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ABSTRACT

Space debris is becoming a major threat for functional
spacecraft. Since, out of thousands of tracked objects in
the Earth’s orbits, only a small percentage corresponds
to the operational satellites. It is clear that this problem
needs to be addressed immediately. The first step towards
solving it requires the monitoring of the space environ-
ment and cataloguing the debris. This work focuses on
the high-altitude orbits (near GEO regime) which is done
using optical surveys. The latter result in angles-only ob-
servations of objects on very short arcs when compared to
the periods of these orbits. These observations are sparse
and cover a very small part of the orbit, hence the initial
orbit determination becomes challenging. Two observa-
tion series are associated together to find out if they be-
long to the same object and an initial orbit is computed.
One way to do it is by using the Optimized Boundary
Value Initial Orbit Determination (OBVIOD). This al-
gorithm does not include perturbations. To include the
latter we use a so-called shooting method. The shoot-
ing scheme is a boundary-value approach, which works
like an initial-value method. It takes a hypothesis at the
initial boundary and propagates it to the second bound-
ary, where the computed value and the original bound-
ary value are compared. The hypothesis, which gives
the desired output at the second boundary, is accepted as
the solution. In the proposed algorithm, the propagation
from the initial boundary to the final one involves pertur-
bations such as solar radiation pressure, Earth’s geopo-
tential terms, solar and lunar gravitational forces. A
root finding method based on bisection is used inside the
shooting method. An admissible region originating from
the semi-major axis is used in order to reduce the number
of scenarios to be computed. In the original version of
the OBVIOD, the initial orbit determination takes place
by solving the Lambert’s problem. This version does
not work well for the high area-to-mass (AMR) objects,
especially over multiple revolutions. In this paper, OB-
VIOD’s performance is compared with the new shooting
OBVIOD for different AMR values and varied number
of revolutions between the boundaries. This comparison
helps to identify the cases where it becomes important to
make use of the proposed algorithm.
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1. INTRODUCTION

Space debris are defined as non- functional, man-made
objects in space with no reasonable expectation of as-
suming or resuming its intended function [2]. It is es-
sential to observe and catalogue them in order to avoid
collisions with the active satellites. Optical surveys are
conducted to observe the objects in the geostationary re-
gion. These surveys yield short sequences of angle mea-
surements, called tracklets, which cover a small fraction
of the overall orbit [3]. [4] proposed an orbit determina-
tion method using available information of two tracklets.
This approach works with a boundary-value formulation
and uses an optimization scheme to find the best fitting
orbits (OBVIOD). It solves the Lambert problem, a spe-
cial case of the orbital boundary value problem, which
consists of two position vectors at separate epochs. The
Initial Orbit Determination (IOD) in OBVIOD provides
an unperturbed solution.

In order to add perturbations in the IOD, a so-called
shooting method is proposed here. Following sections
will show the working of the latter.

1.1. Working in OBVIOD

[4] introduced a method where an optimization scheme is
used to identify tracklets of common objects. The angle
measurements consist of series of α (right ascension) and
δ (declination) values. Linear regression is performed
over these series, resulting in average α, δ values and the
corresponding α̇, δ̇ for a meantime. This set of values is
called the attributable vector [9]. Using the attributable
vectors over simple measurements provides an advantage
as the angular rates information is now available. More-
over, the mean angular positions, rates obtained from the
linear regression will have higher accuracy compared to
the raw observations. The next step involves a range hy-
pothesis, which is used with the line of sight vectors and
station positions to compute position vectors. The Lam-
bert’s problem is solved, giving velocities at both epochs.
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Figure 1. Process Flow in OBVIOD.

