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ABSTRACT

We present our approach to automatically detect and
characterize satellite manoeuvres during the orbit de-
termination (OD) process, based on passive-optical
measurements of several geostationary (GEO) satellites
from the SMARTnet telescope network [4].
Our technique employs a nonlinear Kalman filter (either
an Extended Kalman Filter (EKF) or an Unscented
Kalman Filter (UKF)) to detect unexpected deviations
from the predicted states of a satellite during the OD
process, and subsequently estimates the manoeuvre
epoch and respective ∆v-components. An immediate
benefit of using nonlinear Kalman filters is that the
analysis is performed directly on the angle measurements
(right ascension and declination) of an object, which
are derived from passive-optical observations with a
telescope, as an integral part of the object identification
and orbit determination / improvement processes. This
mitigates the need to first calculate a new orbit, as is
the case for more traditional post-orbit-determination
techniques that work with time-series of orbital elements.
Once a manoeuvre is detected, its epoch is estimated
by means of conjunction analysis. This way we can
incorporate the covariance information of the object’s
state estimates. More specifically, we propagate two
state vectors bracketing the manoeuvre forward and
backward in time, respectively. The interval between the
two epochs is sampled and the encounter probability is
calculated for each step. We then identify the manoeuvre
epoch as the time at which the encounter probability
takes on its maximum value. Once the manoeuvre epoch
is known, the ∆v-components of the manoeuvre can be
determined by direct comparison of the two propagated
states at that epoch, which also yields information about
the type of manoeuvre that has occurred.
For the analysis in this study we use passive-optical
measurements of two GEO satellites (ASTRA-1KR and
ASTRA-1L), for which we had access to operator data
including manoeuvre information. Observations were
taken with the SMARTnet telescope network station
near Sutherland, South Africa. We present our results
of using a UKF and an EKF. For each filter, several
manoeuvre indicators are employed, namely the squared

and normalized residuals, the Log-Likelihood, and the
Mahalanobis distance.
We demonstrate the ability to determine manoeuvre
epochs accurate to within less than a minute and ∆v-
components to the cm/s-level.
Eventually, this automated manoeuvre detection and
estimation will be applied to all measurements taken
with the SMARTnet telescope network.
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1. INTRODUCTION

In order to maintain their operational orbits, all satellites
have to perform station-keeping manoeuvres on a regular
basis. If left unaccounted for, satellite manoeuvres can
lead to object misidentification or duplicate entries in a
database of orbiting objects when the correlation of new
measurements to an existing object fails. Ultimately, this
can even lead to the loss of an object from the data base,
if it cannot be found anymore due to inaccurate orbit
estimates. Automated manoeuvre detection mitigates
these problems and informs the object identification
and orbit determination (OD) processes, significantly
improving the accuracy in the knowledge of the orbits
of the objects in the database, and minimizing the risk
of confusion between nearby objects. From a Space
Situational Awareness (SSA) point of view, accurate
knowledge of the orbits of as many objects as possible
is required to make informed decisions on possible
collision avoidance manoeuvres.
For geostationary (GEO) satellites, these manoeuvres
mainly consist of North-South (NS) station-keeping
manoeuvres, which are out-of-plane manoeuvres that
aim to keep the inclination small, and East-West (EW)
station-keeping manoeuvres, which are in-plane ma-
noeuvres that are necessary to keep the satellites at their
assigned longitudinal slots. Without these manoeuvres,
perturbing accelerations, mainly due to the non-spherical
shape of the Earth, the gravitational pulls of the Sun and
the Moon, and the effects of Solar radiation pressure,
will slowly induce a longitudinal drift and an increase in
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the inclination (e.g. [16], and references therein).
In order to detect these manoeuvres, a wide variety of
approaches has been tried and investigated (see [15]
for a comprehensive overview). For example, more
traditional post-orbit determination techniques often
focus on sudden changes or inconsistencies in one or
more orbital elements (e.g. [11], [17]), or the difference
between the predicted states before and after the addition
of a new measurement (e.g. [12]). There has also been a
recent study that applies a linear Kalman Filter [9] on the
orbital elements, where manoeuvres can be detected by
analysing the residuals [20]. Another method performs a
conjunction analysis and detects manoeuvres as maxima
in the estimated encounter probability [6].
Several studies have also employed an Extended Kalman
Filter (EKF) and variations thereof for manoeuvre de-
tection (e.g. [7]). More recently, the Unscented Kalman
Filter (UKF) [8] has also become increasingly used as
a viable alternative to the EKF for many applications
(e.g. [18]).
Of course, the topic of manoeuvre detection is closely
related to the problem of object association when main-
taining a database of orbiting objects, as, for example,
discussed by [15].
Our study aims to utilize the sequential nature of these
nonlinear Kalman filters, so that manoeuvres can readily
be detected during the OD phase whenever a new
observation is made. This work builds upon a previous
study by [20], who focused on the EKF.
We describe our data acquisition and analysis approach
in Sections 2 and 3, respectively. In Section 4 we present
the results of our analysis using both the UKF and the
EKF for the ASTRA-1KR and ASTRA-1L satellites.
We then discuss our findings in Section 5, followed by a
brief outlook in Section 6.

