Fig-
ure 5, has first been converted to apparent magnitudes by
adding the right-hand side of Eq. 5 to the measured mI ,
using the values of k = 0.2747 and ZP = 22.68 ex-
tracted from the aforementioned regression. The color
index, however, is set to 0. The actual color index of ISO
is not known and, in fact, it is most likely different for
each of its surfaces due to varying reflexive properties;
moreover, CI variations with time might be highly cou-
pled with attitude itself, depending on the actual BRDFs
of the surfaces of ISO. Therefore, ignoring these differ-
ences in CI might affect the power of the frequency har-
monics on a Fourier-based analysis, but not their location
in the frequency scale.

Second, the apparent magnitude has been normalized to
1000 km range, as per Eq. 6 (red triangles in Figure 5).
Range and any other orbital parameters of the observed

Figure 4. Image of the ISO satellite taken with ART.

object are obtained with the orbit propagation capabilities
of SPOOK [20, 23].

The last step has been to subtract the parabolic trend,
shown as a black curve in Figure 5, to the normalized
apparent light curve. At this point, the data is indeed de-
trended from any other slowly varying effects such as the
phase angle influence on brightness.

Next, a generalized LS periodogram with np = 0, nh = 1
has been enough to detect the main periodic components
of the light curve. As shown in Figure 8, the light curve
contains one marked fundamental harmonic, followed
by three secondary harmonics at twice, thrice and four
times the fundamental frequency. No other significant
power peaks above the noise floor are present, which in-
dicates that most probably ISO is a principal axis rotator5.
The fundamental harmonic peak falls at f ' 29.85 mHz,
which corresponds to a synodic period of T ' 33.51 s.

Figure 9 shows the phase plot of the detrended light curve
(blue triangles) using the synodic period of T = 33.51 s
estimated from Figure 8. The black curve is the best fit of
a np = 0, nh = 4 Fourier series model to the data.

Unfortunately, this particular light curve was obtained
when the object was midway between perigee and
apogee, already moving at such a velocity that the PAB
barely changed along the whole light curve. Therefore,
no significant synodic period variation over time can be
extracted from the light curve to motivate a search for the
sidereal axis. On the other hand, because of this exact
fact, the sidereal period of rotation of ISO at the epoch of
this light curve was actually almost equal to the apparent
one, so that TS ' T ' 33.51 s.

7.2. Simulated Light Curves

This section reproduces again the SPOOK pipeline for
attitude characterization from light curves, but for simu-
lated data. Therefore, this section demonstrates the light
curve simulation capability, and focuses especially on the
sidereal spin axis and period determination part, which is
not included in the previous case.

In this example, the simulated light curve originates from
a cylinder, approximated as a prism with a 32-side reg-
ular polygon as base, of 10 m length and 1 m radius,
which should be expected to produce light curves similar
to those e.g. of a rocket body. Its surface only has diffuse
Lambertian reflectance, with a non-homogeneous albedo
distribution: one end of the prism absorbs all incoming
light (albedo of 0.01), while the other reflects all (albedo
of 0.99); the rest of the prism surface has an albedo of
0.13, except for a region close to the bright tip, where
albedo is 0.43. This distribution was selected to emulate

5Although it could be that it actually has a tumbling motion whose
main average precession frequencies share a greatest common divisor
of comparable order of magnitude.
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Figure 5. Light curve of the ISO satellite measured on the morning of 2019-10-06 with ART.
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Figure 6. Histogram of the effective temperature distri-
bution for the stars observed by ART on 2019-10-05/06.

Figure 7. Apparent-instrumental magnitude offset as a
function of airmass X for all the starts observed by ART
on 2019-10-05/06.

0.0 0.1 0.2
Frequency [Hz]

0

20

40

60

L
om

b–
Sc

ar
gl

e
po

w
er

Figure 8. Lomb–Scargle periodogram the light curve
from Figure 5, after detrending.
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Figure 9. Phase plot of the detrended light curve from
Figure 5.



a non-homogeneous albedo distribution, but it is other-
wise arbitrary. Figure 11 shows a render of this shape,
prodcuded with the open source tool FreeCad.

The object has a high eccentric orbit with 29183 km of
semi-major axis, 94.9o inclination, eccentricity of 0.76
and argument of perigee at 45o, with the right ascension
of the ascending node at 235o. It has a stable rotation with
a sidereal period of 115.86 s with a spin axis oriented at
right ascension −90o and declination −30o in the inertial
frame, and which is perpendicular to the longitudinal axis
of the cylinder.

The simulation scenario consists in an observation from
ART (6.63oW, 38.22oN) shortly after the midnight of
2021-01-01, for a span of about 40 minutes. The already
range-detrended light curve is shown in Figure 10, where
the blue triangles correspond to the apparent magnitude
already calibrated at a range of 1000 km. The abscissa
shows UTC time in hh:mm. The time step between ob-
servations is exactly of 5 s.

