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ABSTRACT 

The classification and characterisation of objects in 

geosynchronous orbit (GEO) is an important goal in 

Space Situational Awareness (SSA). Temporal variations 

of apparent magnitude, called a light curve, are captured 

by optical telescopes. Light curves contain information 

on features such as attitude, size, shape and materials 

useful for the characterisation of the object. Analysing 

light curves can also allow the determination of normal 

patterns of life, and hence the detection of occasional 

behaviour during the orbit, such as manoeuvres. The 

objective of this study is to develop a method for space 

object characterisation using light curves. To achieve this 

a high-fidelity simulator for generating photometric data 

and light curves is produced, and used to train the 

machine learning algorithm for extrapolating common 

features of GEO objects. This paper details the 

development of the simulator, and the development and 

initial results of the machine learning algorithm. 

1 INTRODUCTION 

There are many important interests in understanding and 

characterising space objects: 

• Treaty Compliance – Clear and unambiguous 

information provides a clear basis for foreign policy 

engagement. 

• Military threat assessment 

• Strategic intelligence and adversary capability and 

intent assessment 

• Debris characterisation 

Light curve derived information cannot answer all of 

these questions, but it can provide some answers and, in 

many cases, highlight changes that need further 

investigation. Additionally, since light curve data is 

relatively easy and low-cost to obtain with low latency, 

using it to monitor object behaviour is a viable strategy. 

Objects that warrant further investigation can be targeted 

by different observational capabilities. 

Apparent magnitude is a key measurement of the 

information that a telescope can gather about an observed 

space object. Analysis of the temporal variations in the 

apparent magnitude, (brightness), permits an analysis of 

the characteristics of the object.  

The technique of light curve analysis is well established; 

an example can be seen in Figure 1, showing a plot of one 

hour (19:35 to 20:35 UT, 04/04/2018) of observations 

with the ‘Tracker 2’ telescope from Deimos Sky Survey 

(DeSS) of the GSAT satellite (18027A). More than 2600 

measurements were produced during this hour, and these 

have been plotted to show a distinctive photometric light 

curve. 

 

Figure 1. Light curve obtained from Tracker2 

observations of GSAT satellite (18027A)  

The light curve, in Figure 1, has a very well-defined main 

rotation period. The phase angle was quite constant, since 

the object was moving at quite similar apparent speed to 

the Sun, maintaining a similar angle with it for all the 

observations. The phase angle variation was calculated 

along the observing period at about 1º, not impacting on 

the observed visual magnitude. There is a clear 24-minute 

repetition of the pattern, so assuming the object has no 

clear symmetry then this gives its rotation period. If the 

object is quasi-symmetric then this period is doubled (48 

minutes). Further observations would help to distinguish 

between these cases, and to establish if this is long term 

behaviour. 

By having observations over longer periods, other angles 

of the satellite would be seen, building up a better model 

of the satellite during a particular pass. Over a period of 

time, this can yield a pattern of life, and a way to examine 
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the satellite’s behaviour if this changes. Employing some 

simplifying assumptions and/or prior knowledge of other 

properties, (for example the optical properties of the 

object or the moment of inertia of the satellite), its 

operational status and changes to it can then be estimated. 

This sort of information has obvious tactical and strategic 

importance and can also be crucial for damage 

assessment.  

Using an extensive literature review it was determined 

the most promising technique for analysing light curve 

data was through the use of machine learning techniques. 

Machine Learning (ML) techniques are considered to be 

an interesting technology to apply to the task of 

characterising objects through light curve information, 

due to their ability to identify patterns among input data. 

2 STUDY LOGIC  

This paper details the initial results of an ongoing three-

phase study, which consists of:  

• Phase 1: A comprehensive review of the use of light 

curves for characterisation and any issues this type 

of analysis may face and some possible alternative 

techniques.  

• Phase 2: Development of a light curve simulator, 

development and initial testing of chosen machine 

learning techniques for object characterisation using 

light curves and a short campaign of observations 

using Tracker 2 at DeSS. 

• Phase 3: Extensive campaign of observations using 

DeSS and further development and testing of the 

machine learning techniques.   

The project is currently at the beginning of Phase 3. 

Hence, this paper contains the initial results gained in 

Phase 1 and 2 only.  

3 METHODOLOGY 

The approach to the characterisation of objects in space 

through optical observations (using information from 

light curves) is based on three main aspects: 

• Optimisation of the light curves obtained from 

sensors, which shall provide the largest sampling-

frequency possible, well-calibrated brightness 

information and high radiometric sensitivity 

• Long observation arcs and repeated arcs over a 

number of nights throughout the year, looking for 

patterns in the long-term brightness data (building on 

the short-term approach normally used for analysing 

single passes) 

• Machine learning techniques applied to the 

identification of patterns in the light curves for the 

classification of object geometry, attitude, materials, 

etc.  