The angular rates obtained from the previous step are
compared with the ones from the attributable vector using
a loss function. The latter is based on the difference be-
tween the measured and the modeled angular rates scaled
by the uncertainty. In this case, the Mahalanobis distance
is used as the loss function. For a distribution y, with
mean y and covariance matrix Cy , the Mahalanobis dis-
tance for each point yi is defined by [6]:

DM (y) =
√
(yi − y)TCy(yi − y) (1)

A minimization algorithm called Broyden Fletcher Gold-
farb Shanno (BFGS) is used to search for the loss func-
tion minimum. [5] briefly explain the working of this
algorithm. If the Mahalanobis distance is below a certain
threshold, the tracklets are said to be correlated. In other
words, they are assumed to belong to the same object.
The range hypothesis corresponding to the minimum is
accepted and the initial orbit is computed for these track-
lets. Figure 1. shows the schematic of OBVIOD.

1.2. Limitations due to use of unperturbed Lambert
solution

The IOD inside OBVIOD takes place by solving the
Lambert orbit determination problem using the method
from [7]. The Lambert’s initial orbit determination algo-
rithm mentioned in [7] uses the Lambert problem’s geom-
etry to derive new variables in order to solve the problem.
The derivations originate from the expression of time of
flight (tf ) as shown in equation (2).

√
µtf = a

3
2 [2Nπ + α− β − (sinα− sinβ)] (2)

Here µ = GMearth, N is the number of revolutions cov-
ered by the object, a is the semi major axis of the orbit,
and tf is the time taken to reach from the first position to
the second position. α and β are defined as follows:

sin(
α

2
) = [

s

2a
]
1
2 (3)
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2
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2a

]
1
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Where s = (r1 + r2 + c)/2, r1 and r2 are geocentric
positions at the first and second epoch. c is the length of
the chord connecting position at first epoch and position
at second epoch. An important parameter used to solve
the Lambert’s problem in this algorithm is λ, which is
defined as:

λ2 =
(s− c)
s

(5)

This algorithm assumes no perturbations while solving
the initial orbit determination problem. There are some
scenarios where this algorithm begins to fails or becomes
inaccurate. Some of the problems faced are described
below:

1. Ambiguity near full revolutions: The line of sight
vectors at the first epoch−→u1 and second epoch−→u2 al-
most overlap each other near full revolutions. The
angle between −→u1 and −→u2 is called the transfer an-
gle, it approaches zero if a full revolution case is
concerned. This leads to the ambiguity of no. of
revolutions and also the solution to be used [7], [8].
Hence, the solution provided by the Lambert algo-
rithm in these cases is not reliable.

2. Time of flight (tof) not computed for highly per-
turbed orbits: The algorithm proposed by Izzo [7]
involves various steps. A variable called x is de-
fined, which is to be used as the iteration variable. It
can be expressed as:

x = cos
α

2
(6)

or,

x = cosh
α

2
(7)

where α is the angle derived from Lambert prob-
lem’s geometry and given in equation (2). The
Lambert solver iterates on the Lancaster-Blanchard
variable x using a Householder iteration scheme.
Following this, various other variables are defined
using x, λ. Finally the non-dimensional time of
flight equation is derived, which is valid in all cases
(parabolic, hyperbolic and elliptic). The time-of-
flight expression defined in the algorithm is also not
valid for cases where x = 0 and x = 1. The deriva-
tions assume a non - perturbed motion of the object.
The value of x is provided by initial guesses found
exploiting the curve shape in a τ − ε plane. τ and
ε are defined in terms of x and T (non-dimensional
time of flight) respectively.



Once the initial value of x is supplied, the House-
holder iterations take place. A new value of non-
dimensional tof and x is computed in every iteration
and until the error is below tolerance, the iterations
continue. The error term is defined as:

err = abs(x0 − xnew) (8)

The value of tof is computed using either Lagrange,
Battin or Lancaster formula [7] depending on the
value of x. Figure 2. shows a case where the it-
erations take place using Lancaster formula. The tof
equation in this case is as follows:

tof =
(x− λz − d

y )

E
(9)

where d, z, y and E are defined as

E = x2 − 1;

K = λ2;

z =
√
1 +KE;

y =
√
abs(E);

d = log(f + g);

f = y(z − λx);
g = xz − λE;

(10)

The screenshot in Figure 2. shows that (f + g) < 0,
which makes d = NaN . This subsequently leads
towards the failure to compute a value of tof. The
values of velocity are not computed and one does not
get a solution for the initial orbit. Since this Lambert
algorithm assumes an unperturbed geometry, it gives
wrong / unexpected values of the variables which
makes the algorithm fail in some cases.