2. OBSERVATIONS

In March and April 2019 we ran a high-cadence observa-
tional campaign for a number of geostationary satellites,
for which the operator SES S.A. had kindly provided
us with information about performed station keeping
manoeuvres. Observations were carried out using our
SMARTnet [4] telescope station near Sutherland, South
Africa (see Fig. 1), resulting in several tens of thousands
of measurements. Every passive-optical observation
yields a pair of astrometric angle measurements (α, δ),
that is, a value for right ascension and declination.
Astrometric data reduction is automatically performed
with the ZimControl software package [5].
For the analysis in this work we focus on a subset of 4755
measurements of ASTRA-1KR and 4723 measurements
of ASTRA-1L, each spanning about 9.5 days from 15-25
March 2019 (UTC).

Figure 1. SMARTnet telescope station SMART-01-SUTH
near Sutherland, South Africa (credits: H. Fiedler).

3. METHODOLOGY

3.1. Manoeuvre detection

We have implemented prototypes of a UKF and an EKF.
These sequential filters combine our astrometric mea-
surements with a numerically propagated model of the
orbit to produce an updated orbit estimate every time a
new observation is made. Because the filters do not have
any a priori knowledge about manoeuvres, by comparing
the expected states with the observed states, manoeuvres
can be detected.
Assuming there is no control input, a valid assumption if
no manoeuvres occur, we can define the state transition
function f by

x̄k = f(xk−1) , (1)

where x̄k denotes the prior state estimate at time step k,
and xk−1 is the posterior state estimate at time step k+1.
The implementation of f includes non-Keplerian accel-
erations due to a full geopotential model up to order and
degree (10, 10), the gravitational pulls of the Sun and the
Moon, and the Solar radiation pressure.
Similarly, we can define the measurement function h,
which calculates right ascension and declination from the
state vector and the site vector at a given epoch, by

yk = zk − h(x̄k) , (2)

where yk are the filter residuals and zk are the measure-
ments at time step k. In other words, h creates the model
observation from the prior state estimate. For the im-
plementation of h, we converted from the Earth-fixed co-
rotating International Terrestrial Reference Frame (ITRF)
to the space-fixed Geocentric Celestial Reference Frame
(GCRF ≈ J2000) using the sidereal-time rotation ma-
trix (including the Equation of Equinoxes), precession,
and nutation. In fact, all state vectors and orbital el-
ements presented in this work are given in the J2000
frame. Note that an object state is fully characterized by
a 6-dimensional state vector in Cartesian coordinates x =
(x, y, z, ẋ, ẏ, ż). However, each measurement only con-
sists of a 2-dimensional tuple of observables z = (α, δ).
Clearly, both f and h are highly nonlinear, which demon-
trates the need for a nonlinear filter like the UKF or the
EKF.



As much as possible, we used the same initialisation pa-
rameters for the UKF and the EKF. In particular, we used
the same initial state estimates, which we derived from
operator-provided state estimates propagated to the time
of the first observations. We further used a standard er-
ror of 2 arcsec in both right ascension and declination
for all measurements. As an initial guess for the covari-
ance matrix we used a diagonal matrix with variances for
the position and velocity components of (1000 m)2 and
(1 m s−1)2, respectively. We also added process noise in
equivalent matrix form with values of (1 m)2 for position
and (0.01 m s−1)2 for velocity.
In order to detect maneouvres, rather than directly
analysing the residuals as defined in Eq. 2, we can de-
fine the squared and normalized residuals following [2]
as

ε = yT S−1 y , (3)

where S is the innovation covariance matrix, that is, the
covariance matrix in measurement space. In addition, we
can also utilize other quantities derived at every step in
the UKF/EKF framework as maneouevre indicators, like
the Mahalanobis distance and the Log-Likelihood (see
Section 5).
For the calculation of the 13 sigma points that are
necessary for a UKF working with 6-dimensional state
vectors (2× 6 + 1 = 13), we follow the method of [19].