This project focuses on objects in the geosynchronous 

Earth orbit (GEO) regime, where long observations can 

be performed at the same elevation angle (limiting the 

variations in the observation conditions to known factors, 

such as the illumination angle of the Sun which across 

the year makes an apparent +/- 23.5° motion in the sky 

relative to the equator). However, the methods developed 

in this project could also be applied to characterisation of 

debris, assuming appropriate training data was available 

to the machine learning algorithms.  

To increase the accuracy and the sampling frequency, and 

to avoid conjunctions of the targets with surrounding 

stars, a fast, unfiltered camera collects a series of very 

short images of less than 1 second exposure time. These 

cameras are very sensitive and do not require mechanical 

shutters. Other systems based on video cameras can 

obtain a very large sampling rate but they are not 

generally sensitive enough, and their data stream, if 

converted to single frames, would suffer a loss of 

resolution and linearity. The very short exposure times 

also have the benefit of maintaining rounded stars and not 

generating long trails in the image. This is essential, 

considering that they are needed for differential 

photometry once the images are compared with a high 

accuracy photometric and astrometric catalogue. 

Moreover, generating photometric measurements every 

second would allow the system to track several GEO 

targets almost simultaneously, (for example, in the case 

of several GEO objects operating in a cluster at a shared 

longitudinal slot). This particular case can present some 

difficulties as the observed measurements of the objects 

may cross and produce incorrect visual magnitude 

evaluations. However, appropriate filtering techniques 

can be applied to separate light curves from clusters.  

For analysing long arcs, the objective is to track full-night 

light curves of geosynchronous objects, trying to analyse 

their behaviour not only throughout the night, but also 

night after night. By studying their light curves with 

respect to the Sun angle, it is then possible to look for 

variations in attitude and position over time. The Sun 

would slowly provide illumination angle changes, 

allowing further details of the satellite geometry to be 

determined. Moreover, the small diurnal north-south 

variation of the sun angle, and hence the illumination, 

should provide additional information. By 

simultaneously observing several GEO targets over a full 

night, it is possible to model typical geometries, and 

introduce these light curves into a machine-learning 

system, to create a model that can characterise various 

geometries and light curves. 

Deimos owns and operates its own optical SST system 

located at high altitude in the Castilla La Mancha region 

south of Madrid. The DeSS (Deimos Sky Survey) system 

currently consists of 4 optical telescopes which are 

capable of observing objects in LEO, MEO, HEO and 

GEO. Tracker 2 at DeSS has been used to collect the light 

curves to be used in this project.  



The optical tube of Tracker2 sensor is a 40cm aperture at 

f/8 (3251mm focal length) with focal reducer and coma 

corrector lenses, with a resulting focal relation of F5.5. 

For this setup, the final resolution is 1.20 arcsec/pixel 

combined with the attached CCD camera. This resolution 

allows astrometric measurements under arcsecond 

accuracy, when the signal of the satellites is spread over 

several adjacent pixels and the centroid is determined by 

subpixel value. 

By comparing all illumination phases, from West to East 

through the night and also analysing the night-to-night 

light curves, it should be possible to derive much more 

information from the light curve. This approach allows 

the determination of normal patterns (which should be 

maintained from one pass to another) and hence the 

detection of anomalous behaviour.  

Once the light curves are available, a machine learning 

technique applied to those curves allows the 

identification of features of the observed objects. The 

success of the ML is determined by the architecture of the 

approach and the dataset used for training the ML 

network. For the architecture, it is considered that a 

neural network approach is a good technique for the 

purpose of the project, but other approaches may also be 

investigated. The data collected from DeSS is 

supplemented with simulated light curves. It would be 

impossible to gather real data on a wide enough range of 

objects to the degree of accuracy required to train the 

machine learning algorithms adequately, thus a light 

curve simulator is also built within the project to produce 

realistic light curve data.  

4 SHORT OBSERVATION CAMPAIGN 

In order to properly validate the light curve simulator, it 

was necessary to gather a small amount of data for a real 

object, to test the simulator against. When the simulated 

light curve matches the real one, the simulator can be 

considered to be working properly.  

For this purpose, it was necessary to choose an object 

with a verifiable ‘ground truth’, meaning the dimensions, 

materials etc. were well understood and could be entered 

into the simulator. Given that Deimos do not have assets 

in GEO it was necessary to pick an object operated by 

another entity. Inmarsat’s Alphasat was selected and a 

data sharing agreement was put in place between Deimos 

UK and Inmarsat.  

Alphasat is a large GEO communications satellite 

operated by Inmarsat and ESA. The spacecraft operates 

at a longitude of around 25° east with an inclination of 

about 0.14°. It has two deployable solar arrays spanning 

approximately 40m, and an approximately 12m wide 

antenna reflector. The orientation of the satellite solar 

arrays is approximately North-South. The solar panels 

rotate to track the Sun.   

Figure 2 shows an artist impression of Alphasat in orbit, 

it should be noted that the solar sailing tabs (the small 

tabs on the solar arrays) were not included in the final 

design of the satellite. Also, of particular note is that the 

reflector is a mesh, not solid (as implied in the artist 

impression), which effects the impact it has on the light 

curve. 

