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ABSTRACT

This study is focused on the detection of orbital in-plane
manoeuvres from historical orbit data contained in a cat-
alogue of space objects. The proposed method is de-
veloped specifically for objects on the geostationary or-
bit (GEO) with the primary objective of detecting sta-
tion keeping (SK) manoeuvres. Thereby, the longitudi-
nal motion and the evolution of the eccentricity vector
of a spacecraft is first analysed. These orbital param-
eters are affected by in-plane manoeuvres. If a space-
craft does not execute a manoeuvre thrust, its motion
will only be affected by natural perturbation forces. Ac-
cordingly, the longitudinal drift rate and the eccentricity
vector are driven by perturbations which are dominant in
the GEO region. These underlying perturbations are the
tesseral acceleration due to the non-spherical potential of
the Earth and the Solar Radiation Pressure (SRP) force.
The analysis of the longitudinal motion concerning ac-
tive spacecrafts reveals a parabolic evolution that can
be treated with two complementary approaches: a curve
fitting using a simplified physical model and a Least
Square (LS) fitting method. Afterwards, the manoeuvre
is assumed to be at the intersection of two consecutive
parabola previously identified.
The manoeuvre detection with the eccentricity vector
relies on a more complex dynamical model. A semi-
analytical orbit propagator, STELA 1, is used to obtain
the expected evolution of the eccentricity vector. This
evolution is then compared with the observed data from
the Two-line elements (TLE) where a deviation marks the
presence of a manoeuvre.
The detection performance has been assessed by compar-
ing the results to historical test objects where the manoeu-
vre epochs are known in advance.

Keywords: manoeuvre detection; geostationary orbit; or-
bital perturbations; least-squares filters; Two-line ele-
ments; station keeping.

1STELA is available in https://logiciels.cnes.fr/en/
content/stela

1. INTRODUCTION

The number of man-made space objects is dramatically
growing nowadays. The continuous monitoring and
studying of these objects are necessary to keep their num-
ber under control and ensure safe space operations. With
respect thereto, international guidelines recommend de-
congesting the most populated space regions from satel-
lites arriving at the end of their operational lifetime by
performing post-mission disposal (PMD) strategies. Be-
ing able to assess the efficiency of PMD strategies is then
essential to determine the guidelines compliance. For that
it is required to detect when a satellite becomes inactive,
that is to say, when it arrives to the end of its lifetime and
it is no more under control. In general, a satellite is con-
sidered to be functional if it is still performing periodic
manoeuvres to stay within the orbital operation configu-
ration.
The analysis of existing catalogue for detecting manoeu-
vres has been studied in the last 15 years. [7] devel-
oped in 2008 a method to detect space events includ-
ing orbit manoeuvres. The method processes state vec-
tor data associated with the catalogue of tracked objects.
Sequential data are processed using a moving window
to filter and estimate a parameter’s value, for example,
the semi-major axis for Low Earth Orbit (LEO) space-
crafts. Parameter dispersions are found by differencing
its expected value and its actual value. When a deviation
from its expected value exceeds a predefined threshold,
an event is declared. The underlying idea of this method
has been extensively used in future works. [6] presented
two novel methods, the first one called TLE consistency
check (TCC) and the second one called TLE time se-
ries analysis (TTSA). The TCC method detects events by
comparing a published TLE data with a propagated state
and analysing the spatial difference between the two. The
TTSA method uses the time series of an object contain-
ing the orbital elements, or a derived quantity thereof,
and evaluates it for any type of unexpected changes by
methods from robust statistics and harmonic analysis. Al-
though all these methods can be applied to any element
set parameter or a derivative of one or more TLE parame-
ters, they are usually applied to the semi-major axis to as-
sess the behaviour of LEO spacecrafts. The performance
when applied to other orbital parameters has not been still
extensively assessed. The only work found by the au-
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thors applied to a different orbital region is [3]. In that
paper, signal processing techniques are applied on public
domain TLE data to enhance the ability to detect orbital
changes from the noise in raw TLE data. Once incon-
sistent outliers are filtered out, their work processes each
orbit state with a temporal lead trail window of surround-
ing orbit states being propagated over a range of common
epochs with key metrics being recorded. Two different
methods of characterizing manoeuvres history are then
implemented. The first method, Detection Method, uses
metrics derived form comparison between adjacent orbit
states in order to identify times where it is statistically
probable that the satellite performed a manoeuvre. And,
the second method or the Frequency Fit Method performs
a manoeuvre frequency fit to the data in order to deter-
mine to what degree any pattern of periodic manoeuvring
exists. The characterization function which is assessed in
all this process is the maximum difference of radial, in-
track, and cross-track magnitudes over one orbital period.
The present paper presents a promising method to detect
historical in-plane manoeuvres of satellites on a geosta-
tionary orbit (GEO). The novelty of this work is to in-
troduce in the algorithm the particularities of the GEO
dynamics such as the natural longitudinal drift. These
considerations of the GEO orbital evolution allow us to
select the most appropriate parameters to be assessed for
the manoeuvre detection. Since a manoeuvre changes
the orbital state of the spacecraft, its effect can be de-
tected by comparing the observed data to a reference evo-
lution. The reference model is represented in this case by
the dynamical model STELA based on a semi-analytical
theory[5]. The observed data is provided by the public
American space object catalogue[9]. The Two-line ele-
ment (TLE) database contains the orbital state of each
tracked object, however, not all six orbital parameters are
interesting to study in terms of in-plane manoeuvres. The
evolution of the longitude and of the eccentricity vec-
tor is immediately affected by a manoeuvre that changes
the shape or the size of an orbit. Within the longitude
analysis, the manoeuvre epoch is estimated by focus-
ing on the manoeuvre strategy. An operational space-
craft usually performs a manoeuvre as soon as the lon-
gitude motion threatens to violate the operational dead-
band. Consequently, the longitude evolution follows a
parabolic motion.[8] Two polynomial curves of second
degree are laid over the observations: the first curve is
derived from a simplified dynamical model and the sec-
ond curve is directly obtained through a Least Squares
fitting method. The discrepancy between the LS and
physical fitted parabolas gives an indication on the qual-
ity of the input data, the TLEs. The detected manoeuvre
epoch must be companioned by a confidential parameter
that denotes the time range around the estimated epoch
in which the manoeuvre is expected to have happened.
The manoeuvre interval is then forwarded to the eccen-
tricity analysis where the manoeuvre epoch is estimated
more precisely by studying the divergence between the
observed and expected eccentricity vector evolution. The
latter is propagated with STELA after having estimated
the area-to-mass ratio that is needed in order to model
the perturbation effects forces accurately (i.e. SRP) upon
which the performance of the dynamical reference model

strongly depends. As soon as the observed eccentricity
vector deviates significantly from the expected evolution,
the epoch and the velocity ∆V of the manoeuvre can be
recovered, too.

