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ABSTRACT

In 2015, a mysterious space debris entered the Earth’s at-
mosphere under the name WT1190F. Even though it has
been observed before, its origin remains an enigma. Two
major candidates are considered: Snoopy, the lost lunar
module of mission Apollo 10, launched in 1969, and the
trans-lunar injection stage of Lunar Prospector, launched
in 1998.

This study case raises the following question: How is it
possible to compare 2 objects with their positions and un-
certainties measured at different dates? This article will
propose a probabilistic correlation criterion, able to com-
pare the behaviour of two sets with one another. This cri-
terion will then be evaluated on the case of WT1190F to
determine which candidate is more likely to be the space
debris.

Keywords: Uncertainty propagation; Snoopy case;
WT1190F; Correlation criterion.

1. INTRODUCTION

Propagation of uncertainties is crucial in orbital mechan-
ics, as every measurement of an orbit comes with an er-
ror. To that end, the impact of such errors must be quan-
tified in order to estimate the position and velocity of the
spacecraft with a given level of uncertainty. Thanks to
these estimations, it is possible to approximate the colli-
sion probability of two objects, or the risk of failure of a
rendezvous, for instance.

Several uncertainty propagation methods can be consid-
ered. Searching for a solution to the Fokker-Planck Equa-
tion can be done, it is a partial differential equation satis-
fied by the Probability Density Function (PDF), see [1].
This way, the PDF of the position of the spacecraft could
be used easily. However, solving such an equation can be
computationally expansive, especially for complex mod-
els due to heavy matrix computation.

It is the main reason why the work has been directed to-
ward Monte-Carlo estimations, see [20]. Nevertheless,
propagating a large number of trajectories can be very

time-consuming and requires a lot of resources to par-
allelize computations. Therefore, Monte-Carlo estima-
tions based on polynomial maps have been widely used
over the past decades, particularly in orbital mechanics.
Methodologies to perform faster Monte-Carlo estima-
tions in without loss of accuracy, thanks to automatic do-
main splitting methods were proposed, see [4] and [24].

The main case study of this work is the space debris
WT1190F, which entered the Earth’s atmosphere in 2015,
see [13]. It has been observed several times before, espe-
cially in 2013 under the name UDA34A3, see [12]. The
origin of WT1190F is still a mystery, but studies tend
to demonstrate that it is a man-made object returning to
Earth. Among all the potential origins, see [8], can be
found:

• Snoopy: the lost lunar module of mission Apollo 10
(LM-10), launched in 1969, see [2].

• LP-TLI: the trans-lunar injection stage of Lunar
Prospector, launched in 1998, see [5, 3].

However, once the polynomial mapping of the uncer-
tainty sets of WT1190F, LP-TLI and Snoopy is propa-
gated to a common date, evaluating the correlation be-
tween WT1190F and Snoopy, and WT1190F and LP-TLI
is a complicated task. Indeed, finding a single or a finite
set of common points to the two sets has no weight com-
pared to the infinite uncertainty sets. Moreover, it could
be interesting to generate a large sample of each set and
compute the distances between the samples. Yet, these
distances would not take the shape of each uncertainty
sets into account nor the probability to be in a part of a
set of in another.

Thus, the need to find a way to compare the global
behaviour of two uncertainty sets with one another in
a probabilistic way. This article’s aim is to display a
methodology to do so in an efficient way.

This study will be structured into two parts. At first, the
whole methodology to make such comparisons will be
laid out, beginning with the description of the dynam-
ics modelling, followed by the uncertainty propagation
method, and by the construction of an ad hoc probabilis-
tic correlation criterion, and the way to estimate it effi-
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ciently. Then, this criterion will be computed to compare
Snoopy and LP-TLI with respect to WT1190F.

2. BACKGROUND

The space debris WT1190F was observed several times,
in 2013 under the names UDA34A3 or UW8551D. An-
other observation is sometimes linked to WT1190F:
9U01FF6 in 2009 and 2010. However, this link has not
yet been established, due to close approaches with the
Moon making the propagation difficult, see [12]. Fur-
thermore, it is to be noted that data can be found on the
physical parameters of UDA34A3, but not for WT1190F.
It means that it is not possible to rely on observation to
give WT1190F a mass or a surface for instance. There-
fore, a hypothesis is needed to associate physical param-
eters to WT1190F. These parameters will only have an
influence on the computation of the acceleration due to
the Solar Radiation Pressure (SRP).