3. Divergence due to Lambert solution being far from
perturbed solution: If a full failure does not occur as
shown in the previous case, there will still be some
differences from the real solution because of the
presence of perturbations. The difference between
the Lambert solution and the real solution mainly
depends on the time of flight (number of revolutions)
between the two tracklets and the AMR value.

2. SHOOTING METHOD

The shooting method belongs to the class of two-point
boundary value problems. It treats the boundary value
problem as an initial value problem. It chooses an ini-
tial value of the dependent variable at the first bound-
ary, propagates the function to arrive at the other bound-
ary. This solution is compared with the second boundary
value. Free parameters at the first boundary are adjusted
to satisfy the desired second boundary value. Figure 3.
shows how the different initial values of the dependent
variable are taken at the first boundary value in order to
reach the desired boundary value [5].

Figure 2. An example showing a case when the lambert
algorithm fails for a highly perturbed orbit.

Figure 3. Working of shooting method.



Figure 4. Process Flow in Shooting-OBVIOD.

2.1. Shooting method in OBVIOD

The boundary values in the case of Shooting-OBVIOD
are angular measurements at both the epochs. Using the
attributable vector one has the mean angular positions and
rates. The range hypothesis is made for both the bound-
aries. The station position and velocity at both the epochs
is known, the only unknown parameter at the initial epoch
is ρ̇1 (range-rate). It is chosen as the free parameter inside
Shooting IOD and is hypothesized at the initial epoch.
The orbit is computed at this epoch and propagated to the
second epoch. The propagation step involves perturba-
tions such as solar radiation pressure, Earth’s geopoten-
tial terms, solar and lunar gravitational forces.

The second boundary value inside shooting IOD is ρ2
(range at second epoch). The ρ2j obtained during the
shooting method iterations is compared with the ρ2 hy-
pothesis made in OBVIOD iterations before entering
shooting. The iteration parameters inside Shooting-
OBVIOD remain to be ρ1 (range at first epoch) and ρ2.
This is based on the analysis done by [4] on the loss func-
tions and performance. The change of variables from
(ρ1, ρ2) to (ρ̇1, ρ1) takes place inside shooting in order
to allow for a propagation from the initial epoch to the
final epoch for the pair ρ1, ρ2. This is because the shoot-
ing method allows for IOD for the given pair with the
addition of perturbations.

The method is described more in detail in the following
sections. The Shooting IOD replaces the Lambert IOD
during the minimization of the loss function. The result-
ing schematic of Shooting-OBVIOD is shown in Figure
4.

2.2. Bisection method in shooting

A root finding algorithm is needed which is reliable in
terms of convergence. An analysis is done in [1] and the
bisection method is chosen to be used inside the Shooting
IOD. It works by searching for the point where the func-
tion changes its sign. The interval containing the root

Figure 5. An isolated root x1 bracketed by two points a
and b at which the function has opposite signs.

Figure 6. There is not necessarily a sign change in the
function near a double root (in fact, there is not neces-
sarily a root!)

needs to be identified to begin the search. An interval
based on the admissible region for our problem is cho-
sen. A root lies in the interval (a, b) if f(a) and f(b)
have opposite signs. The function is evaluated at the in-
terval’s midpoint and its sign is examined. The midpoint
is used to replace whichever limit has the same sign. Af-
ter each iteration, the bounds containing the root decrease
by a factor of two. If after n iterations, the root is known
to be within an interval of size ε, then after the next it-
eration it will be within an interval of size ε/2. The it-
erations are carried out until the function value is below
tolerance. Figure 5. illustrates two points on the function,
which constitute the boundary of an interval that contains
a root. This interval can also be called a bracket. Figure 6.
shows another situation encountered while root finding.