 

Figure 2. Artist impression of Alphasat in orbit. Image 

Credit: ESA (https://directory.eoportal.org/web/eoportal/satellite-

missions/a/alphasat) 

Once the object had been selected, observations were 

completed using DeSS. A total of 16 nights of 

observations were performed, though some of these 

nights were only partial nights due to weather conditions 

and sensor time constraints. The light curves obtained are 

shown in Figure 3. Note that the magnitudes of the light 

curves have been manually altered to separate them in the 

y-direction, for easier comparison.  

 

Figure 3. Alphasat light curves gathered by DeSS. Note 

the light curves have been manually altered to separate 

them in magnitude for easy comparison. 

There are several key features to note in these light 

curves. First, most obviously, is the consistent ‘W’ shape 

appearing in all the curves, this is due to the solar arrays 

(in particular that the solar arrays are slightly offset from 

each other, producing a double glint). However, it can be 

seen that this ‘W’ shape is not consistent in all curves it 

varies in depth and width due to the changing lighting 

conditions from night to night. Also of note is the 
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appearance of a large dip in the light curve of the later 

dates, it is believed this is caused by reflection off the side 

panel of the satellite; the side panels are highly reflective, 

as such it is believed that the changing orbital geometry 

of the problem produces this extra dip. Long term study 

could confirm this supposition.    

In the later light curves some large gaps in data can be 

seen, these are attributable to the shadowing caused by 

the Earth due to the time of year. This is, unfortunately, 

unavoidable when using data from a single sensor. It 

should be noted that the shadowing is gradual, and 

introduces noise to the curve, obscuring the true 

magnitude, as can be seen in the lower black curve, prior 

to the gap in observations. It will be important, for Phase 

3, that this type of bias is removed from the curves before 

the data is used in training the machine learning 

algorithm.   

Less obviously there is a pattern of small, short-lived 

increases in the noisiness of the curves, which is 

attributable to the satellite passing across the same 

background stars, hence increasing the noise. An 

interesting study would be to attempt to create a filter to 

remove this systematic noise by analysing the light 

curves in detail, but that is not in the scope of this project.  

In the lowest blue curve, at the end of the observation 

period, the curve appears to become very noisy. 

However, this is not a true reflection of the object 

magnitude, but was induced by mist and worsening sky 

conditions which eventually meant observations had to 

be halted. As with the shadowing effect, for Phase 3, it is 

recommended that such noisy data be removed prior to 

passing the data to the machine learning algorithm.   

Of particular note in these observations is that over a 

short span of time (less than 2 months), the light curve of 

a single object alters significantly. This reinforces the 

conclusion from the Phase 1 study that long term study 

of the light curves may provide better understanding of 

the object. It also suggests that a simple machine learning 

algorithm based on a convolutional neural network 

(CNN) will not necessarily be able to attribute 

observations to the correct satellite or even the correct 

satellite shape due to the possible variance in the light 

curve. This reinforces a second conclusion from the 

Phase 1 study: that an algorithm based on a recurrent 

neural network (RNN) will be necessary to properly 

characterise space objects. These conclusions are 

currently being tested. 

5 THE LIGHTCURVE SIMULATOR 

The light reflected by a space object and measured by a 

detector located on the Earth is modified by a wide 

variety of processes. These need to be well-understood in 

order to separate information from noise in the signal. For 

most accessible telescope systems, the object under 

consideration is smaller than the resolved pixel and hence 

the light collected in that pixel is also affected by 

materials around the Resident Space Object (RSO) (aka 

“target”) and stray light within the telescope. The 

dominant light source is the Sun, but the received light is 

varied by: 

• Object physical motion, especially related to the 

angle between Sun and observer (Solar Aspect 

Angle – SAA) 

• Physical design and materials 

• Motion of panels and antennas on the object 

• Emissions from the object 

• Background (or foreground) objects, usually stars 

but could be other debris objects in the pixel field of 

view 

• Errors in the intervening atmosphere, telescope and 

detection systems 

In the analysis of light curves, four main aspects must be 

considered, the light source, the reflector (or target), the 

observer and any errors or noise in the data. In most 

cases, the light source will be the Sun, however, the moon 

and other light sources can also be considered. The 

reflector is the target of interest, in most cases a 

spacecraft or piece of space debris. The observer is the 

telescope or other technology used to acquire data. 

Finally, any potential sources or error (noise) in the data 

must be considered; these include but are not limited to; 

atmospheric effects, material degradation or even dust on 

the telescope lens. These four aspects provide the 

building blocks for the creation of the light curve 

simulator.  

The light curve simulator has been developed in Python3 

on an Ubuntu platform. The program POV-Ray 

(available at: povray.org) was called using python scripts 

to for the ray-tracing required to produce the light curve.  

Python contains a wide library of modules applicable for 

multiple different purposes. Libraries such as numpy and 

matplotlib have been used for basic mathematical 

functions, while skyfield, spacetrack, and astropy have 

been used to calculate orbital information for the bodies 

of interest: the satellite, the Sun, the sensor and the Moon. 