The object that is more likely to be WT1190F for [2]
is Snoopy. The lunar module was jettisoned in a he-
liocentric orbit after the end its use by the crew of
mission Apollo 10. The possibility of Snoopy’s re-
turn was investigated for since 2018 at ISAE-SUPAERO,
by F. Vagnone, L. Villanueva Rourera, P. Guardabasso
and S. Lizy-Destrez, see [21, 23], and at CNES by D.
Hautesserres, see [16]. Although no re-entry of Snoopy
in the Earth’s sphere of influence has ever been observed,
Snoopy makes a close approach with Earth during the
window of observation of WT1190F, see [9]. The ini-
tial state vector of Snoopy in 1969 is known as well as
the physical parameters of Snoopy.

As for LP-TLI, its initial state vector of 1998 can be
found in [5], and its physical parameters are available in
[3]. However, no data is available regarding the uncer-
tainties on the state vector, and the number of digits given
in [5] is not enough to perform a thorough propagation of
the uncertainty set until 2015.

Figure 1 illustrates the link between all objects, and the
available data of their physical parameters. The two can-
didates are linked to WT1190F with dashed lines, while
UDA34A3 is connected to it.
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Figure 1. Summary of the data on the case studies

Furthermore, the propagation of the trajectory of these
two objects from their initial epochs to 2015 to compare

them with WT1190F is complicated, due to the accumu-
lation of rounding errors, integration errors, and mod-
elling errors. Even an accurate polynomial mapping of
the uncertainty sets of the two would not deliver reliable
results. Thus, the need to find another method to discrim-
inate the two scenarios.

3. METHODOLOGY

The idea of this work is to use the fact that only the phys-
ical parameters of WT1190F are unknown, and then con-
sider two scenarios:

1. WT1190F = Snoopy: Which consist in making the
hypothesis that WT1190F has the same physical pa-
rameters as Snoopy

2. WT1190F = LP-TLI: Which consist in making the
hypothesis that WT1190F has the same physical pa-
rameters as LP-TLI

Then, scenarios 1 and 2 will be compared to UDA34A3,
used as a reference, with dynamics laid out in section
3.1, thanks to TDA propagations developed in section
3.2. Once the polynomial maps of each uncertainty sets
is performed, the correlation criterion constructed in sec-
tion 3.3 can be computed for each scenario with respect
to UDA34A3 thanks to Monte-Carlo methods of section
3.5.

3.1. Dynamics

In this paper, the body under study will be called ”space-
craft”, even though this whole methodology can be ap-
plied to any object considered as a point mass.

The aim is to approximate the acceleration −→γ exerted on
the spacecraft under study. This approximation will de-
liver an Ordinary Differential Equation (ODE) of order
2, linking the position −→r to the acceleration, thanks to
Newton’s second law:

−̈→r = −→γ (1)

Solving this equation will provide the position and the
velocity of the spacecraft.

The chosen dynamics model is based on ephemerides be-
cause of its high degree of accuracy compared to the N -
body-problem, but with a higher computational cost. The
library CSPICE provided by JPL, see [10], will be used to
access the positions and velocities of the selected attract-
ing bodies. The impact of the mass of the spacecraft is
neglected on the trajectories of the celestial bodies. Fur-
thermore, Solar Radiation Pressure (SRP) is the only per-
turbation taken into account, with a spherical model pro-
vided by R. M. Georgevic, see [11].



Thus, by using the Solar System barycenter as the ori-
gin and J2000 as the reference frame, the acceleration
exerted on the spacecraft is:

−→γ =
∑

body∈bodies

−→γ body +−→γ SRP (2)

With each gravitational acceleration generated by a ce-
lestial body computed independently in Cartesian coordi-
nates as follows:

−→γ body = µbody ·
−→r body −−→r∥∥−→r body −−→r

∥∥3 (3)

With µbody the mass parameter of a given body, and‖·‖
the Euclidean norm. The Sun, all planets, Pluto and the
Moon are taken into account to compute the acceleration.

And with SRP acceleration computed as follows:

−→γ SRP = −CRS

m
·KSRP ·

−→r Sun −−→r∥∥−→r Sun −−→r
∥∥3 (4)

With KSRP = 1.0227.1017 kg.m/s, m the spacecraft’s
mass, S the spacecraft’s surface exposed to the SRP, and
CR the coefficient of reflexivity of the spacecraft, see
[11]. The three last parameters are the only differences
between the scenarios 1 and 2.