An example of a function plot was made for (ρ2hyp− ρ2)
for an initial hypothesis (ρ1, ρ2) in case of three revolu-
tions and AMR 10 (m2/kg). Here ρ2hyp is the value of
range hypothesis at second epoch entering the shooting
method from OBVIOD. The plot is shown in Figure 7
below. The function is continuous with multiple roots,
the bisection method could be used for this type of func-
tion. Since the function has multiple roots, it will need to
be divided into various intervals (also called brackets) in
order for the Bisection method to find all the roots in the
desired intervals.
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Figure 7. Function plot made by varying ρ̇ values for a
given ρ1, ρ2. Here ρ2diff refers to the difference between
ρ2hyp entering shooting from OBVIOD and the instanta-
neous ρ2 inside shooting IOD.
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Figure 8. Function bounds resulting from semi major axis
constraints.

2.2.1. Constraints for Brackets in Bisection method

Brackets are searched in the admissible region defined by
the semi major axis, between 41,000 km and 43,000 km.
The orbital velocity expression from the vis-viva equation
is:

v2 =
GM

(( 2r )− ( 1a ))
(11)

If the maximum semi major axis value (43,000 km) is
substituted in the above quadratic equation, one gets two
roots for the velocity. The ρ, ρ̇ satisfy the geocentric po-
sition and velocity as following:

r(ρ) = −→rs + ρ−→u (12)

v(ρ, ρ̇) = −→vs + ρ−̇→u + ρ̇−→u (13)

The information about rs and vs (station position and ve-
locity) is available. u (line of sight angle) and u̇ are com-
puted from the angular positions and velocities. The only
unknown in equation (10), ρ̇ can be computed using ve-
locity values one gets from the constraints. Using the
values from the semi major axis constraints, one obtains
a quadratic in range-rate. Rearranging equation (11) and
using (12) and (13) one gets

a =
rGM

2GM − r(ρ̇−→u + ρ−̇→u +−→vs)2
(14)

The roots of this quadratic will correspond to the bounds
of our function by inserting respective a values. For the
minimum value only one value of ρ̇ is obtained whereas
inserting the maximum value results in two values of ρ̇.
These ρ̇ values are used as the starting brackets for the
bisection method. Point C in the Figure 8. corresponds
to the semi major axis minimum on the ρ̇ axis and points
(A, B) correspond to the maximum. Intervals contain-
ing multiple roots are separated into smaller brackets.
The Lambert’s problem has multiple possible solutions
for one or more number of revolutions. These solutions
are (2m + 1) in number, where m is the number of revo-
lutions. For each number of revolutions higher than zero,
there are two solutions. They are called as long-path and
short-path orbits. For the same value of semi-major axis,
the long-path orbit will have a higher eccentricity than
the short- path orbit. [8] gives more information about
the multiple-revolution Lambert’s problem.

Similarly eccentricity can be expressed using the geocen-
tric position, velocity and semi major axis as:

e =

√
1− (−→r ×−→v )2

µa
(15)



Figure 9. Schematic of shooting IOD with bisection.

Once one substitutes the value of a from equation (11)
and values of −→r and −→v in terms of ρ, ρ̇, one obtains a
quartic equation in ρ̇. The solution to the quartic equation
was comparatively difficult to calculate, contrary to the
semi major axis relation. Hence, only the latter was used
to define function bounds. The equation (12) also shows
that for every value of semi major axis we will have two
values of eccentricity, with only one exception of mini-
mum value of semi major axis. [8] discusses various con-
straints that can be possibly used to reduce the number
of practical solutions to be computed from a Multiple-
Revolution Lambert’s Problem. These constraints were
investigated, but the ranges of semi major axis originat-
ing from them were found to be a subset of the constraints
defined in the beginning of this subsection. However, the
constraints described in [8] are more generic and could be
tailored for cases where the user could define the apogee,
perigee limits for a specific mission and find the solutions
for a given orbital problem. The authors also mention
about the relationship between eccentricity and semi ma-
jor axis, interested readers could refer to their paper for
more details.