2. EQUATIONS OF MOTION

Six quantities are needed in order to represent the dynam-
ical state of any point object in space. An example is
the representation through the position and velocity vec-
tor. By focusing on a specific orbit region, one can make
use of the orbit’s characteristics and find a more conve-
nient way of representing orbital elements. It often makes
more sense to describe geostationary objects using the so-
called synchronous elements which are defined as a set of
the following parameters:

[λm, D, ex, ey, ix, iy] = [λm, D, e, i]

where λm denotes the mean longitude of the spacecraft
and D the mean longitude drift rate. The latter implies
that λm is not constant over time but drifts due to a devi-
ation of the semi-major axis a from the semi-major axis
of the unperturbed GEO aGEO. Throughout this work
study, a vector is denoted by a bold letter and scalar val-
ues by non-bold variables. Hence, e and i indicate re-
spectively the eccentricity and inclination vector. e rep-
resents a vector in the equatorial plane pointing towards
the orbit’s perigee with a magnitude of e while i is the
projection on the equatorial plane of the orbital pole, the
axis perpendicular to the orbital plane, its magnitude is i.

e =

(
e sin (Ω + ω)
e cos (Ω + ω)

)
i =

(
i sin Ω
−i cos Ω

)
(1)

Soop [8] presents a detailed derivation of the linearised
motion of a geostationary spacecraft using synchronous
elements. The advantage of linearisation is that it gives
a simplified mathematical expression for the motion by
linearly adding the different effects on the orbit. There-
fore, the motion with respect to Earth is considered to be
small and the spacecraft ideally at rest on its geostation-
ary orbit. If the duration of the thrust ∆t is short (≤ 1 h)
with respect to the orbital period, one can approximate
the thrust as impulsive and add the velocity increment to
the current state vector:

∆V =

∫ tb+
∆t
2

tb−∆t
2

F

m
dt ≈ F

m
∆t (2)

where tb is the mid point time of the thrust. This means,
if the state vector before the thrust has been (r,V ) the
next state vector after the thrust will be (r,V + ∆V ).
As a result, a manoeuvre thrust does not instantly affect
the satellite’s position but directly changes its velocity ac-
cording to Eq.(2). The change in the velocity compo-
nents in radial, tangential and orthogonal directions are
respectively denoted as: ∆Vr,∆Vt,∆Vo. Considering
the status of a spacecraft at thrust time tb, the linearised



equations of motion become:

∆r = −aGEO

(
2

3
∆D + ∆ex cos sb + ∆ey sin sb

)
= 0

(3)
∆λ = ∆λ0 + ∆D (sb − s0) + 2∆ex sin sb

− 2∆ey cos sb = 0
(4)

∆θ = −∆ix cos sb −∆iy sin sb = 0 (5)

∆Vr = V (∆ex sin sb −∆ey cos sb) (6)
∆Vt = V (∆D + 2∆ex cos sb + 2∆ey sin sb) (7)
∆Vo = V (∆ix sin sb −∆iy cos sb) (8)

where sb is the sidereal angle at thrusting time. ∆θ ex-
presses the change in the latitude that depends on the
change in the inclination ∆i. The subscript ”0” denotes
all parameters at t = t0. This linearisation is only justi-
fied for ∆V s less than 50 m s−1 when the thrust is much
smaller than the orbital velocity (V ' 3 km s−1). A de-
tailed derivation of these equations is given by Soop [8].
An in-plane manoeuvre can either change the tangential,
radial or both velocities. Accordingly, the orthogonal
change can be neglected. In case of a tangential burn,
Eq. (3)-(8) reveal the following solutions:

∆λ0 =
3∆Vt
V

(sb − s0) (9)

∆D = −3∆Vt
V

(10)

∆e =
2∆Vt
V

[
cos sb
sin sb

]
(11)

and in case of a radial change, the solutions are the fol-
lowing:

∆λ0 = −2∆Vr
V

(12)

∆D = 0 (13)

∆e =
∆Vr
V

[
sin sb
− cos sb

]
(14)

3. EFFECTS OF PERTURBATIONS

Station keeping (SK) thrusts are required because the
spacecraft is subject to natural and unnatural perturba-
tions but needs to maintain the desired orbit. There exists
several natural sources of perturbations which have been
summarised in Table 1. As shown, the dominant pertur-
bations affecting the in-plane parameters are the tesseral
terms of the non-spherical gravity field of Earth and the
SRP.

Table 1. Overview of perturbations.

Perturbations Effects
Non spherical gravity field of Earth
− Tesseral terms D

− Zonal terms i (slightly), a
Three body system i, e (slightly)
Solar radiation pressure e

3.1. Non-spheric Earth potential

Earth’s form does neither represent a sphere nor is its
mass symmetrically distributed. In order to accurately
model the Earth’s gravity, its potential is expanded in a
series. This study assumes that Earth’s gravitational po-
tential R is given by:

R =
µ

r
+ µ

L∑
l=2

l∑
m=0

Rl
e

rl+1
Plm (sin θ) · ...

... · (Clm cosmλ+ Slm sinmλ)

(15)

where Re is the radius of the Earth. The potential func-
tion is defined by a series development in spherical har-
monics. Plm denote the associated Legendre functions
of degree l and order m. Considering the Earth as non-
spherical introduces the angles θ and λ that denotes the
spherical coordinates of the satellite. The C terms with
m = 0 denote the zonal terms and represent the ex-
pansion that is rotationally symmetric caused by Earth’s
flatness. Hence the gravitational potential in this sense
would be independent of λ. The tesseral terms, the terms
where m ≥ 1, introduce the gravitational potential as
both latitude and longitude dependent caused by the un-
symmetrical mass distribution of Earth’s body. The tan-
gential component of the gravitational acceleration due
to the tesseral terms plays a major role with respect to
the longitude drift. The disturbing acceleration is domi-
nated by the coefficients with l = m = 2 and results in a
potential given by:

R22 =
µ

r

(
Re

r

)2

P22 (sin θ) (C22 cos 2λ+ S22 sin 2λ)

= 3 · µ
r

(
Re

r

)2

J22 cos2 θ cos [2 (λ− λ22)]

(16)

where P22 denotes the associated Legendre function of
second degree and second order. J22 and λ22 are terms
combining the geopotential coefficients as:

J22 =
√
C2

22 + S2
22 (17)

λ22 =
1

2
arctan

S22

C22
(18)



Assuming that θ is approximately zero for GEO satel-
lite, the acceleration in Eq.(16) becomes sinusoidally de-
pendent on the longitudes with four nodes. The four
nodes mark the longitudinal position at which the space-
craft does not encounter an acceleration and therefore,
remains at rest. Two of them are so-called stable equi-
librium points meaning that a spacecraft that is slightly
dislocated from these nodes will experience a drift that
brings it back to the stable points. That means that a GEO
satellite at any longitude will accelerate towards the clos-
est stable point and swings around this node like a pendu-
lum. In contrast to this, the other two equilibrium points
are known as unstable points. Unlike the stable nodes, the
spacecraft would directly drift away in either direction, if
it is not exactly located at the unstable points.The equi-
librium points are located at the following longitudes:

• stable points: 75.1°E and 105.3°W

• unstable points: 11.5°W and 161.9°E

Due to the presence of these equilibrium points, the
spacecraft drifts away from its mean longitude and the
satellite’s operator need to perform SK manoeuvres in or-
der counteract the longitudinal acceleration caused by the
tangential component of the tesseral gravitational attrac-
tion B:

d2λ

dt2
= − 3

aGEO
B (19)

Considering, that B is constant within a small inter-
val around the mean longitude, one can double inte-
grate Eq.(19) and obtain the mean longitudinal motion.
The evolution of the longitude follows a parabolic curve
which is opened towards the direction of the nearest sta-
ble point [8]. The expression of the longitudinal acceler-
ation is retrieved through the rate of change of the mean
motion n set in relation to the Lagrange planetary equa-
tion. Recalling the model of the potential function up to
l = 3 the longitudinal acceleration is given by:

λ̈ = − 3

a2
∂R

∂λ

= −3n2

{
−6J22

(
Re

r

)2

sin 2 (λ− λ22)

+
3

2
J31

(
Re

r

)3

sin (λ− λ31)

− 45J33

(
Re

r

)3

sin 3 (λ− λ33)

}
(20)

where Jlm and λlm represent the notion for the combined
harmonic functions of Earth gravity potential field [4].

Jlm =
√
C2

lm + S2
lm (21)

λlm =
1

m
arctan

Slm

Clm
(22)

3.2. Solar radiation pressure

Even though electromagnetic radiation is massless, it can
still transfer momentum when it moves with speed of
light and hits an object on its path. The exerted pres-
sure is called Solar Radiation Pressure (SRP). The SRP
generates a force on the spacecraft which is proportional
to its cross-section S:

F = PS (1 + ε) (23)

where ε is the surface reflectivity coefficient and P is the
pressure exerted by the radiation on an orthogonal surface
in the vicinity of the Earth (P ' 4.56 × 10−6N/m2).
The acceleration is always directed away from the Sun
and depends on the area-to-mass ratio (S/m) and ε.

F

m
= P (1 + ε)

S

m
(24)

Since it is difficult to express the varying cross-section
and reflectivity of a spacecraft, it is common to model
the acceleration with one single parameter, the effective
area-to-mass ratio defined as:

σ :=

(
S

M

)
eff

=
S (1 + ε)

m
(25)

The only orbital element which is affected by the SRP is
e because the mean effect on a and i vanishes when av-
eraged over one sidereal day. In the following, the mean
evolution of the eccentricity vector encountered by SRP
is derived.
It is assumed that the spacecraft is positioned at a side-
real angle s and the tangential and radial component of
the velocity due to the radiation pressure differential dV
are expressed as:

dVt = sin (s− s�) dV (26)
dVr = − cos (s− s�) dV (27)

with s� as the sidereal projection of the Sun on the orbital
plane. Recalling the differential equation for the eccen-
tricity vector e:

de

dt
=

2

V

[
cos s
sin s

]
dVt
dt

+
1

V

[
sin s
− cos s

]
dVr
dt

(28)

By integrating Eq.(28) over one sidereal day, the mean
drift rate of e is given by:

δe

δt
=

3Pσ

2V

[
− sin s�
cos s�

]
(29)

This shows that the mean drift goes in the direction +90°
from the Sun and it changes throughout the years because
of its varying sidereal angle of the Sun s� [8].

4. ALGORITHM DESCRIPTION

The present detection method takes as input parameters
the historical data of a catalogue of Resident Space Ob-
jects (RSO). Within this work, the TLE catalogue pro-
vided publicly by the United States Air Force [9] have



been extensively used. Nevertheless, the method is not
restricted to this particular database, and it can be used
with any set of historical orbital data.
Before starting with the detection analysis, possible out-
liers in the TLE database need to be removed in order to
keep the background information as reliable and accurate
as possible. Afterwards, the manoeuvre detection starts
by studying the longitudinal evolution. Therefore, two
fitted curves are laid over the longitudinal data. The first
curve is derived from the theoretical longitudinal acceler-
ation of a spacecraft presented in the previous section, it
will be useful to check the quality of the input data. The
second curve is obtained by a LS order-2 polynomial fit
over the longitude data points. This second curve is en-
tirely based on the input data, and, for that reason, the
intersections of consecutive LS parabolas are considered
as an estimation of the manoeuvre epoch. The accuracy
of the estimated manoeuvre epoch depends on the quality
and quantity of the available TLEs. Consequently, it is
convenient to label the estimated manoeuvre epoch with
a confidential parameter that gives a time range around
the estimation in which the true manoeuvre is expected
to have been executed.
The analysis is then continued by further studying the ec-
centricity vector evolution. Therefore, the interval char-
acterized by the confidential parameter is forwarded to
the eccentricity detection algorithm that shall identify a
more precise manoeuvre epoch through the comparison
with the propagated evolution performed with STELA.
The use of a more complex propagator than SGP4 is
necessary to consider the effect of the SRP in the prop-
agation. The choice of the semi-analytical propagator
STELA over a numerical one is based on computational
time considerations. Afterwards, the compatible in-plane
∆V is characterized by derived from the change on the
orbital parameters (see Eq. (9)-(14). Because the sam-
pling of the TLE data hinders the recover of the actual
number of burns and the size of each individual veloc-
ity change ∆V i, the manoeuvre is considered as a single
burn where the estimated ∆V shall be equal to the effec-
tive velocity change due to all executed burns.
A schematic summary of the implementation is provided
in Figure 1

4.1. Longitude analysis

In theory, geostationary spacecrafts remain fixed at the
same sub-satellite point, if all perturbations have been
neglected. However, in reality, the asymmetric Earth
gravitational potential is the main disturbing acceleration
that lets this point drift along the equator [1]. Therefore,
satellite operators need to perform the so-called Station
Keeping (SK) manoeuvres that allows the spacecraft to
be maintained within a longitude window (deadband) and
compensate the drift. As previously seen, the mean lon-
gitude motion describes a parabola function. Over time
we retrieve a series of parabolas jointed by cusps at the
moments when a SK manoeuvre has been performed.