Then, the acceleration can be written as follows :

−→γ =
∑

body∈bodies

−→γ body (5)

By changing the value of µSun by :

µSun = µSun −KSRP ·
CRS

m
(6)

Once the acceleration −→γ is modelled, the ODE 1 can be
solved to know the position and velocity of the spacecraft.

3.2. TDA propagation

3.2.1. Implementing an TDA-compatible ODE solver

Form the perspective of TDA, considering f , a suffi-
ciently regular function of v variables, or Tf , its Taylor
expansion at order k is equivalent, see [6]. Algebraic op-
erations (+,−,×, /) can be defined for the polynomials,
as well as multiplication by scalars, derivation, integra-
tion, composition, sin, exp, etc... This set is a differential

algebra of finite dimension equal to kDv =

(
k + v

v

)
.

For this paper, the C++ library DACE, developed at Po-
litecnico di Milano, was used to implement such a struc-
ture, see [19]. It can then be used to propagate a trajec-
tory with a classic numerical integration algorithm. For

instance, the propagation of the following Cauchy prob-
lem: {

ẏ(t) = f
(
y(t), t

)
y(0) = y0

(7)

Then Euler’s explicit method to approximate the solution
of equation 7 is for a step h, for n ∈ N, with tn = n · h,
and with y(tn) = yn:

yn+1 = yn + h · f(yn, tn) +O(h2) (8)

If the measure of y0 is tainted with errors, [y0], the class
of equivalence of y0 in kDv is considered. It is a poly-
nomial with its constant part equal to y0 and with a non-
constant part that represents the whole uncertainty space
of y0 up to the order n. Applying Euler’s method (8) to
[y0] delivers a Taylor expansion of the solution at each
step, thanks to the algebra structure of kDv:

[yn+1] = [yn] + h · f([yn], tn) +O(h2) (9)

The sequence
(
[yn]

)
n∈N

is a set of polynomials with the
uncertainties on y0 as variables. It represents the whole
uncertainty set at each step tn. Therefore, evaluating the
impact of the initial uncertainties has a low computational
cost since evaluating polynomials is cheaper than propa-
gating a new set of initial conditions. The use of Euler’s
explicit method shows that any other ODE solver can be
implemented following this method, since they only in-
volve algebraic operations well-defined thanks to algebra
structure.

In this paper, the algorithm DOP853 will be used to in-
tegrate the acceleration of equation 2, see [14]. This
method is robust, of order 8, and has an adaptive step
size.

Moreover, the approximation error due to the TDA ap-
proximation of the set is controlled thanks to an auto-
matic domain splitting method, see [24]. The main idea
behind this method is that the approximation error de-
creases exponentially with the size of the uncertainty set.
Therefore, considering the uncertainty set as a collection
of small sets instead of as large single one, considerably
lowers the error at a cheap computational cost.

3.2.2. Modeling SRP uncertainties

Since the variables of the polynomials are used to evalu-
ate the propagation of uncertainties, at least six variables
are needed in order to capture uncertainties on the state
vector. Moreover, uncertainties on the SRP are crucial in
the case of long propagations, and they need to be mod-
elled as well. To minimize computation time, all the un-
certainties on SRP are represented by only one variable
instead of three for S, CR, and m:



[−→γ SRP ] = KSRP · [C ′R] · S
m
·
−→r
r3

(10)

With:

δC ′R
C ′R

=

√(
δCR

CR

)2

+

(
δS

S

)2

+

(
δm

m

)2

(11)

Since the dimension of kDv is
(
k + v

v

)
, the dimension

of the algebra modelling the uncertainties on the SRP for
each source of error can be compared with the dimension
of the simplified algebra with fewer variables. This ratio
krv = kDv

(k+2)Dv
is used to compare these two algebras:

krv =
1(

1 + k
v+1

)(
1 + k

v+2

) < 1 (12)

Since v = 7 in this work :

Table 1. Value of nr7 for various TDA orders
k kr7
5 0.43
8 0.26
12 0.17
15 0.13

The ratio of the two dimensions in equation 12 captures
the number of coefficients to be computed for each op-
eration on an element of the TDA. In other words, it can
be seen as the computation time ratio between the two al-
gebras. From this point of view, and thanks to table 1, it
is clear that modelling SRP uncertainties with only one
variable is much more efficient. Furthermore, according
to [22], the complexity of most operations in the TDA
have a complexity higher than linear with respect to the
dimension of the algebra. Therefore, the values of table 1
underestimate the gain provided by the expression of the
SRP given by equations 10 and 11.