3.2. Conjunction analysis

In order to estimate the manoeuvre epochs and ∆v-
components, we follow the method presented by [6].
To be consistent and to simplify the analysis, we follow
their approach of assuming all manoeuvres to be impul-
sive. Hence, for the remainder of this paper, the term
manoeuvre epoch shall be used as meaning the epoch of
the mid-point of the thruster-firing duration for a given
manoeuvre.
For each manoeuvre that we identify, we start with two
state estimates bracketing the manoeuvre. Note that
these state estimates are not taken from the UKF/EKF
directly, but rather come from a batch-least-squares OD
process that takes all observations in the appropriate
window between two consecutive manoeuvres into
account. This way, the accuracy is slightly improved, as
the UKF/EKF state estimates tend to ”oscillate” around
the true solution. We then sample the interval between
the epochs of the two bracketing states in time steps of
10 s and numerically propagate the state vectors forward
and backward in time, respectively.
The approximate manoeuvre epoch is then given by
the epoch of minimum separation dmin between the
forward- and backward-propagated (FWP, BWP) states
[20]. Here, d = |rBWP − rFWP| is the physical distance
between the two states. We then calculate the encounter
probability p for each step following the formalism
given by [6, 1], which includes taking into account the
covariance information. An improved estimate for the
manoeuvre epoch can then be obtained by taking the
epoch of maximum encounter probability pmax instead.

Finally, the manoeuvre ∆v-components are obtained by
simply taking the difference between the FWP and BWP
states at the estimated manoeuvre epoch.

4. RESULTS

Three station-keeping manoeuvres were performed by
both ASTRA-1KR and ASTRA-1L during the 9.5 days
analysed in this work. The first two manoeuvres for
each satellite were NS manoeuvres separated by one day,
followed by an EW manoeuvre several days later. The
effects of these manoeuvres on right ascension and dec-
lination is demonstrated in Figure 2, where we plot the
differences in the numerically propagated models with
and without taking manoeuvres into account. As can be
seen, NS manoeuvres mainly affect the declination and
have only a small effect on the right ascension, whereas
EW manoeuvres strongly affect the right ascension but
have no noticeable effect on the declination.
After initializing the filters as described in Sec. 3, we ran
the predict-update-loops for the UKF and the EKF with
the datasets for both satellites. The results are presented
below.

Figure 2. Effects of the station-keeping manoeuvres on
right ascension and declination for ASTRA-1KR (upper
panel) and ASTRA-1L (lower panel). The vertical grey
lines indicate the manoeuvres (NS: dashed, EW: dash-
dotted).



4.1. Unscented Kalman Filter

4.1.1. ASTRA-1KR

Figure 3 shows the evolution of right ascension and
declination together with the UKF output, that is, the
posterior state estimates xk converted to measurement
space. Manoeuvre epochs in this plot and all subsequent
plots are indicated by grey vertical lines (NS: dashed,
EW: dash-dotted). Note that the effect of the manoeuvres
on the right ascension, as seen in Fig. 2, is not visible
on this scale. Evidently, the filter closely follows the
model curves. Consequently, the residuals in α and δ are
centred around zero (ᾱ = −0.03′′ (mean), α̃ = 0.01′′

(median); δ̄ = −0.12′′, δ̃ = −0.03′′), with an RMS
of 1.33′′ in right ascension and 0.63′′ in declination,
indicating a good filter performance (see Fig. 4). The
small non-zero mean for δ is due to the short settling
time that is required for the filter to converge again after
each NS manoeuvre.

Figure 3. Evolution of right ascension (upper panel) and
declination (lower panel) for ASTRA-1KR. The blue and
yellow dashed curves represent the propagated model
with and without taking manoeuvres into account, respec-
tively. The black crosses show the UKF output and the
vertical grey lines indicate the manoeuvres (NS: dashed,
EW: dash-dotted).

Figure 4. UKF residuals in right ascension (upper panel)
and declination (lower panel) for ASTRA-1KR.