4.1.1. Procedure to filter out outliers

The spacecraft’s longitudinal motion is derived from the
historical data. Hereby, all aberrant TLEs and data points
which are epoch-wise closer than 12h to each other have
been removed after running through several filters. The
objectives of the filters are:

• Removing multiple TLEs found within one revolu-
tion,

• Removing large outliers which violate the deadband,

• Removing outliers by correcting the longitude evo-
lution.

For the first objective, the algorithm loops through the
entire time history and keeps only one TLE per revolu-
tion. Multiple longitudinal data within one day need to
be removed since their presence could bias the process-
ing done on the data set. Consequently, TLEs which are
epoch-wisely too close to each other are removed through
this method. Tests have shown that the first TLE is in
general more reliable. Hence, in case of multiple TLEs
separated by less than 12h, the first TLE is chosen for
analysis.
In the second step, large outliers violating the deadband
shall be removed. This filtering technique consists of two
parts: In the first part, λm is set to the mean of the mean
longitudes over the entire time history and the deadband
half-width δλ is initialized to 1 deg. All data points which
violate this initial deadband are considered to be aberrant
and are removed from the time history. In case more than
30 % of the entire data set is removed, it is assumed that
the object does not perform any SK manoeuvres and is
drifting naturally, hence we consider that object as a de-
bris. The selection of δλ =1 deg as initial half-width is
reasonable because the typical values range from 0.1 deg
to 1 deg.[8]. In the second part, the current mean, min-
imal and maximal longitude over the entire time history
are computed. δλ is then defined in accordance to the
current minimum and maximum in the longitude evolu-
tion as followed:

δλmin = λm − λmin (30)
δλmax = λmax − λm (31)

δλ = min (δλmin, δλmax) (32)

As Eq.(32) implies, the longitude extremum, that causes
the larger half width deadband size, is considered as an
outlier and will be removed from the time history. Re-
peating this step, while constantly updating λm, λmin

and λmax, will eventually lead to:

|δλmax − δλmin| ≤ ε (33)

where ε is empirically set to 5× 10−2 deg. Ideally, ε
would have been zero, if λm had not been biased because
of the sampling of the TLE data.
In the third step, aberrant values are removed from the
time history while correcting the longitude evolution. In
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Figure 1. Algorithm scheme

principle an outlier is a local extremum but an extremum
does not necessarily have to be an outlier. Instead, an
extremum can also be a vertex point or a cusp due to a
manoeuvre.

Figure 2. Longitude evolution [deg] of NORAD 40267
between 17/08/2017 and 25/11/2017 after having re-
moved multiple TLEs within one revolution and large out-
liers from the time history. The dots mark the presence
of a local extremum in the longitudinal evolution. Those
extrema occur as bundles of different sizes: either they
appear as an individual or as a sequence.

In the following, these kind of extrema are denoted as
true extrema because these types do not disturb the be-
haviour of the parabola. Since the goal is to detect ma-
noeuvres in the longitudinal evolution, it is necessary to
differentiate between true extrema and the extrema due
to outliers. Therefore, the algorithm iterates through
the longitude history and extracts every local extremum.
These extrema occur in so-called bundles which can vary
in size as shown in Figure 2.

In contrast to bundles of size one whose extremum indeed
indicate the presence of a true extremum, bundles of size
N > 1 surely contain one or more outliers. Even though
the latter disturb the parabolic trend of the longitudes, the
trend can still be recovered, especially in the case of bun-
dles of size two or three. In the following, these cases
will be examined more in detailed:

i) Bundles with size two
As shown in Figure 3 there are only two scenarios in
which these bundles can occur in the longitude evo-
lution. By knowing the underlying trend, it is pos-
sible to recognize the outlier in the bundle by com-
paring the values of the bundle with its neighbours.
For example, knowing that the trend is decreasing,
the maximum in the bundle cannot be higher than
the left neighbour and the minimum cannot be lower
than the right neighbour and vice versa in case of
a rising trend. In case this analysis has not yet re-
vealed the outlier in the bundle, the algorithm prop-
agates the state with STELA starting from the epoch
of the left neighbour towards both extrema epochs



in the bundle. For the propagation, a precise estima-
tion of the effective area-to-mass ratio is needed in
order to achieve an accurate estimation for the final
state of the satellite. The propagated longitudes are
then compared with the observed data given by the
TLEs.

∆E1 = |λprop,E1 − λE1 | (34)
∆E2 = |λprop,E2 − λE2 | (35)

∆E1 and ∆E2 are the differences between the prop-
agated longitude λprop retrieved from STELA and
the longitude derived from the TLEs of the corre-
sponding extrema E1 and E2 in the bundle. The
extremum that generates the largest ∆E is consid-
ered as the outlier and will be removed from the
time history. In case both extrema reveal a ∆E in
the same range, both TLEs are considered as aber-
rant. In summary, this method will either remove
both extrema in the bundle as outliers or only one of
them and corrects the evolution of the parabola.

ii) Bundles with size three
There are two scenarios that yield the case of hav-
ing exactly three extrema in a row. As can be seen
in Figure 4 and Figure 5 the trend before and af-
ter the bundle is always reversed because the first
and the last extremum are of the same type, either a
maximum or minimum. Eventually, this leads to the
conclusion that such bundles hide the presence of a
true extremum. Knowing, that within the time in-
terval of the bundle there must be a true extremum,
will not help to eliminate the outlier but it will en-
able the recovery of the trend. For this purpose, one
of the extrema needs to be removed from the time
history and the algorithm always selects the middle
one. The reason for this is it is certain that a new
bundle of size three is not created as shown in Fig-
ure 5 but the algorithm ensures to have transformed
the bundle into one of size one.