2.3. Functioning in Bisection

Once the brackets containing the roots are found, each
bracket is followed one by one starting from the positive
value of ρ̇ corresponding to the amax root. The resulting
schematic of the Shooting IOD with the Bisection method
is shown in Figure 9.

The ρ1, ρ2 hypothesis enters the Shooting IOD. The ρ̇
brackets containing roots are computed using the semi
major axis admissible region. The brackets are followed
one by one. α1, δ1, α̇1, δ̇1, ρ1, ρ̇1 along with ρ̇1 hypoth-
esis are used to compute an orbit. It is propagated to

the second epoch using perturbations. The resulting ρ2
is compared by the ρ2hyp that entered the Shooting IOD.
The ρ̇1 root is computed such that the difference between
the computed ρ2 and the ρ2hyp is below a certain thresh-
old.

The ρ̇1 root depends on the ρ1 value which changes
through different iterations. Hence the size of the brack-
ets changes as well. The strategy adopted in case
the a bracket containing root disappears, is to take the
root from the adjacent bracket (the one which was not
searched before).

The values of α2 and δ2 are not used in the Shooting IOD.
These values could be used along with ρ2 by exploiting
the Pythagorean theorem. However, the resulting differ-
ences in state at the second epoch would be positive or
null. Since the strategy in Bisection method works by de-
tecting the change in sign of the functions, this was not
possible. Consequently, only the difference between ρ2
and ρ2hyp was used. The values of α2 and δ2 are used in
the final discriminator of Shooting-OBVIOD. The struc-
ture of the latter is given in the previous section.

2.3.1. Use of brackets inside Shooting-OBVIOD

An interval containing root in constrained region is
termed as a bracket. As already stated, the ρ̇1 root de-
pends on the ρ1 value which may change during different
iterations. Hence the size and number of brackets change
as well. The brackets are always searched one by one
starting from one of the two values of ρ̇ corresponding
to the semi major maximum. The numbering of brack-
ets starts from the first interval containing root between
ρ̇amin and ρ̇amax (positive value). The description of
brackets originating from the admissible region is shown
in Figure 10. for a given object and (ρ1, ρ2).

In the original OBVIOD algorithm, the number of possi-
ble solutions could go up to six for a case of three revo-
lutions. The admissible region used in bisection method
and the definition of brackets reduces the number of pos-
sible solutions to be computed. This is essential when
the numerical propagation is expensive in terms of time
especially in multi-revolution scenarios.

In case the bracket being followed disappears because
there is no root in that interval anymore for a (ρ1, ρ2),
the root is searched in the next bracket. This is achieved
by awarding a serial number to the brackets. For exam-
ple in situations where the first bracket is being followed
but the corresponding root disappears, the next bracket is
awarded as serial number 1 and is searched for the root.
An example of number of brackets reducing from one rho
pair to another is shown in Figure 10. The number of
roots in the admissible region reduces from two to one.
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2.3.2. The working of Bisection-Shooting in OBVIOD

In the present version of the algorithm with Bisection-
Shooting for IOD, the same hypothesis variables (ρ1, ρ2)
are used as from original OBVIOD. This pair of vari-
ables provides the advantage of a more favorable search
space than ρ1, ρ̇1. Once the range hypothesis is made, this
pair enters the Shooting scheme where the ρ̇ hypothesis is
made in order to determine the orbit for a given rho pair.
This orbit determination includes a propagation step with
perturbations. Once the initial orbit is determined, the
Mahalanobis distance is computed using (α2, δ2, α̇2, δ̇2)
as the discriminator inside the BFGS algorithm. This dis-
criminator makes the Shooting-OBVIOD algorithm sim-
ilar to the initial value orbit determination algorithm.
However, due to the change of iteration variables from
ρ1, ρ̇1 (initial value algorithm) to ρ1, ρ2 in BFGS, the
function topography is kept optimal. The variable ρ2 is
used only for the search in the BFGS algorithm.