POV-Ray is an open-source 3D rendering software 

which uses ray tracing to generate images. In this context 

the version used is the one developed for Unix.  

Ray tracing is a technique that renders a final image by 

simulating rays of light travelling in the real world, 

backwards from the observer to the source. This way the 

software is able to save a lot of computational time by 

only simulating the rays that reach the observer. The rays 

generated from the viewer and pass through the scene. 

Every time the ray hits an object, the amount of light 

received by that surface is calculated by sending rays 

backwards to each light source. 

To simulate a scene, POV-Ray reads in a text file 

containing information written in a specific language 



describing the objects and lighting conditions in a scene. 

Then POV-Ray generates an image of the scene from the 

point of view of the observer (the telescope in this case), 

which is also documented in the text file. POV-Ray has 

an extensive number of features, allowing users to render 

the scene, both in a realistic or an artistic way, depending 

on the requirement. 

The architecture of the simulator is divided into 6 main 

steps: 

1. Setup 

2. Position Propagation and Visibility Analysis  

3. Object Creation  

4. Image Generation  

5. Image Calibration and Processing  

6. Data Extraction and Storage 

The setup step reads in the required simulation inputs, 

and determines the mode of simulation; consecutive 

image creation for a single object, concurrent image 

creation for a single object, concurrent simulation for 

multiple objects or batch simulations of multiple objects. 

This allows a user to determine the processing power 

drawn and affects the simulation run-time; with batch 

simulations being the fastest way to generate large 

volumes of light curve data.  

The position propagation and visibility analysis step 

draws on JPL ephemeris data to determine the positions 

of the celestial bodies of interest (Sun, Earth and Moon) 

and on either TLE or OEM ephemeris data for satellite 

position. Using this data, the orbital geometry of the 

problem is determined and visibility checks determine if 

the space object of interest would be in view of the sensor 

and under the appropriate conditions (i.e., no Earth 

shadowing, no Moon interference, Sun below horizon 

etc.).  This check dictates at which time steps images of 

the object could be captured by the real sensor, and hence 

which should be simulated.  

Next, the object is created in the POV-Ray language 

using constructive geometry; a process of combining 

simple shapes such as boxes and spheres to create more 

complex shapes. An object is defined using statements 

such as union, intersection and difference, allowing a 

user to combine or subtract shapes from each other as 

necessary. This can complicate matters significantly, as 

to create a simple dish geometry for an antenna requires 

building a sphere then subtracting material using a 

smaller sphere and a box. However, it has been possible 

to create every geometry required with a little 

imagination. For the initial study of the machine learning 

algorithm, some simple shapes are studied to provide a 

baseline understanding of what the algorithm will be 

capable of. For Phase 3 more complex geometries will be 

implemented, including the complex geometry of 

Alphasat, used in the validation phase of the simulator. 

Once the object geometry is defined, the position, attitude 

and material information is applied.  

Once the object is defined and the orbit propagated, the 

next step in the simulator is to generate images as seen 

from the simulated sensor. There were significant 

challenges in this part of the simulator development, 

POV-Ray imposes limits on the simulation; distances 

that photons travel and photon-pixel limits. The first of 

these meant the simulation had to be scaled to allow the 

program to compute properly the number of photons 

reaching the sensor from the object. The second, 

however, was a hard limit that could not be overcome 

easily. Eventually, a workaround was found by 

artificially magnifying the image then calibrating it to 

restore the proper proportion. To create the image, POV-

Ray requires the input of the objects included in the 

simulation, in this case the Object, Sensor, Earth, Sun, 

and Moon.  

After POV-Ray has generated the image, the image is 

processed. Simply put, the FITS image is ingested and 

the pixel value for each pixel in the image is evaluated 

and the values for all lit pixels are summed to find the 

total brightness of the object. Using real data from DeSS 

an approximate noise value is applied to the total 

brightness at this point, using a random distribution to 

simulate various real random noise sources such as 

background stars, weather, and atmospheric effects. 

After processing is complete and noise has been added, 

the image must be properly calibrated to remove the 

scaling imposed in the image generation step and 

translate the POV-Ray output to a real photon count for 

each pixel of the image. 

Finally, after the image processing is complete the 

outputs are saved as csv files, from which necessary data 

can later be extracted. The csv files can be parsed and 

light curves plotted and fed to the machine learning 

algorithm.   

With the simulator complete the first data sets used to 

train and test the machine learning algorithm could be 

generated. In the first round of simulations four different 

types of studies have been conducted; the effects of 

Shape, Size, Attitude and Materials on the ML 

classification ability.  

6 MACHINE LEARNING  

Machine learning techniques, especially usage of deep 

learning models, have now been researched and 

implemented in various fields of interest from health 

problem diagnosis [6] to sound classification [9]. Of 

particular interest is the state-of-the-art that uses one 

dimensional data, such as time-series or sequence data as 

inputs and develop well-performing classification 

models with accuracies of 70% [1, 3] and few reaching 

above 90% [1, 4, 9]. 