In the next step, the type of SK manoeuvre is computed.
To recover the opening of the parabolas, it is necessary to
compute the mean longitude over the entire time history.
Moreover, it is significant to know which stable point is
the closest one to the spacecraft to derive the direction
towards it is accelerated. The direction of the opening
of the parabola also gives the information about the type
of the performed in-plane SK manoeuvre. An east ma-
noeuvre is performed in case of a positive longitudinal
acceleration and west SK burns are thrusted to counteract
a negative longitudinal acceleration. Accordingly, if the
range of the longitudes is generally defined from 0 deg to
360 deg, one can see that upwardly opened parabolas cor-
respond to east manoeuvres and vice versa for the case of
west manoeuvres. From the type of manoeuvre and the
opening of the parabolas, one can derive if either the max-
ima or the minima in the longitude evolution mark the
extrema related to the manoeuvre. However, one should
keep in mind that the current longitudinal evolution is still
disrubted by bundles of size larger than three. These bun-
dles hinder the fit of the parabolas over the data points.

Even so, analysing the concrete size and position of these
bundles in the longitude evolution leads to the following
possibilities in order to handle their disruptive behaviour:

i In case the size of the time interval of the bundle is
< T , where T is the mean duration between two ma-
noeuvres, and the bundle hides a true manoeuvre ex-
tremum, then the intersection between the flanking
parabolas are capable of recovering the true extrema.
In Figure 6, the flanking parabolas are the second
and the third parabola in the illustration. Conse-
quently, the interval is removed before the parabola
fitting of the longitudes. However, the recovered ex-
tremum by the intersection of the flanking parabolas
(and the related manoeuvre epoch) is denoted as less
reliable.

ii In case the size of the time interval of the bundle is
< T but the bundle does not hide a true manoeuvre
extremum, as presented in Figure 7, the action will
be the same as in the first case: the disruptive inter-
val is removed following the fit of the parabolas.

iii This case creates the most problematic situation as
seen in Figure 8. Due to the disruptive evolution of
the TLEs, there is no way to analyse the manoeuvre
history if the time interval is too long (> T ).

4.1.2. Parabola fit

In this study, two techniques have been developed for the
fit of a mathematical parabola equation over the observed
data: the physical and the Least squares (LS) approaches.
In both methods, a mathematical polynomial of second
order is derived representing the longitudinal motion of
the satellite over time. The spacecraft continues naturally
to follow the parabola as long as there is no further ac-
celeration that gets the satellite off course such as a ma-
noeuvre thrust. The derivation of the parabola equations
using the two different techniques shall be presented in
the following:

i) Physical approach
The Earth’s gravitational attraction can not be con-
sidered as symmetric and its mass concentrated in a
point mass. Instead, the gravitational potential func-
tion given in Eq.(15) is used to model the potential
of the spacecraft encountering the gravity field of
the Earth. As given in Eq.(20), the tesseral terms
of the gravitational potential of the Earth cause an
acceleration of the satellite’s mean longitude. Since
the longitudinal deadband is usually very small, one
considers the longitudinal acceleration as constant.
Under this assumption, the solution for the longitude
motion is derived as follows:

λ = λ0 ∓ λ̇0 (t− t0)± 1

2
λ̈ (t− t0)

2 (36)



Figure 3. Example of a parabola with two bundles of
size two. The outliers detected by the algorithm are
marked in red. In the first case, STELA will recognize
the underlying minimum as outlier while in the second
case, the maximum directly reveals itself as aberrant
because its longitude is larger than the one of the bun-
dle’s left neighbour.

Figure 6. Example of a multi-extrema bundle that
hides a true manoeuvre extremum.

Figure 4. Example of a triple bundle at the vertex of
the parabola.

Figure 7. Example of a multi-extrema bundle that dis-
rupts the evolution of a parabola

Figure 5. Example of a triple bundle that hides a true
manoeuvre extremum.

Figure 8. Example of a multi-extrema bundle that
spans a time interval which is larger than T
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Figure 9. Relation between stability points and opening of parabola.

where ”0” indicates the corresponding initial values
at t = t0:

λ0 = λm ± δλ

λ̇0 = 2

√
|λ̈| · δλ

(37)

where λ̈ comes from Eq. (20) and δλ and λm are
derived in the previous analysis on the outliers fil-
tering.
As mentioned above, depending on the opening of
the parabolas, the signs of Eq.(36) change.[2] In or-
der to have the parabola equation in the same format
as for the LS fit, Eq.(36) is re-arranged into:

λ = apt
2 + bpt+ cp (38)

where:

ap = ±1

2
λ̈

bp = ∓
(
λ̇0 + λ̈ · t0

)
cp = ±1

2
λ̈ · t20 ± λ̇0 · t0 + λ0

Here, the subscript ”p” marks the coefficients de-
rived with the physical method of fitting the parabo-
las.
The physical fit sets up an equation that does not
take into account all forces that could potentially
affect the longitudinal behaviour of the spacecraft,
but considers only the effect of the main harmon-
ics of Earth’s potential on a perfect geostationary or-
bit. The fitted parabolas are then just representing a
model which eventually reaches its limit in terms of
accuracy, having an impact on the estimation of the
manoeuvre epoch. In addition, it might occur, that

some days before an east-west manoeuvre, a north-
south manoeuvre has been performed that may dis-
turb the longitudinal motion. For these reasons, it is
reasonable to fit the data using a LS method, which
is presented in the next step. This physical approach
is however necessary to be able to determine if the
LS fit is reliable enough. Indeed, the LS solution
only takes into account the observed data (TLEs)
and an potential poor quality of them could lead to
inaccurate characterization of the manoeuver, situa-
tion that can be detected by comparing the results of
both approaches.

ii) Least squares approach
The underlying principle aims to generate a curve of
second degree that is laid over the data in such a way
that the sum of the squared residuals resulting from
the differences between the observed and the fitted
data points on the curve are minimized. Adapted to
the underlying problem, the goal is to find a ,b and c
such that Π is minimized:

Π =

m∑
n=1

[
yn −

(
a T 2

n + b Tn + c
)]2

(39)

where m is the number of TLE data within the time
history and yn denotes the observed longitude de-
rived from the TLEs. For the sake of better readabil-
ity, the variable Tn is defined as:

Tn := (tn − t0)

The linear equation system is then given as:

M ·

(
a
b
c

)
=

 ∑
yn∑
Tnyn∑
T 2
nyn

 (40)



with:

M :=

 ∑ 1
∑
Tn

∑
T 2
n∑

Tn
∑
T 2
n

∑
T 3
n∑

T 2
n

∑
T 3
n

∑
T 4
n


where

∑
means the sum through all the TLE data∑m

n=0. In order to have the parabola equation in
the same format as for the physical fit, the resulting
parabola equation of Eq.(40) is re-arranged into:

λ = aLSt
2 + bLSt+ cLS (41)

where:

aLS = a

bLS = b− 2c · t0
cLS = a · t20 − b · t0 + c

The subscript ”LS” marks the coefficients of the
parabola equation derived with the least squares
method.