3. TESTS AND RESULTS

3.1. Simulation of input files

The adopted GEO survey strategy consists of repeatedly
scanning a declination stripe with a fixed right ascension.
The declination interval is chosen as ±8° for each right as-
cension. Observations were simulated using the Zimmer-
wald station coordinates to get topocentric angular posi-
tions over the length of 2 to 3 minutes. The TLEs used
were extracted from Spacetrack objects catalog. Pertur-
bations were added for: geopotential terms (upto second
degree and order), solar radiation pressure, third body at-
traction forces for Sun and Moon. In the following tests
observations simulated for the GEO regime were consid-
ered. The constraints applied on different elements were:
inclination < 10°, eccentricity < 0.3, semimajor axis be-
tween 41,000 km and 43,000 km. Two tracklets are tested
at a time. They are separated by a few hours, one or two
revolutions.

3.2. Comparison between unperturbed OBVIOD
and Bisection Shooting

Both the methods are compared by varying the number
of revolutions and AMR values. All the tests are done
with different objects so as to increase the sample size.
The number of tracklet pairs tested are still limited owing
to the high computation time consumed by the numerical
propagator used in Shooting-OBVIOD.

Nevertheless, variation of AMR values while keeping the
number of revolutions constant and vice-versa does give
an insight about the limitations of unperturbed OBVIOD
and how well Shooting- OBVIOD is able to overcome
them. The results are shown starting from Figure 11. to

Figure 11. For tracklet pairs separated by less than 1
revolution, the unperturbed OBVIOD performs equally
well except in case of very high AMR.

Figure 12. The performance of the unperturbed OBVIOD
begins to worsen starting from a case of tracklets sepa-
rated by 1 revolution.

Figure 18. The degradation of unperturbed OBVIOD re-
sults is evident for 1 or more revolutions and similarly
for very high-area-to-mass-ratio (HAMR) objects. This
is expected because with increase in AMR and tof the
perturbations have a higher impact, especially the solar
radiation pressure.

4. CONCLUSIONS

Unperturbed OBVIOD begins to fail with increase in
number of revolutions. This also happens for a high-
area-to-mass ratio object. The proposed algorithm per-
forms well even in case of HAMR values and multiple
revolutions when compared to the unperturbed OBVIOD.
Shooting OBVIOD could replace the latter in case corre-
lation doesn’t take place.

However, the Shooting-OBVIOD comes with some chal-
lenges. It works on the basis of brackets which can disap-
pear later in the iterations. In such cases, one could miss
the solution (no correlation) because the bracket contain-
ing root was not one of the available brackets. There are



Figure 13. The performance of unperturbed OBVIOD
fluctuates between 1 and 2 revolutions, with highest AMR
value resulting in minimum number of correlations.

Figure 14. This case shows a clear decline of number of
correlations with the increase in AMR value.

Figure 15. For a small AMR value, the no. of correlations
decrease with increase in number of revolutions however,
one still gets around 50% of the tracklet pairs correlated.

Figure 16. For a slightly higher AMR, the decline in num-
ber of correlations is evident with increasing number of
revolutions.

Figure 17. The number of correlations further decreases
with increase in the AMR value. Although, the perfor-
mance does fluctuate between different number of revolu-
tions.

Figure 18. The performance for very HAMR value is
comparable to the previous case, when effect of number
of revolutions is considered.



cases where none of the brackets resulting from the ini-
tial hypothesis contain the root. The right bracket may or
may not appear in the later iterations. This method has a
dependency on the initial rho pair hypothesis that is taken
to begin the iterations. Besides, the numerical propaga-
tion makes this algorithm much more slower when com-
pared to the unperturbed OBVIOD.
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