For illustration purposes, Fig. 5 shows the corresponding
evolution of the semi-major axis and the inclination,
as these quantities are good indicators for NS and EW
station-keeping manoeuvres, respectively. After short
settling phases at the very start of the filter loop and
after each manoeuvre, the UKF converges quickly to
the predicted states. This is particularly clear for the
declination.
The squared and normalized residuals for the UKF, as
defined in Eq. 3, are shown in Fig. 6. They exhibit
brief but sharp increases after each NS manoeuvre,
and are therefore a good indicator for these kinds of
manoeuvres. The EW on the other hand is not detected
by this indicator. For a discussion on the detectability of
EW manoeuvres see Sec. 5.2.

Figure 5. Evolution of the semi-major axis (upper panel)
and the inclination (lower panel) for ASTRA-1KR.

Figure 6. Squared and normalized UKF residuals for
ASTRA-1KR.



4.1.2. ASTRA-1L

As in the previous section, Figure 7 shows the evolution
of right ascension and declination together with the
UKF output. Again, the filter closely follows the model
curves. The corresponding residuals in α and δ are cen-
tred around zero (ᾱ = −0.02′′, α̃ = 0.00′′; δ̄ = −0.11′′,
δ̃ = −0.03′′), with an RMS of 1.42′′ in right ascension
and 0.65′′ in declination (see Fig. 8).
Figure 9 shows the evolution of the semi-major axis and
the inclination. As was the case for ASTRA-1KR, the
UKF converges quickly to the predicted states after short
settling phases at the very start of the filter loop and after
each manoeuvre.
The squared and normalized residuals for the UKF
are shown in Fig. 10. The NS manoeuvres are clearly
detected, while the EW manoeuvre is not detected.

Figure 7. Evolution of right ascension (upper panel) and
declination (lower panel) for ASTRA-1L. The blue and
yellow dashed curves represent the propagated model
with and without taking manoeuvres into account, respec-
tively. The black crosses show the UKF output and the
vertical grey lines indicate the manoeuvres (NS: dashed,
EW: dash-dotted).

Figure 8. UKF residuals in right ascension (upper panel)
and declination (lower panel) for ASTRA-1L.

Figure 9. Evolution of the semi-major axis (upper panel)
and the inclination (lower panel) for ASTRA-1L.

Figure 10. Squared and normalized UKF residuals for
ASTRA-1L.

4.2. Extended Kalman Filter

4.2.1. ASTRA-1KR

In analogy to the previous sections, Figure 11 shows
the evolution of right ascension and declination together
with the EKF output. Again, the filter closely follows
the model curves. The corresponding residuals in α and
δ are centred around zero (ᾱ = −0.02′′, α̃ = 0.01′′;
δ̄ = −0.12′′, δ̃ = −0.03′′), with an RMS of 1.36′′ in
right ascension and 0.63′′ in declination (see Fig. 12).
Figure 13 shows the evolution of the semi-major axis
and the inclination. As was the case for UKF, the EKF
also converges quickly to the predicted states after short



Figure 11. Evolution of right ascension (upper panel)
and declination (lower panel) for ASTRA-1KR. The
blue and yellow dashed curves represent the propagated
model with and without taking manoeuvres into account,
respectively. The black crosses show the EKF output
and the vertical grey lines indicate the manoeuvres (NS:
dashed, EW: dash-dotted).

Figure 12. EKF residuals in right ascension (upper
panel) and declination (lower panel) for ASTRA-1KR.

settling phases at the very start of the filter loop and after
each manoeuvre.
The squared and normalized residuals for the EKF
are shown in Fig. 14. The NS manoeuvres are clearly
detected, while the EW manoeuvre is not detected.

4.2.2. ASTRA-1L

In analogy to the previous sections, Figure 15 shows
the evolution of right ascension and declination together
with the EKF output. Again, the filter closely follows
the model curves. The corresponding residuals in α and
δ are centred around zero (ᾱ = −0.02′′, α̃ = 0.00′′;
δ̄ = −0.11′′, δ̃ = −0.03′′), with an RMS of 1.40′′ in
right ascension and 0.65′′ in declination (see Fig. 16).
Figure 17 shows the evolution of the semi-major axis and
the inclination. Again, the EKF also converges quickly
to the predicted states after short settling phases at the
very start of the filter loop and after each manoeuvre.
The squared and normalized residuals for the EKF

Figure 13. Evolution of the semi-major axis (upper
panel) and the inclination (lower panel) for ASTRA-1KR.