In this case, there is no lower-degree polynomial with
time that fits the whole light curve nicely, so it has not
been detrended further. Because of this, the Lomb–
Scargle periodogram shows some residual power at very
low frequency, but otherwise the extracted average syn-
odic period is unaffected, as can be seen in Figure 12.
The plot clearly shows a main peak at a fundamental fre-
quency of f ' 0.00874 Hz, which corresponds to a syn-
odic period of T ' 114.4 s. Two more minor harmonics
of this frequency, at multiples 2 and 3 of the fundamental,
can be observed, too. The high power around f → 0 is
due to the fact that the light curve has a slow trend that
has not been removed.

The epoch method has been applied to this light curve,
by sliding a window of four times the average synodic
period (∼ 458 s) at 5 s increments, and estimating the
synodic period of each slice with a Fourier fit of np = 1,
which compensates locally for not having fully detrended
the light curve, and nh = 1. Figure 13 shows the esti-
mated synodic period. The blue triangles are the synodic
period variation over time. The grey curve is the theoret-
ical synodic period convolved with a rectangular window
with ∼ 458 s width, calculated from the known spin axis
orientation and sidereal rotation period. The dashed black
curve is the averaged synodic period, too, but calculated
from the best fit spin axis orientation and sidereal rota-
tion period, instead. Although it oscillates considerably
around its theoretical value, the estimated synodic period
displays no strong bias from the expected value. There-
fore, even if the error of each individual synodic period
estimation can be quite large, the overall time series of
synodic periods can still be used to fit the synodic period
model as a function of spin orientation and sidereal pe-
riod.

The weighted least squares cost of this fit can be seen in
Figure 14. The plot is in a Mollweide projection, where
meridians are right ascension of the spin axis, while par-
allels are its declination. The colour scale is logarithmic.

The white cross indicates the location of the known spin
axis orientation (−90o, −30o), while the black plus sign
indicates the best fit location (−89.4o, −29.4o) – it cor-
responds to a best fit sidereal period of 115.88 s, in con-
trast to the actual 115.86 s programmed in the simula-
tion. Thus, the absolute minimum lies considerably close
to the actual truth.

However, it is interesting to note that, with this partic-
ular light curve, a secondary region with very low cost
exists around (43.98o, 27.24o) with a sidereal period of
115.66 s. This secondary solution corresponds to the
spin configuration where the PAB in spin frame has an
azimuthal movement roughly equal to that of the main
solution, but with its z-component negated. A wider dis-
tribution of the PAB along the celestial sphere, with more
drastic movements, if solvable, would prevent this sec-
ondary solution from appearing [25].

With this one and similar test cases, it has been seen that
the epoch method tends to converge to the true solution
better when fitting Fourier series with just one or, at most,
two harmonics. With lower harmonic order, the synodic
period presents a higher variance, as can be seen in Fig-
ure 13. When using higher order harmonics, the vari-
ance decreases, but a bias in the synodic period appears
that displaces the optimal solution. Figure 15 shows a
sliding synodic period calculated as in Figure 13, but
using four harmonics instead of only one. In this par-
ticular simulation scenario, the bias may come from the
fact that the amplitude of secondary harmonics seems to
change along the light curve itself, which introduces an
additional phase variation over time, other than the rate
of change of the PAB – see how the shape of each pe-
riod evolves with time in Figure 10. Conceivably, the
higher order fit would capture these effects and displace
the synodic period from its true value. Further analysis
is needed to resolve this issue. Similar Biases were ob-
served in [32].

Moreover, this method is highly sensitive to the size of
the sliding window chosen to perform the synodic period
calculation, and even a few outliers can add significant
perturbations to the synodic period estimation. There-
fore, to increase its confidence w.r.t. obtained results,
the epoch method in a general case should be used on
several light curves of the same object taken at different
observation geometries [11, 25], or in conjunction with
other methods such as shape-dependent attitude determi-
nation [12].
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Figure 10. Light curve simulated with SPOOK, as observed by ART.

Figure 11. Render of a 32-base prism.
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Figure 12. Lomb–Scargle periodogram of the light curve
from Figure 10.
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Figure 13. Sliding synodic period for the light curve from Figure 10.



Figure 14. Weighted least squares cost of fitting the synodic period model.
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Figure 15. Sliding synodic period for the light curve from Figure 10, calculated using four harmonics.



8. CONCLUSION

New object characterization capabilities have been added
to SPOOK, the SSA software framework of Airbus
Defence and Space Germany, with the aim to enable
an eventual systematic object characterization pipeline.
New modules added are: light curve simulation, light
curve extraction from images, light curve preprocessing
and attitude characterization, consisting of synodic pe-
riod and sidereal period/spin axis estimation. Synodic pe-
riods can be extracted from real light curves of stable ro-
tators, and the epoch method implementation of SPOOK
has been demonstrated against a simulated scenario, al-
beit some bias problems have been detected, in concor-
dance with the literature on this method.

These new incorporations set the base, and provide the
necessary tools, for a wider range of object characteriza-
tion techniques to be incorporated within SPOOK.
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