3.3. Correlation criterion

Now that uncertainty sets can be propagated thoroughly,
how to express the similarity of two propagated sets? Let
A and B be two spacecraft with given initial uncertainty
sets [xA] and [xB ] at given dates tA < tB . Is it possible
to decide whether or not A and B are the same object?

3.3.1. Motivation : Why point-wise methods fail

Let TA be a sample of the propagated uncertainty set of
A from tA to tB . Can we conclude that A and B are the

same if an element of TA is included in [xB ] at date tB?
Of course, it gives an hint of how A and B are related.
But all it says in practice is that:

∃S ⊂ TA, S ⊂ [xB ] (13)

But in that case S has a measure of zero. In other words,
looking for the inclusions of points from a set in the other
has no statistical meaning when infinite sets are consid-
ered.

The aim is to find a criterion that can translate the inter-
action of the two sets with one another.

3.3.2. Building a statistical criterion

Let t ∈ [tA, tB ], and N ∈ N. Let TA be a sample of size
N of the propagated uncertainty set ofA from tA to t, and
TB be a sample of size N of the propagated uncertainty
set of B propagated from tB to t.

Let HA be the convex hull of TA, and HB be the con-
vex hull of TB . In practice, HA and HB represent 6D
volumes that envelop perfectly every element of TA and
TB . This process is shown in figure 2. The approxima-
tion that HA and HB are the uncertainty sets at t of A
and B is being made.

Then, the probability of the intersection of the two hulls
represents the probability for each object to have a com-
patible state vector with the other and vice-versa. Be-
cause if A has the same state vector as B, then A = B.
In other words, P (HA ∩HB) is the probability for A
and B to be the same object at a given date t.

However, this probability will be hard to estimate with
Monte-Carlo methods expressed like that.

3.3.3. Finding a simple formula

Let Ω = TA ∪ TB be the universe, and suppose that
Card(TA) = Card(TB) = N ∈ N. Since TA are the
points propagated from A, and TB are the ones propa-
gated from B, then:

TA ∩ TB = ∅, and TA ∪ TB = Ω (14)

Then:

P (HA ∩HB) = P (HA ∩HB ∩ TA)+P (HA ∩HB ∩ TB)
(15)

Since TA ⊂ HA, and TB ⊂ HB :

P (HA ∩HB) = P (HB ∩ TA) + P (HA ∩ TB) (16)



Figure 2. Correlation criterion principle

Then:

P (HA ∩HB) = P (TA)P
(
HB |TA

)
+P (TB)P

(
HA|TB

)
(17)

Finally:

P (HA ∩HB) =
1

2

[
P
(
HB |TA

)
+ P

(
HA|TB

)]
(18)

The correlation criterion is a function of t. It is the like-
lihood of the two objects to be the same. Moreover, it
can be computed with Monte-Carlo methods. Being able
to check inclusions of elements of TA in HB and vice-
versa is the only requirement. This can be easily done,
and confidence intervals can be computed on P

(
HB |TA

)
and P

(
HA|TB

)
. Which means that a quantification of

the error can also be performed on P (HA ∩HB). This
criterion can be easily generalized for any finite number
of spacecraft, with the same method and properties.

3.4. Building hulls in practice

3.4.1. Drawbacks of the convex hull

The convex hull of a set is unique and there exist algo-
rithms to build it. However, the convex hulls have several
disadvantages:

• Complexity : The complexity of convex hull algo-
rithms is exponential with respect to the dimension
of the space, see [7]. Which makes it very hard to
compute convex hulls for 105 points at hundreds of
time steps.

• Storage : In six dimensions, the number of equa-
tions needed to represent all the surfaces of the hull
grows rapidly, which can result in dozens of Gb of
storage, which is already reserved for the storage of
the polynomial maps.

• Checking inclusions : The formula of equation 18
shows that 2N inclusion checks are needed, and
solving a linear system of such a size at each time
step is not manageable.

• Methodology paradigm : The convex hull ensures
that every building points will be included. How-
ever taking a point at a boundary and translating it
of 10−13AU away from the hull will deliver a point
not included in it, even though propagation errors
are beyond this magnitude. Therefore, this defini-
tion is not adapted to the whole methodology of this
work. It should be possible to tune a tolerance pa-
rameter to adapt the swelling of the envelopes.