Figure 14. Squared and normalized EKF residuals for
ASTRA-1KR.

are shown in Fig. 18. The NS manoeuvres are clearly
detected, while the EW manoeuvre is not detected.

4.3. Manoeuvre Estimation

From the detection of a manoeuvre, we initially only
know that it happened between two observation epochs.
For the manoeuvres studied in this work, this window is
always wider than 12 hours. As described in Sec. 3.2, we
start with two state estimates at epochs that bracket the
manoeuvre. Note that these epochs do not have to be the
closest observations to the manoeuvre, and, in fact, we
use a wider window than necessary for illustration pur-



Figure 15. Evolution of right ascension (upper panel)
and declination (lower panel) for ASTRA-1L. The blue
and yellow dashed curves represent the propagated
model with and without taking manoeuvres into account,
respectively. The black crosses show the EKF output
and the vertical grey lines indicate the manoeuvres (NS:
dashed, EW: dash-dotted).

Figure 16. EKF residuals in right ascension (upper
panel) and declination (lower panel) for ASTRA-1L.

poses. For this analysis we will focus on the NS manoeu-
vres that were successfully detected via the squared and
normalized residuals.
We also tried our conjunction analysis method on the EW
manoeuvres, but preliminary efforts did not result in good
manoeuvre estimates. However, it should be noted that
for the particular manoeuvres studied here, the magni-
tudes of the EW manoeuvres are less than 10% of the
NS manoeuvre magnitudes, and thus they present a much
more challenging scenario.

4.3.1. ASTRA-1KR

Figure 19 shows the encounter probability and the
distance between the FWP and BWP states for the two
NS manoeuvres of ASTRA-1KR. The true manoeuvre
epochs and the epochs of the immediately adjacent
observations are also shown for reference. Clearly, the
locations of the maxima in the encounter probability
correspond very well to the locations of the minima in
the distance between the FWP and BWP states, although

Figure 17. Evolution of the semi-major axis (upper
panel) and the inclination (lower panel) for ASTRA-1L.

Figure 18. Squared and normalized EKF residuals for
ASTRA-1L.

their respective epochs are not identical.
The deviations from the true manoeuvre epochs,
∆t = tcalc − ttrue, and ∆v-components in
the Radial-Tangential-Normal (RTN) frame,
∆(∆vi) = ∆vi,calc − ∆vi,true, for ASTRA-1KR
obtained using both pmax and dmin are presented in Ta-
ble 1. Using pmax results in significantly better estimates
for the manoeuvre epochs as compared to using dmin.

4.3.2. ASTRA-1L

In analogy to the previous section, Fig. 20 shows the
encounter probability and the distance between the FWP



Table 1. Deviations of manoeuvre epochs and ∆v-components with formal uncertainties from operator data for the two
NS manoeuvres of ASTRA-1KR.

∆t ∆(∆vr) ∆(∆vt) ∆(∆vn)

[s] [m s−1] [m s−1] [m s−1]

Man. #1 pmax -45 0.158± 0.170 −0.048± 0.068 −0.007± 0.002

dmin -285 0.158± 0.173 −0.049± 0.062 −0.007± 0.002

Man. #2 pmax -4 0.093± 0.037 −0.059± 0.013 −0.007± 0.002

dmin -174 0.093± 0.036 −0.059± 0.013 −0.007± 0.002

Figure 19. Encounter probability p and distance d be-
tween the FWP and BWP states ASTRA-1KR. The dot-
ted grey vertical line indicates the true manoeuvre epoch,
and the dashed grey vertical lines indicate the epochs of
the adjacent observations.

and BWP states for the two NS manoeuvres of ASTRA-
1L. Again, the locations of pmax correspond very well
to the locations dmin between the FWP and BWP states.
Table 2 summarizes the conjunction analysis results for
ASTRA-1L.