The aim for the machine learning part of this project is to 

develop algorithms that can extract different features of a 

GEO object from its light curve, in order to identify 



various characteristics such as its shape, construction 

materials, dimensions and subtle differences to the object 

over time due to the impact from the space environment. 

The current workflow uses simulated and real data 

together for model development, however can be 

adjusted depending on the future work. 

For the initial model architecture, an autoencoder (AE) 

model that independently extracts patterns and features 

from light curves was selected. Later, a convolutional 

neural network (CNN) model imports the encoder part of 

the pre-trained AE as the base model and adds additional 

CNN layers on top to obtain classification of satellite 

characteristics. The next stage is to implement a recurrent 

neural network (RNN) model that will also potentially 

use the encoder part of the AE as a base model and build 

RNN layers on top to extract and classify satellite 

characteristics.  

6.1 Autoencoder Development 

The autoencoder (AE) is an unsupervised learning model 

that is used for data compression and pattern extraction 

from self-learning rather than human engineered labels. 

In Figure 4, the general structure of the autoencoder is 

shown. It consists of an encoder part that ingests the input 

data, extracts features and stores these in a compressed 

form.  

  

Figure 4. Representation of an Autoencoder model. 

Adapted from: www.compthree.com/blog/autoencoder 

The second part of the autoencoder is the decoder, which 

ingests the compressed data and attempts to reconstruct 

the input to its original form. A convolutional 

autoencoder (CAE) consists of convolutional layers that 

create dense feature maps that consist of compressed 

extracted features and patterns that the model has defined 

as an important pattern of the input data. Convolutional 

layers are broadly used in image classification models, 

however, there have also been cases [5, 6, 7] where they 

have been applied to one-dimensional data in 

unsupervised learning and reached satisfactory results.  

Initially with limited labelled data, multiple cases of 

different convolutional autoencoders (CAE) were tested 

to establish the most efficient model that could 

reconstruct the 1D data input to its original form. Model 

structures varied from four to six convolutional layers 

followed by max-pooling layer in encoder model and up-

sampling layer in the decoder model. The filter size for 

each layer augmented by two to increase the number of 

learnable parameters, however the kernel size, pooling 

size and the activation function stayed the same for all 

CAEs. In order to have a better understanding of how 

well the model is learning and performing, a masking 

function has been implemented on the loss function and 

the metrics (except for accuracy) that sets all the 

predicted values after each epoch to zero in the same 

indexes where the actual values were missing or padded 

with the zero value. 

From these preliminary trials, the CAE model (‘CAE1’) 

architecture was defined with five 1D convolutional 

layers in both encoder and decoder models and the filter 

size was set for each layer in corresponding order - 8, 16, 

32, 64, 128 for encoder and a reverse sequence for the 

decoder model. The kernel size was set to three for all 

convolutional layers. The activation function for all the 

top layers was set to be the ‘ReLu’ function, except for 

the output layer, where a sigmoid function has been 

selected. In the encoder, a 1D max-pooling layer has been 

added, with a pooling size of two, to compress the output 

after each convolutional layer and create a denser feature 

map of the input. For the decoder, a 1D up-sampling layer 

is added after each convolutional layer, with a pool size 

of two, to have the opposite effect, creating a broader 

feature map of the inputs, hence reconstructing the data 

to their original form. The ‘Adam’ optimizer and Mean 

Square Error (MSE) loss function are used to train the 

model. 

6.1.1 CNN Development 

The development of the CNN model was completed in 

multiple stages. The first; testing was used to determine 

if a CNN model can make a binary classification between 

two shapes – sphere and box. If the light curve sample 

was a box with solar panels then it was labelled as a 

‘Box’. This model will be referred to as ‘CNN1’ in this 

paper. Its architecture was defined by importing the 

pretrained encoder model and set as non-trainable. This 

would be the base model on which one additional 

convolutional layer with filter size of sixteen and kernel 

size of three was added, with a max-pooling layer 

following it. The activation function was set as ‘ReLu’ in 

the additional convolutional layer and a sigmoid function 

for the output layer, in order to provide binary 

classification (either 0 or 1). The ‘Adam’ optimizer and 

binary cross entropy are used to train the model. 



With more generated cases of simulated data, the next 

stage was to determine how well the model can classify 

between three possible satellite shapes – sphere, box and 

box with solar panels. For further testing, there were two 

model algorithms tested – ‘CNN2’ that consisted of a 

single feature extractor and ‘CNN3’ that has two parallel 

feature extractors (see in Figure 5). Both of the models’ 

top layers are set with the ‘ReLu’ activation function, 

however for the output layer, the activation function is set 

as softmax function, in order to provide multiclass 

probability output ranging between 0 and 1.  

 

Figure 5. Representation of the two model structures with 

(a) ‘CNN2’ having a single, and (b) ‘CNN3’ having a 

parallel feature extractor. 