3.4.2. An alternative to the convex hull

A way to solve this problem is to use the Mahalanobis
distance to build the hulls, see [18]. The idea is to per-
form a transformation from the Cartesian coordinate sys-
tem to the coordinate system based on the mean of the
cloud of points, with the eigenvectors of its covariance
matrix has main directions. It means a unit is equal to
a standard deviation in every direction. The computing
of the euclidean distance in this transformed coordinate
system is the Mahalanobis distance. The Mahalanobis
distance with respect to a cloud of point P ⊂ R6 between
two points (x, y) ∈

(
R6
)2

is expressed in equation 19:

dM (x, y) =
√

(x− y)T Σ−1(x− y) (19)

With Σ the covariance martix of the cloud of points P .

The idea is to construct the hull of size α with the sphere
in the Mahalanobis distance centered on the meanm, and
of radius α. In other words, if m ∈ R6 is the mean of
P , then the hull H of size α follows the expression of
equation 20.

H =
{
x ∈ R6, dM (m,x) ≤ α

}
(20)

This has several advantages:

• Easy to compute: To build that hull, the only need
is to estimate the mean of a 6D could of points, ap-
proximate its 6× 6 covariance matrix, and invert it.



• Storage: Storing a Mahalanobis hull is equivalent
to the storing 42 floating point digits per time steps,
which is cheap.

• Check belongings: To check whether or not a point
belongs to the hull, only a matrix-vector product and
a scalar product need to be computed, which can be
done efficiently.

• Paradigm: The Mahalanobis hulls offer a statistical
solution to a statistical problem. The size of the hull
can be increased or lowered as the user wishes. Fur-
thermore, the size of the hull is not needed to build
the hull. It is only necessary to check inclusions.
Which makes it almost free to check inclusions in
two hulls or more instead of in only one.

3.5. Monte-Carlo estimations

3.5.1. Generalities on Monte-Carlo estimations

Monte-Carlo methods are a way to estimate integrals with
a statistical method, see [20]. The goal is to estimate an
integral of the form of equation 21.

I =

∫
Rd

φ(x)f(x)dx (21)

With f a density of probability, φ a given function, and
d ∈ N the dimension of the problem.

The Monte-Carlo estimator of I is exposed in equation
22:

Î =
1

N

N∑
i=1

φ(Xi) (22)

Where N ∈ N and the random variables in the sequence
(Xi)i∈N are independent and identically distributed ran-
dom variables following the distribution f .

The law of large numbers ensures that Î −→
E(φ(X1)) = I when N → ∞, with E(·) the expecta-
tion.

3.5.2. Estimating the correlation criterion with
Monte-Carlo

In this work, the random variables will be the state vec-
tors of the spacecraft, mapped thanks to the TDA propa-
gation. The main goal is to estimate each term of equa-
tion 18. The Monte-Carlo estimator P̂B|A of P

(
HB |TA

)
is given in equation 23, it is a similar estimator for
P
(
HA|TB

)
.

P̂B|A =
1

N

∑
xA∈TA

1HB
(xA) (23)

Furthermore, it is possible to estimate the relative
error made by the Monte-Carlo estimator, see [20].
Since 1HB

(xA) follows a Bernoulli law of parameter
P
(
HB |TA

)
, its variance is known and given in equation

24.

V ar
(
1HB

(xA)
)

= P
(
HB |TA

)
·
(

1− P
(
HB |TA

))
(24)

If ∆P̂B|A = 3.09 ·
√

P̂B|A·(1−P̂B|A)√
N

, the Central Limit
Theorem (CLT) delivers the expression of equation 25.[

P̂B|A −∆P̂B|A, P̂B|A + ∆P̂B|A

]
(25)

It is an estimation of the confidence interval at 99.9%, if
V ar(P

(
HB |TA

)
) 6= 0.

Furthermore, if V ar(P
(
HB |TA

)
) = 0, thus, if P̂B|A ∈

{0, 1}, the confidence interval cannot by computed
thanks to then CLT.

If P̂B|A = 0, the confidence interval at 99.9% is esti-
mated thanks to [15], as in equation 26.

P̂B|A ∈
[
0,

6.9

N

]
(26)

Symmetrically, if P̂B|A = 1, the confidence interval at
99.9% is estimated in the same way in equation 27.

P̂B|A ∈
[
1− 6.9

N
, 1

]
(27)

Therefore, the equations 25, 26, and 27 offer a way to
compute the error made on the estimation 23, based on
the size of the sample N and on the estimation itself. It
is now possible to estimate each term of the equation 18
and their confidence intervals. The size of the confidence
interval ∆P̂A∩B of P (HA ∩HB), can be computed with
equation 28, see [17].

∆P̂A∩B =
1

2

√
∆P̂A|B

2
+ ∆P̂B|A

2
(28)

The result of equation 28 can be easily generalized to any
finite number of spacecraft too.