5. DISCUSSION

From the results presented in Sec. 4, it can be seen that
the UKF and the EKF perform equally well. However, a
truly fair comparison is virtually impossible, as both fil-

Figure 20. Encounter probability p and distance d be-
tween the FWP and BWP states ASTRA-1L. The dotted
grey vertical line indicates the true manoeuvre epoch,
and the dashed grey vertical lines indicate the epochs of
the adjacent observations.

ters have different parameters that can be adjusted. For
example, for the UKF we can adjust the parameters α, β,
and κ, which determine how the sigma points are com-
puted [19], but the same cannot be done for the EKF. In
terms of computational speed, the EKF has a clear ad-
vantage, simply because for the UKF the state transition
function must be called 13 times (once for each sigma
point) for every step in the filter loop.
Following the detection of a manoeuvre, we have demon-
strated the potential to determine the manoeuvre epoch to
within less than a minute (or even a few seconds) using a
conjunction analysis approach. The corresponding ∆v-
components in the radial and tangential directions can
be determined to better than 20 cm s−1. For the normal



Table 2. Deviations of manoeuvre epochs and ∆v-components from operator data for the two NS manoeuvres of ASTRA-
1L.

∆t ∆(∆vr) ∆(∆vt) ∆(∆vn)

[s] [m s−1] [m s−1] [m s−1]

Man. #1 pmax -49 0.170± 0.184 −0.043± 0.074 −0.008± 0.002

dmin -269 0.170± 0.187 −0.043± 0.068 −0.008± 0.002

Man. #2 pmax -21 0.095± 0.040 −0.052± 0.014 −0.028± 0.002

dmin -201 0.094± 0.040 −0.052± 0.014 −0.028± 0.002

(out-of-plane) component, the results are even accurate to
within 1-3 cm s−1, or, equivalently, to within 1-3% of the
true values.

5.1. Alternative Indicators for NS-Manoeuvres

As already mentioned in Sec. 3.1, alternative but closely
related indicators can be used for the detection of NS ma-
noeuvres. For example, the Mahalanobis distance or the
Log-Likelihood can be used [20].
The Mahalanobis distance DM [13, 3]

DM =

√
yT S−1 y , (4)

is a statistical measure for the distance between a point
and a distribution, and is equal to the square-root of the
squared and normalized residuals ε as defined in Eq. 3.
The Log-Likelihood L = logL, that is, the natural log-
arithm of the filter likelihood function, is related to ε by
the exponential function via

L =
1√
2πS

exp

[
−1

2
(yT S−1 y)

]
. (5)

As an example, Figure 21 shows these quantities for
the analysis of the ASTRA-1KR dataset with the UKF.
Both NS manoeuvres are readily detected, albeit with
slightly smaller significance compared to the squared
and normalized residuals (Fig. 6).

5.2. Detection of EW Manoeuvres

The indicators discussed so far are very sensitive to NS
manoeuvres, yet they do not produce reliable detections
of EW manouvres. In the case of GEO orbits, we can
make the assumption that EW manoeuvres can only have
non-zero ∆v-components in the x- and y-directions, that
is, that the out-of-plane component is zero1. In analogy to

1For other orbit configurations the preceding analysis has to be per-
formed in the RTN frame.

Figure 21. Mahalanobis distance (upper panel) and
Log-Likelihood (lower panel) from the UKF analysis of
ASTRA-1KR data.

Eq. 3, we can define the squared and normalized residuals
in state space as

ξ∗ = (x− x̄)T P̄−1 (x− x̄) . (6)

Here, P̄ is the prior covariance matrix. Note that we are
now using the difference between the posterior state x and
the prior state x̄ instead of the filter residuals, and that
we have dropped the indices k for clarity. However, the
uncertainties in the prior (predicted) state estimate can be
quite large if there are longer gaps in the observation time
series, potentially hiding manoeuvres. If we instead look
at the equivalent un-normalized quantities ξi = (xi− x̄i)2
for individual components, and single out position- and
velocity-components in the x-y-plane, we can define the
auxiliary quantity

ξxy =
√
ξ2x + ξ2y + ξ2vx + ξ2vy , (7)

which we call the squared in-plane residuals, and which
can be used for a tentative detection of the EW manoeu-
vres. Adopting a heuristic approach, we can further en-
hance the significance of the peak by normalizing with
the posterior variances, i.e. we define the squared and
normalized in-plane residuals as

ξ0xy =

√
ξ2x
σ2
x

+
ξ2y
σ2
y

+
ξ2vx
σ2
vx

+
ξ2vy

σ2
vy

. (8)



Table 3. Deviations of manoeuvre epochs from operator data and absolute ∆v-components in the RTN frame for the four
possible solutions found using pmax for the second NS manoeuvre of ASTRA-1KR. Here, the first peak is the true peak.