4.1.3. Confidential parameter

Throughout the manoeuvre analysis, all time intervals
have been extracted which are assumed to be too dis-
ruptive to estimate the manoeuvre epoch accurately. The
confidential parameter shall mark the estimated manoeu-
vre epoch as less reliable in case the parabola interval
contains aberrant time series. There are three occasions
within the algorithm at which the program evaluate the
reliability of the data: during the search for aberrant
parabolas, during the process when bundles of multiple
extrema are removed and during the comparison of the
physical and LS fit.
In the end, each manoeuvre epoch carries an attribute
”reliable” in the form of a boolean. As a result, all the
detected manoeuvre epochs which lie within the non-
confidential time interval are treated as less reliable and
the attribute is then set to false. Consequently, the ma-
noeuvre epochs not affected by any abnormal TLE data
reveal an accuracy within the range of one to two days.
In contrast to this, detected manoeuvres within the non-
confidential time interval usually deviate by several days
from the true manoeuvre epochs.

4.1.4. Intersection analysis

As previously explained, the parabola fits using LS are
preferred over the physical method and are therefore con-
sidered for the intersection analysis. The underlying prin-
ciple is that the intersection between two consecutive
parabolas reveals the estimated manoeuvre epoch. As-
suming that the equations of parabola 1 and 2 are:

λ1 = a1t
2 + b1t+ c1

λ2 = a2t
2 + b2t+ c2

then the zeros of the intersection equation are at:

t1,2 =±

√
(b1 − b2)

2 − 4 (a1 − a2) (c1 − c2)

2 (a1 − a2)

− (b1 − b2)

2 (a1 − a2)

(42)

In order to be considered as manoeuvre epoch, the related
longitudes at t1 or t2 must lay within the longitude dead-
band. Finally, it is checked if the estimated manoeuvre
epoch is contained within the non-confidential time inter-
vals.

4.2. Eccentricity analysis

A single longitude manoeuvre cannot change the longi-
tude without affecting the behaviour of the eccentricity
vector. Consequently, it is advisable to couple the ma-
noeuvre detection with the longitudinal and the eccen-
tricity vector evolution. Up to now, the longitude ma-
noeuvre detection is performed over the entire time in-
terval of interest. The longitude algorithm returns a list
of epochs of the estimated manoeuvres within this inter-
val. The eccentricity manoeuvre detection is then only
applied to each individual manoeuvre epoch in the list in-
stead of to the entire time interval of interest. This means
that, in the eccentricity analysis, a small interval around
the manoeuvre epoch is studied to ensure that the smaller
interval only contains one manoeuvre. In the following,
these small intervals are referred to as manoeuvre inter-
vals. Even though, the eccentricity analysis can be gener-
alised and applied to the entire time history independently
from the longitude strategy, this generalisation is not rec-
ommended since it would increase the risk of false posi-
tive detections. Therefore, in the current implementation,
the eccentricity analysis is only applied to the manoeuvre
intervals.
The principle of the eccentricity analysis relies on the pre-
diction of the satellite’s behaviour computed by an orbit
propagator. Because e is mainly influenced by the ef-
fect of the SRP, a propagator containing in its dynami-
cal model the SRP force is mandatory. This the reason
of using STELA instead of SGP4. Furthermore, STELA
propagation needs to take into account a well estimated
value of the effective area-to-mass ratio σ that induces
this perturbing effect. For that an orbit determaination is
performed using the TLEs as observation data and con-
sidering the area-to-mass ratio as the only parameter to
be estimated. This computation needs to be performed
in an interval without manoeuvers where a natural evolu-
tion of the spacecraft is observed. Once σ is estimated,
the algorithm will compare the observed e with the prop-
agated state and assumes that a manoeuvre was per-
formed in case the difference exceeds a certain threshold
value. This threshold was empirically set to 1.3× 10−5

and has been chosen by comparing the STELA propa-
gation with the eccentricity vector evolution of several
non-operational satellites which do not perform any ma-
noeuvres. However, this threshold depends on the perfor-
mance of the model and on the accuracy of the estimated



σ.
Before starting the eccentricity analysis, it must be en-
sured that the orbital parameters are converted from mean
SGP4 elements to mean STELA elements. For the prop-
agation process, the state of the spacecraft at each TLE
epoch is propagated to the consecutive TLE epoch. Only
at the first TLE epoch, the observed eccentricity vector
is equal to the propagated state because a preceding TLE
does not exist. Otherwise, at each epoch, the difference
between the observation and the prediction by STELA
can be computed. The dynamical model predicts the state
of the spacecraft under the assumption that it only en-
counters natural perturbation forces. In reality, the satel-
lite might perform manoeuvres which perturb the orbital
state in addition but the thrusts are not taken into account
by the dynamical model. Consequently, any large de-
viations between the dynamical model and the observed
evolution indicates the presence of a manoeuvre. In the
present analyses, e is split into its x− and y− component
so that the differences are defined as:

δex =


ex,TLE1

ex,TLE2

...
ex,TLEk

−

ex,STELA1

ex,STELA2

...
ex,STELAk

 (43)

δey =


ey,TLE1

ey,TLE2

...
ey,TLEk

−

ey,STELA1

ey,STELA2

...
ey,STELAk

 (44)

where k is the number of TLEs in the time history. Af-
terwards, the algorithm iterates through δex and δey and
sets all the entries to zero, in case the value lies below
the threshold value. The velocity increment ∆V caused
by the manoeuvre can only be computed if the manoeu-
vre epoch is evident. Accordingly, the manoeuvre day
must lay between the first TLE where the deviation be-
tween STELA and observation exceeds the threshold and
the previous epoch. Furthermore, the algorithm is not ca-
pable of recovering the number of thrust nor the size of
each individual ∆Vi or the exact thrust time of each burn
tb,i. Instead, it is considered that the manoeuvre is per-
formed as a single burn manoeuvre at epoch tb and ∆V
is then derived from ∆e that is defined as:

∆e (ζ) =

[
ex,TLE (ζ)− ex,STELA (ζ)
ey,TLE (ζ)− ey,STELA (ζ)

]
(45)