Finally, since P̂B|A ·
(

1− P̂B|A

)
≤ 1

4 , the number of tra-
jectories necessary to estimate the criterion with a given
precision can bounded, thanks to equation 29.

∆P̂B|A ≤
3.09

2
√
N

(29)

Therefore, equation 30 delivers the number of evaluation
of the polynomial map needed.

∆P̂A∩B ≤
3.09

2
√

2N
<

1.1√
N

(30)



For instance, N = 105 =⇒ ∆P̂A∩B < 3.5.10−3.
Note that the result of equation 30 even works for the spe-
cific cases treated in equations 26 and 27, when N > 20,
which is compulsory to perform a decent Monte-Carlo
estimation.

4. RESULTS

The criterion of equation 18 is computed between
WT1190F with the physical parameters of Snoopy and
UDA34A3 (scenario 1), and also for WT1190F with the
physical parameters of LP-TLI and UDA34A3 (scenario
2). The aim is to compare the two scenarios exposed in
section 3. The criteria are computed for 6 months in 2013
to let time to the two scenarios to diverge from one an-
other. The chosen size of the hulls is α = 5000. The
result is plotted in figure 3, with the normalized distance
from UDA34A3 to Earth plotted in cyan dashed lines as
reference.

2013.2 2013.3 2013.4 2013.5 2013.6

Figure 3. Correlation criteria of the two scenarios

It appears in figure 3 that LP-TLI is more likely to be
UDA34A3 than Snoopy at several dates. But this conclu-
sion is not clear yet. Furthermore, it is possible that the
size of the hulls α changes the behaviour of the criteria.
It is the reason why each curve is integrated during this
window for α ∈ [0, 5000] in figure 4.

Figure 4 highlights the fact that for any hull size, the sce-
nario LP-TLI = WT1190F (scenario 2) is always more
likely, with a 31% advantage when α = 5000.

Regarding the performances, the whole study was per-
formed in 5 h, including the TDA propagations of
UDA34A3, and the two versions of WT1190F. These
three propagations were realized simultaneously, and
make up for the major part of the 5 h. The evaluation of
polynomial maps, the construction of the hulls, and the
inclusion checks can be neglected as they represent less
than 4% of the total computational time. The sample size
is of 105, which makes the average computation time of
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Figure 4. Integrated correlation criteria of the two sce-
narios

a single floating point trajectory 0.18 s, which is a con-
vincing performance for a propagation of 2 years with a
step of 12 h.

5. CONCLUSION AND FUTURE WORK

This article proposes a way to quantify the interactions of
two uncertainty sets propagated from different dates with
one another. The proposed criterion to do so is proba-
bilistic and translates the behaviour of the two sets in their
entirety, without making point-wise comparisons. It can
be easily evaluated with Monte-Carlo methods, providing
confidence intervals. And the computation time of such a
criterion can be neglected compared to the propagations
of the uncertainty sets. Moreover, this criterion offers a
tolerance parameter to tune the size of the hulls.

This criterion was then applied to the case study of
Snoopy and the trans-lunar injection stage of Lunar
Prospector (LP-TLI), to determine which one is more
likely to be the space debris WT1190F. Results show that
LP-TLI is more likely to have reentered in the Earth’s
atmosphere under the name WT1190F, with a 31% ad-
vantage. Therefore, Snoopy is still likely to be orbiting
the Sun. Even though it provides a good hint on where to
focus the research, such a result does not allow to make a
clear conclusion on the origin of the space debris. Never-
theless, it is to be noted that the Solar Radiation Pressure
(SRP) is the only responsible for the differences between
the two scenarios, which can explain such a small vari-
ability between the two.

Regarding the case of WT1190F, future work will be ded-
icated to refining the spherical modelling of the SRP, con-
sidering the impact of this force in this study. Dynami-
cal models could be introduced, taking into account the
variations in the power radiated by the Sun for instance.
Moreover, it could prove interesting to implement the
drag due to the Earth’s atmosphere. Indeed, this force



differs from one scenario to the other, and will probably
lead to an even greater difference.

Regarding the criterion itself, it could prove interesting to
give a more precise meaning to the size of the hull α from
a probabilistic point of view. Such a knowledge would
make the setting of this parameter easier. Furthermore,
building a bank of test cases of comets, asteroids, and
man-made spacecraft would allow to have more data on
the behaviour of this criterion on known study cases. The
efficiency of the criterion in various situations could then
be evaluated, before applying it to ongoing investigations.
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