For further improvement, a more complex model 

algorithm defined in [1, 4] has been constructed. The 

proposed architecture consists of seven layers from 

which three are convolutional layers with filter size 64, 

32, and 64 respectively. After each convolutional layer a 

dropout and a max-pooling layer is added with the 

dropout rate being 0.2 and pooling size of 4. This model 

architecture was adapted into the CNN development for 

this project, as these papers have done testing on similar 

data types and their findings showed satisfactory results 

with an accuracy reaching above 90% when testing the 

model on simulated data and 70% accuracy on real data. 

All the papers made use of a similar model architecture 

with the layer parameters adapted and tested to each case 

individually.  

The ‘CNN4’ model structure consists of the above-

mentioned architecture as the top layers on the non-

trainable encoder model with the activation functions set 

the same as in previous model testing stages. This 

multiclassification model achieved better results in 

accuracy and the f1-score compared to previous model 

cases.  

The following stage is the development of a 

multiclassification model that can classify satellites by its 

shape and size. The initial training case was conducted 

using the ‘CAE1’ model and ‘CNN2’ model architecture, 

however with more simulated cases being generated, 

there have been multiple trials with different model 

complexity, such as using ‘CNN4’ model instead of 

‘CNN2’, and testing of different classification cases. 

6.1.2 RNN Development 

The last model architecture under development is an 

RNN model that differs from the above two by having 

memory units or also called cells that contain information 

generated from previous inputs, and feedback 

information from previous layers. From the former 

research papers [2, 8, 10], the two main RNN models 

under investigation are the Long Short-Term Memory 

(LSTM) and the Gated Recurrent Unit (GRU).  

The first stage for this model development is using an 

LSTM network for classification of the satellite’s shape. 

The model structure consists of the pretrained encoder 

model, masking layer and two additional LSTM layers on 

top. This architecture is a simple model, further referred 

to as ‘LSTM1’, and is still under development, hence 

there has been much testing and comparison of the 

model’s results by changing the LSTM layer unit 

parameters, as well as trialling the LSTM model without 

importing the encoder model. The development of both 

the RNN models is still in the initial testing phase; as 

more training data is required for these complex models, 

and Phase 3 will include further model testing and 

algorithm refinement. 

6.2 Data Used for ML 

For testing and training multiple different deep learning 

models with limited data, all the datasets have been split 

to training, validation and testing sets with 70%, 15% and 

15% split for each set. All models train on the same 

training set and validate after each run on the validation 

set. The test set is composed of data samples, which none 

of the models have been trained or validated with, and 

can be used to assess model performances independently. 

6.2.1 Simulated Data 

Simulated data has been generated for 4 different case 

groups - shape, size, attitude and material. In each case 

one key parameter has been changed in the configuration 

file (light curve simulator input file) containing the 

object’s properties. The initial cases consist of light 

curves from one night each month for 12 months and 

generated for 3 different orbits (based on existing GEO 

objects). 

For the shape cases, there are simulated light curves for 

three shapes: a sphere, box and box with wings (or box 

with solar panels). All shapes have a consistent size. 

These parameters are the base characteristics for all 

simulated cases except for the size case, where these 

parameters vary. For the attitude case, object’s 

orientation has been varied. In the size case, the height of 

(a)  (b) 



the box is varied ranging from extra small to large size. 

Similarly, for the sphere shape satellite, the radius of the 

sphere is varied. For the box with wings case, the box 

stays consistent, however the solar panel length changes. 

The small label is applied to all the other simulation 

cases, as the default size is in the range between the extra 

small and medium cases. In the material cases, the object 

configuration currently consists of 3 possible materials 

for box and sphere shapes.  

6.2.2 Real Data 

This dataset was available from the start of Phase 2 and 

consists of real light curves from 16 observational nights 

of the same satellite, ALPHASAT, as discussed 

previously. The satellite is classified as a box with wings 

(though its shape is more complicated than the simple 

shapes used in the initial simulation cases).  Each light 

curve covers a portion or a full-night of observations, 

hence has inconsistencies in the data set with varying 

lengths and frequencies due to effects such as adverse 

weather conditions or Earth shadowing. 

6.2.3 External Data 

The Mini-MegaTORTORA (MMT) system is a novel 

multi-purpose wide-field monitoring instrument built for 

and owned by the Kazan Federal University, who 

collaborate and are under agreement with the Special 

Astrophysical Observatory in Russia.  

The set up for the MMT includes nine individual 

channels installed in pairs on five equatorial mounts. 

Each channel is equipped with an Andor Neo sCMOS 

detector with field of view reaching roughly 9x11 

degrees with angular resolution of roughly 16'' per pixel. 

The detector is able to operate with a minimum exposure 

time of 0.03s. Most of the data collected is with 0.1s 

frequency, hence it provides 10 frames of inputs per 

second. Most of the data are short length light curves 

ranging from 1 minute to 1-2 hours.  

For this project, the data (available at: mmt.favor2.info) 

was useful for the first testing of different convolution 

autoencoder models as there was a limited amount of data 

to use for model implementation at the start of Phase 2. 

However, due to the short lengths of the light curves this 

data set is less ideal for use in this study. Full night light 

curves are preferable to provide the maximum amount of 

data on the object of interest.  