∆t ∆(∆vr) ∆(∆vt) ∆(∆vn)

[s] [m s−1] [m s−1] [m s−1]

operator data − 0.003 -0.004 0.983
peak #1 -4 0.096± 0.037 −0.064± 0.013 0.976± 0.002

peak #2 [+12 h] -124 0.085± 0.181 0.064± 0.048 −0.975± 0.002

peak #3 [+24 h] -244 0.090± 0.246 −0.064± 0.067 0.976± 0.002

peak #4 [+36 h] -374 0.079± 0.389 0.064± 0.115 −0.975± 0.002

Figure 22. Squared and normalized in-plane residuals
(blue) and squared in-plane residuals from the UKF anal-
ysis of ASTRA-1KR data.

As an example, Fig. 22 shows these residuals for the UKF
analysis of ASTRA-1KR. As can be seen, the EW ma-
noeuvre causes a sharp rise in ξ0xy , which is less pro-
nounced in ξxy . The NS manoeuvres only result in mod-
est peaks. Note that ξ0xy is susceptible to any large devia-
tions of the measurements from the prior (predicted) state
estimate even if they are not due to a manoeuvre. How-
ever, the same is true for ε, as in both cases we want the
filter to trip over these measurements.

5.3. Ambiguity of NS Manoeuvre Epochs

During the conjunction analysis presented in Sec. 4.3, we
encountered ambiguities in the determination of the ma-
noeuvre epochs and corresponding ∆v-components. Due
to the nature of geocentric orbits, the separation between
the FWP and BWP states takes on a minimum approxi-
mately every 12 hours. The same is true, of course, for
the maxima of the collision probability. This 12-hr peri-
odicity is due to the fact that NS station-keeping manoeu-
vres are generally performed at times of node crossings,
that is, whenever the orbital plane intersects the celestial
equator. That way, any out-of-plane impulse only affects
the inclination.
As can be seen from Figures 19 and 20 and the results in
Tables 1 and 2, if the node-crossing window is known,

then this technique can produce estimates for the ma-
noeuvre epochs accurate to within less than a minute, or
even to within a few seconds in some cases. However,
if the manoeuvre time cannot be constrained to within
two consecutive node crossings, an ambiguity arises in
the estimation of the manoeuvre epoch, as there are sev-
eral maxima in pmax (or several minima in dmin).
Fortunately, for GEO satellites, the manoeuvre epoch can
at least be determined modulo an integer multiple of 12
hours. The corresponding ∆v-components also do not
change much, except for a sign flip every 12 hours. Ef-
fectively, this means that even if there are data gaps span-
ning several node crossings and thus the estimated ma-
noeuvre epoch may be off by an integer multiple of 12
hours, the result of any subsequent orbital solution is al-
most as good no matter which peak of pmax is selected.
As an example, Table 3 summarizes the manoeuvre esti-
mates we obtained using pmax for the four peaks in the
lower panel of Fig. 19, which demonstrates the ambigu-
ity for the second NS manoeuvre of ASTRA-1KR. Note
that the increase in the formal uncertainties is caused by
the longer propagation times.

6. OUTLOOK

For this study, we implemented prototypes of an EKF
and a UKF that can detect manoeuvres in passive-optical
observations taken with the SMARTnet telescope
network. An improved, fully automated version will
eventually be applied to all observations taken with the
SMARTnet telescope network.
We have assumed that the object correlation for our
observations had been successful in the first place. While
beyond the scope of this work, this problem is closely
related to and a necessary prerequisite for manoeuvre
detection, and is a highly topical field of research
(e.g. [15]). A working object-correlation algorithm needs
to be incorporated in any automated data processing
system or database.
As mentioned in Section 3, we also made the assumption
of impulsive manoeuvres. A more sophisticated orbit
estimation could include and integrate over a non-zero
manoeuvre duration, as the ∆v-components are given in



the RTN frame, the orientation of which changes with
respect to a geocentric frame over the thruster-firing
duration (e.g. [10]).
Clearly, if a manoeuvre is detected and its epoch and
∆v-components are estimated, any subsequently run
OD algorithm (e.g. a batch-least-squares filter), will be
able to produce a much more accurate orbit estimate
compared to an estimate derived without knowledge of
the manoeuvre. On top of that, the manoeuvre epoch and
the ∆v-components can be included as free parameters
in the OD. Potentially, as suggested in [20], by using the
manoeuvre estimates from the conjunction analysis as
input values, the manoeuvre epoch and ∆v-components
may be further refined.
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