ζ marks the epoch at which the entries of δex and δey
fall below the threshold value again, after the evolutions
of the TLEs and STELA have deviated due to the ma-
noeuvre. In contrast to the previously propagated val-
ues, ex,STELA (ζ) and ey,STELA (ζ) are not obtained by
propagating the orbital state from epoch ζ − 1 but from
epoch α, where the entries of δex and δey were still be-
low the threshold value before the manoeuvre took place.
Hence, epoch α indicates the moment at which the ma-
noeuvre has not yet affected the orbital state but is man-
ifested one epoch later at α + 1. Consequently, the right
hand side of Eq.(45) shows the difference of the observed
eccentricity vector after the manoeuvre and the expected

value if the manoeuvre had not been performed. At this
point it should be noted that in theory, that the devia-
tion between the true state of the satellite and the pre-
diction by the dynamical model is only non-zero at the
instance of the manoeuvre. However, the analysis using
TLEs reveals a peak behaviour with a certain width given
by (α, ζ). This is related to the orbit determination pro-
cess and the generation of TLEs which will be further
discussed at a later point. Furthermore, it is assumed that
the operator has intended to perform a pure longitudinal
manoeuvre which means that the radial and orthogonal
component of ∆V are zero. Therefore, the subscript ”t”
in the velocity change can be left off while keeping in
mind that ∆V = ∆Vt. The eccentricity change due to a
tangential burn is given by Eq.(11). The corresponding
∆V results from the change of the numerical eccentric-
ity:

∆V =
|∆e|V

2
(46)

where V is the velocity of the unperturbed geostationary
spacecraft. Then, Eq.(11) can be rewritten as:

∆e = |∆e|
[
cos sb
sin sb

]
(47)

Due to the symmetry of the trigonometrical functions sine
and cosine, it is not sufficient to only solve the equation in
one component but the solution sb must solve both terms
in Eq.(47). The resulting sb gives the angular position
of the spacecraft on the orbital plane at the moment of
the burn with respect to the X- axis. That means, that sb
represents the fraction of the day at which the burn was
fired. The exact manoeuvre hour of the day tb is then
retrieved by means of any reference point on the orbit
where the epoch and the sidereal angle are known. Here,
the epoch of this reference point is denoted as tref and its
sidereal angle as sref . The manoeuvre hour is given by:

tb = tref −
12

π
· (sref − sb) (48)

The day of the manoeuvre lies between the TLE epoch
where δex and δey have not exceed the threshold and its
consecutive epoch day.

5. RESULTS

In the following, the performance of the detection meth-
ods using the longitudinal motion and the behaviour of
the eccentricity vector shall be separately analysed from
each other. Therefore, the detected epochs given by both
methods are to be compared with the manoeuvre records
of reference objects that are known in advance. The list
of these reference objects was generated by the Space
Debris modelling and risk assessment office of CNES.
The testing of the longitude method included four satel-
lites (NORAD ID: 23839, 24674, 25153, 40267) with a
total number of 204 manoeuvres according to the ma-
noeuvre history while only three satellites (NORAD ID:



Figure 10. Difference in the x- and y-component of e be-
tween TLE observation and STELA propagation at each
epoch.

23839, 24674, 28912) with a total number of 68 ma-
noeuvres were involved in the testing of the eccentric-
ity vector method. As can be seen, not necessarily the
same satellites were tested to evaluate the performance
of both algorithms but they have been selected based on
the manoeuvre strategy and the principle of the detection
method. Both algorithms are only capable of detecting
the manoeuvre as a whole but do not return the num-
ber of burns. However, different from the longitudinal
method, the analysis of the eccentricity vector does not
only give an estimation on the manoeuvre day but also
on the position of the spacecraft on its orbit, from which
the exact manoeuvre epoch time can be derived. Conse-
quently, only satellites performing single burn manoeu-
vre have been used to evaluated the performance of the
detection method using the eccentricity vector. Satellites
performing two thrust manoeuvres separated by half a pe-
riod can also be used for the performance analysis of the
longitudinal method but are not suitable for the other.
Table 2 shows the results of both algorithms in detail for
the case of satellite 24671 compared to its manoeuvre his-
tory. The manoeuvre epoch is given by the day of the
month in 2019. Due to small number of TLEs, manoeu-
vres which were separated by only one sidereal day can
generally not be detected as multiple manoeuvres but re-
sult in one manoeuvre estimation. These scenarios have
been indicated with brackets as seen in the second col-
umn. The results show two false negative detections with
the longitude analysis appearing in August 2019. On the
other hand, the eccentricity analysis reveals three false
positive detection that occur in January and August.

The statistical detection results of the longitudinal
method are summarised in Table 3. The total number of
true manoeuvres given by the operator records is 204 of
which 93 % were correctly detected. A detection is con-
sidered to be correct if the interval described by the con-
fidential parameter truly includes the actual manoeuvre
epoch. However, in four cases, the algorithm managed
to detect the manoeuvre but they where denoted with

Table 2. Manoeuvre detection results of NORAD 24671
in 2019. Epochs are given as day of the month.

Month Manoeuvre
history

Longitude
analysis

Eccentricity
analysis

Jan. (16, 17) 18
Feb. 6, (26, 27) 6, 25 7, 27
Mar. 18 19 19
Apr. 5, 24 4, 25 6, 26
May 15 17 17
Jun. 7 8 8
Jul. 1, 17 1, 18 2, 18
Aug. 7, 14, 23, 28 6, 23 8, 24
Sep. (15, 16) 13 16
Oct. 9, 30 6, 31 11
Nov. 20 22 1, 22
Dec. 11 11 13

the wrong confidential parameter. Consequently, the ma-
noeuvre records laid outside the estimated time range in
which the manoeuvre were expected to take place. False
detection can be either of an error type I, a false positive
detection or of an error type II, a false negative detec-
tion. The tests resulted in nine false positive detection
where eight of these estimated manoeuvre epochs were
denoted as non confidential. As the table suggests, most
of the false positive hits are due to satellite 40267. In gen-
eral, the algorithm is prone to false positive detections in
case the longitudinal evolution contains aberrant parabo-
las. Aberrant parabolas do not originate from the SK cy-
cle but from the quality of the historical TLE series. TLEs
are generated by a numerical fit of the orbit over discrete
measurements of the spacecraft’s state over a certain time
interval. Aberrant parabola may occur in the longitudinal
evolution if the orbit determination process reveals unsta-
ble results. Figure 11 shows the longitudinal motion of
this satellite over several months after the start of the op-
erational phase. The quality of the TLE data yields a dis-
ruptive behaviour of the longitudinal motion over which
several short-term parabolas are fitted. These parabolas
are considered as aberrant and reveal false positive detec-
tions.
In contrast to this, the testing revealed eleven false neg-
ative detection mainly occurring due to the TLE quality
of satellite 23839. Aberrant data might not only result
in extra short-term parabola but can appear as a bundle of
multiple extrema that has been removed from the time se-
ries. The algorithm will not be able to recover a manoeu-
vre epoch, in case this bundle contained the presence of a
true manoeuvre extremum. Instead the current parabola
of the removed bundle is combined with the neighbour
as seen in Figure 12 and Figure 13. Table 4 summarises
the statistical analysis of the detection method with the
eccentricity vector. As previously mentioned, the evalu-
ation rather focuses on the correct estimation of the ma-
noeuvre epoch time but not on the date. Also for this