6.3 Data pre-processing 

One of the stages in pre-processing for 1D time-series 

data is data resampling. In order for the 1D data to have 

a uniform frequency, the light curve is checked to make 

sure it has a consistent interval between the timestamps, 

if true it continues with next method of the pre-processing 

stage. If false, the light curve is resampled to a consistent 

frequency. Note the frequency is selected to match the 

frequency of the real data from DeSS. The magnitude 

value for the resampled timestamp is filled first with the 

corresponding value from the original sequence. If there 

isn’t a recorded timestamp that matches to the new time, 

the magnitude value is filled with a zero value that 

represents the missing values. 

Light curves are also scaled to a range from 0 to 1, where 

the value of 0 is being used for substitution of missing 

values and data sequence padding to uniform length. This 

is implemented to bring all the values into the range 

required for the model to extract patterns from data. In 

this method, the padding of the data sequence is added, 

hence if a light curve is shorter than the predefined 

maximum length, it is padded with zeros at the beginning 

or the end of the sequence. If the data sample is longer 

than the defined length, it can be truncated from the either 

ends of the sequence to match the maximum length. In 

this model testing, the data was pre-processed with the 

padding and truncation set to be applied at the end of the 

data sequence. 

6.4 Initial Results  

6.4.1 Autoencoder results 

The initial results with the MMT data and limited number 

of DeSS full-night light curves, the graphs showed that it 

either keeps predicting some noise or the substituted zero 

values as part of the light curve in both the MMT data 

and the Deimos real satellite data. The models had 

difficulty reconstructing the shorter period light curves 

from the external source as the small variations in 

magnitude were not predicted. In Figure 6a and Figure 6b 

is a sample of the results predicted from the initial testing 

of the ‘CAE1’ model. It can be observed that the 

magnitude values of the reconstructed light curve are by 

0.2-0.3 units lower than the original light curve. 

 

Figure 6. Representation of the results from first ‘CAE1’ 

model testing, where (a) displays a sample of Deimos 

real light curve data and (b) is a sample of MMT satellite 

light curve. For all of the graphs the 0 values are masked. 

Top row is with the original pre-processed light curve 

graphs and bottom row has the predicted light curve 

plots. 

However, with more light curve data generated that 

(b) (a) 



covers full-night observations, the prediction graphs 

from the ‘CAE1’ become more precise, with better 

results. Figure 7 displays the training results for the 

convolutional autoencoder, where the model is only 

trained on the simulated data and the few cases of the real 

observational light curves. The graphs show that the 

magnitude values of the reconstructed light curves have 

improved and are predicted within close range to the 

original value, however there are still drops or peaks at 

the beginning and end of the light curve. As well as, it 

can be seen that the ‘CAE1’ model has learned the small 

variations in magnitude throughout the night as it can be 

observed in both of the reconstructed graphs.  

Both of the real sample light curves in Figure 6a (top) and 

Figure 7a (top) have been pre-processed, however in 

Figure 6a (top) the 0 values have been masked, whereas 

in Figure 7a (top) they are not.  

 

Figure 7. Representation of the results from an updated 

‘CAE1’ model testing, where (a) shows Deimos real 

satellite light curve sample and (b) is Deimos simulated 

light curve sample. The top row is with the original pre-

processed light curve graphs and the bottom row has the 

predicted light curve plots. 

Additional note: the samples in these plots are two 

different light curves from two observational nights. 

With every new simulation case being produced, the 

autoencoder is retrained with the new samples. 

6.4.2 CNN results 

For this stage of CNN model development, the binary 

classification between the two shapes had good results 

with accuracy and f1-score both reaching 100% seen in 

Figure 8a. These results were obtained when all the 

simulation and real cases were used to pretrain the 

‘CAE1’ model and train the ‘CNN1’ algorithm. In order 

to test, how the model was going to cope with a new 

concept of varied sized satellites, 14 new light curves 

from the size simulation case were added to the test set. 

As a result, the accuracy and f1-score of the model 

decreased to 81% and 85% seen in Figure 8b. This shows 

that there are differences in the light curves from different 

size satellites, especially for sphere shapes, that the 

model has difficulty classifying without being trained on 

first. It is interesting to note that the algorithm did not 

ever classify a box as a sphere, only the other way round, 

it is assumed that this is due to the magnitude range of 

the light curves being quite small for the original sphere 

cases, whereas the larger sphere cases have more 

variation more like the box cases.  

 

 

Figure 8. Comparison of the binary classification results 

on the test set. In (a) the ‘CAE1’ and the ‘CNN1’ model 

has been trained and then tested on the shape and 

attitude simulation cases. (b) shows the confusion matrix 

when new samples of the size simulation case have been 

added only to the test set without retraining the CNN 

model on the new dataset. 

In the multiclassification model, where the CNN model 

is predicting between 3 different shapes – sphere, box and 

box with wings, the first results in Figure 9 are 

satisfactory and can be seen that the ‘CNN2’ model can 

distinguish the light curves for sphere and box shapes 

with the accuracy 90% and above. However, it has 

difficulty classifying light curve for ‘BoxWithWings’ 

shape, with only 38.5% accuracy. The model predicts 

with 84% accuracy that the object’s main structure is a 

box, however it has difficulty predicting that this 

structure has solar panels, hence 46% of the samples were 

classified as a ‘Box’ class instead of the actual label 

‘BoxWithWings’.  

 

Figure 9. Representation of the preliminary 

classification results on the test set from ‘CNN2’ model 

training. 

In further testing, by adding more light curve samples to 

the training set for each classification case and using the 

‘CNN4’ model, which has more learnable parameters, 

(a) (b) 
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the results increased in accuracy and the prediction are 

more precise as seen in Figure 10. The accuracy for each 

classification shape is now above 90%. The 6.1% of cases 

misclassified are 2 attitude case samples that were 

predicted to be ‘BoxWithWings’, but the true label is 

‘Box’ class. Further analysing those light curve graphs 

from that simulation case, it can be seen that these 

samples have similar features with light curves from the 

‘BoxWithWings’ class in the same orbit. Hence, the 

model has difficulty discerning the subtle difference. It is 

expected that by increasing the training data set further 

these misclassifications could be removed entirely. 

However, alternatively using an RNN may also be able 

to improve the results.  

 

Figure 10. Representation of the classification results on 

the test set from a ‘CNN4’ model training. 

For the classification case seen in Figure 11 and Figure 

12, the ‘CNN2’ and ‘CNN4’ model are classifying the 

light curves on the object shape and size. The results 

show that with the limited amount of data, it is difficult 

to distinguish between the different sizes, however it can 

still efficiently determine light curves for each shape 

class. Both models are trained on the same data sets, 

however the ‘CNN4’ model results have improved in 

accuracy for sphere shapes improving by 12.5%, for box 

shape by 3% and for box with wings by 18%. The aim in 

further model testing would be for all of the values in the 

diagonal to increase and the other fields in the matrix to 

decrease. 

For further analysis, we trained CNN models on each 

shape separately to classify the object size. These results 

showed that the ‘Small’ label has the best prediction rate 

with accuracy ranging from 66% for ‘BoxWithWings’ to 

90% for ‘Sphere’ shape. This is due to the data imbalance 

between the size cases and also the shape cases (see Table 

1), which has an impact on the model performance.  

In addition, if the total amount of training data used in the 

different stages of model development is considered, and 

compared to the reference papers [1, 3, 4] (where the 

standard size of training datasets for deep learning 

models is at least 1000 samples), it can be concluded that 

the models need more data to produce more accurate 

classification results. Nevertheless, the findings analysed 

show that there is good potential in classifying different 

satellite characteristics. 

 

Figure 11. Confusion matrix of the multiclassification on 

the test set from model testing and training using the 

‘CNN2’ model architecture. 

 

Figure 12. Confusion matrix of the classification results 

on the test set from further model testing and training 

using the ‘CNN4’ model architecture.  

Table 1. Number of training samples per category. 

Training Set Box Sphere 
Box with 

Wings 
Total 

XS 24 24 22 70 

S 62 44 49 155 

M 22 22 22 66 

L 22 22 22 66 

Total 130 112 115 357 

6.4.3 RNN results 

For the first LSTM model training and testing, we 

developed a multiclassification model predicting object 

shape. Comparing the results in Figure 12 with the 



‘CNN4’ model predictions in Figure 10, it can be seen 

that the ‘LSTM1’ model has more difficulty of detecting 

the differences in light curves for each shape as this is a 

more complex model, therefore typically more training 

data is required. Even though the performance of this 

model can be improved, the overall accuracy is good with 

the value reaching above 80%. With more training 

samples and testing cases, the LSTM model can be 

expected to surpass these preliminary results in the next 

project phase. 

 

Figure 13. Confusion matrix of the ‘LSTM1’ model 

classification results on the test set. 

7 CONCLUSIONS AND NEXT STEPS 

The light curve simulator has been successfully 

developed and tested. The first simulation cases have 

been produced and used in training the machine learning 

algorithm. Initial testing of the machine learning 

algorithm has been positive, proving that it will be 

capable of classifying objects based solely on their light 

curves.  

For Phase 3 of the project, the plan is to refine and 

improve the developed CAE and CNN models with more 

training, fine-tuning the layer parameters and testing 

further classification possibilities on other satellite 

characteristics. Further test cases proposed include a trial 

run with the same 3 different models for each shape 

separately, with the CAE also only be trained on those 

specific shapes. Another main aspect that will be focused 

on is the development of the RNN with more testing and 

training of different possible algorithms for the LSTM 

and GRU models. An interesting model architecture is 

presented in [10], where the LSTM layers are trained in 

parallel to the convolutional layers and in the final layers 

merged together to output a classification. This model 

architecture would also be interesting to apply in this 

project and analyse the results, adapting the layer 

parameters to the available datasets and project aims. 

With the extended dataset provided from DeSS, the 

simulator and ML algorithms will be tested more 

extensively.  
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