Figure 11. Disruptive longitude evolution [deg] of NO-
RAD 40267 between 25/11/2015 and 14/05/2016.

performance analysis, the detected results were compared
with the operational history. In case the estimation devi-
ates by less than one hour from the true manoeuvre time,
the prediction is considered to be very accurate, a devia-
tion up to two hours is considered as accurate estimation
and a large deviation counts as an inaccurate detection.
Out of 68 manoeuvres, 68 % delivered at least a good es-
timation of the epoch time. In four cases, the method was
not capable of detecting the underlying manoeuvres. The
reason for this is that δex and δey defined by Eq.(43)
and Eq.(44) show more than one peak. Hence, due to
the quality of the TLE data, the manoeuvre epoch can not
clearly be recovered. One would think that aberrant val-
ues have been already removed after the filtering process
in the longitude analysis. However, there the data were
filtered in order to recover the longitudinal trend. It might
happen that the algorithm does not recognize a data point
as aberrant because its longitudinal value is still compli-
ant with the trend of a parabola. Hence, the value does
not represent a problem in the longitudinal analysis but
it might show as aberrant for the eccentricity analysis.
Furthermore, the performance of this detection method
strongly depends on the orbit determination process that
generates the TLEs and the deviation between the true
state of the spacecraft and the observed state given by the
TLE data. The testing revealed an inaccurate estimation
of the manoeuvre time in 18 cases. A possible expla-
nation might be the width and the height of the peaks
δex and δey . One might think that a manoeuvre instan-
taneously changes the behaviour of the orbital parameter
and consequently, the peaks of δex and δey must be very
narrow. In theory, the deviation between the true state of
the satellite and the prediction by the dynamical model is
non-zero only at the instance of the manoeuvre. How-
ever, TLEs do not necessarily represent the true state,
especially in case a manoeuvre was performed. When
a satellite has manoeuvred, the orbit determination pro-
cess might generate the corresponding TLE from an in-
terval that takes into account discrete measurements be-
fore and after this manoeuvre. The set of observations

Figure 12. Longitude evolution [deg] of NORAD 23839
between 19/04/2015 and 04/10/2016 before having re-
moved bundles of multiple extrema.

Figure 13. Longitude evolution [deg] of NORAD 23839
between 19/04/2015 and 04/10/2016. The multiple ex-
trema bundle has been removed which, in this case, re-
sults in false negative detections.

is applied to statistical estimation techniques in order to
derive a fitted orbit. As a result, the final orbit solution de-
pends on the number of measurements and the accuracy
of the perturbation model describing the dynamical envi-
ronment.[10] However, a manoeuvre additionally affects
the orbital state and the final orbit estimation becomes
less accurate. This does not only have an impact on the
height of δex and δey at the moment of the manoeuvre
but generates a peak with a certain width as described in
subsection 4.2. The width of the peak depends on the
duration it takes until the determined orbit recovers from
the manoeuvre. This point is reached when the interval of
the orbit determination only takes into account measure-
ments of the orbital state after the manoeuvre took place.
That says the larger the width, the more time has passed
since the true manoeuvre epoch. This has an effect on
the computation of the ∆e that is defined as the change



in the eccentricity vector due to a single burn manoeu-
vre. If a long time passes since the manoeuvring, ∆e will
additionally be affected by natural perturbations. Hence,
recovering the effect only due to the manoeuvre is diffi-
cult and the resulting estimation of the manoeuvre hour
is less accurate.

6. CONCLUSION

In the scope of this work, two techniques have been de-
veloped to detect in-plane manoeuvres from historical or-
bit data of geostationary satellites. The first method fo-
cuses on the longitude evolution and aims to recover the
station keeping cycle by fitting the parabolic evolution of
the longitude data and analysing their intersection. The
method reaches its limit if the station keeping cycle is
too short or if the sampling of the TLEs is to small to
optimally fit the parabola evolution. The method might
be extended by the analysis of the harmonics in the time
series as it is presented by Lemmens and Krag[6] in or-
der to reduce the number of false negative detection due
to short manoeuvre cycles. The second method analyses
the behaviour of the eccentricity vector and compares the
observed evolution with the expected state predicted by
the dynamical propagation model STELA. A manoeuvre
is detected as soon as the derivation between both evolu-
tion exceeds a certain threshold value. The performance
strongly depends on the performance of the dynamical
model because it models the natural perturbation forces
acting on the satellite. Among those forces, the solar radi-
ation pressure is the dominant term that affects the eccen-
tricity vector evolution. This perturbing effect, however,
is induced by the spacecraft’s effective area-to-mass ratio,
hence, the modelling of the solar radiation pressure accel-
eration depends on an accurate estimation of this physical
parameter. Furthermore, the tests have revealed that inac-
curate detection estimation might originate from the orbit
determination process perturbed from the manoeuvre in-
cident itself.
In general, the ability to recover the manoeuvre history of
satellites is important to analyse the life time of a satel-
lite. In particular, it is of huge interest to know if a satel-
lite has already reached its end of life and if its last ma-
noeuvre has been performed in compliance to the IADC
mitigation guidelines.
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Table 3. Summary of manoeuvre detection by analysing the longitudinal motion.

Sat No Time span Number of
manoeuvres (history)

Correct
detections

Wrong confidential
parameter

Error
Type I

Error
Type II

Total
detections

23839 19/07/2018
to

28/02/2020

29 20 2 1 7 23

24674 11/07/2018
to

13/02/2020

31 29 - - 2 29

25153 11/07/2018
to

30/01/2020

28 28 - - - 28

40267 09/07/2015
to

06/12/2019

116 112 2 8 2 122

Total 204 189 4 9 11 202

Table 4. Summary of manoeuvre detection by analysing the eccentricity vector motion.

Sat No Time span Number of
manoeuvres (history)

Very accurate
estimations

Accurate
estimations

Inaccurate
estimations

Error
Type II

Total
detections

23839 19/07/2018
to

28/02/2020

29 16 5 7 1 28

24674 11/07/2018
to

13/02/2020

31 12 8 8 3 28

28912 26/09/2018
to

05/02/2020

8 4 1 3 - 8

Total 68 32 14 18 4 64
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