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ABSTRACT

This paper exploits the formulation of a novel consensus
credibility particle filter in the framework of Outer Proba-
bility Measures (OPMs) for space object tracking. Com-
pared to the conventional probabilistic fusion method, the
proposed method offers two advantages. First, by replac-
ing the probability measures with OPMs, the credibility
particle filter offers the ability to properly represent the
epistemic uncertainty that comes from ignorance, such
that all uncertain components in the estimation problem
do not necessarily need to be modeled by probability
distributions. Second, in order to overcome the limita-
tion that the relative accuracy of local inputs is gener-
ally overlooked in the typical averaged consensus algo-
rithm, a weighted consensus method is developed, where
the fusion weight is adaptively determined based on the
information gain of local estimates. This information-
driven weighted consensus method can provide improved
robustness and fast reduction of ignorance in the fusion
process. The features of the method are validated via a
space object tracking scenario using four real data sets,
i.e., Planets Labs, LeoLabs, JSpOC, and ASTIRA.

Keywords: consensus fusion; outer probability measure.

1. INTRODUCTION

The Bayesian recursive estimation framework is the fun-
damental of many stochastic filtering methods for space
object tracking. Typical Bayesian filtering methods as-
sume various sources of uncertainty in a dynamical
system are aleatoric or random, which can be well-
represented by random variables and characterized by
probability distributions. However, there is another class
of uncertainty that comes from the lack of information
is always overlooked in an estimation problem, and it
is referred to as epistemic uncertainty. As oppose to
aleatory uncertainty, which comes from the inherent ran-
domness of the system, epistemic uncertainty is reducible
if one can gain and process information to learn more as-
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Figure 1: Schematic of the centralized and distributed
sensor network

pects of the system. Representing epistemic uncertainty
based on probability theory may lead to an inappropriate,
ill-adapted quantification, and even produce potentially
catastrophic operational implications in Space Situational
Awareness (SSA) [1]. An example of this is the probabil-
ity dilution phenomenon [2] in conjunction assessment,
where the large covariance of two approaching objects
reduces the risk of collision. To wit, probability dilution
implies that the more ignorant we are the less probable a
collision will occur. This false confidence is raised from
the fundamental deficiency in the probabilistic represen-
tation of uncertainty [2].

An appealing alternative to probability theory for uncer-
tainty representation is the Outer Probability Measure
(OPM) [3]. OPMs provide a faithful representation of
epistemic uncertainty and it is able to properly account
for the limited or imperfect information we possess of
the system. Bayesian filtering solutions on the basis of
OPMs [3, 4, 5], dubbed credibility filter, have been de-
rived for a recursive “uninformative prior” Bayesian es-
timation. The major advantage of the credibility filter
is that it is capable to handle the situation of ignorance
or partial knowledge about the dynamical system. Re-
cently, Sequential Monte Carlo (SMC) implementation
of the credibility filter, namely Credibility Particle Filter
(CPF), has been successfully applied to study the space
object tracking problem [6, 7, 8].

As more and more space surveillance and tracking sys-
tems coming online, an increased amount of data from
various astronomical sensors, e.g., radar, telescope, and
laser ranging stations, are available for SSA research.
One effective solution to achieve improved tracking per-
formance is to fuse multiple data sets regarding the same
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space object. Fusion techniques vary depending on the
architecture of the sensor network. The left subfigure
of Fig. 1 shows the topology of a centralized network.
Accordingly, a centralized fusion method provides the
best state estimation when all the sensors are accurately
aligned [9]. Yet, the centralized method is generally un-
scalable and inefficient to the large-scale sensor network.
Moreover, a fusion center is needed to collectively pro-
cess measurements provided by all sensors, while the fail-
ure of the fusion center can be a catastrophe to the entire
network. Alternatively, distributed fusion algorithms are
able to provide a robust state estimation without utiliz-
ing a fusion center. As shown in the right subfigure of
Fig. 1, each sensor node in a distributed sensor architec-
ture only has access to the information from its neighbor-
hood nodes, and none of them can directly acquire knowl-
edge of the overall sensor network topology. For the par-
ticle filter, the commonly used distributed fusion method
is the averaged consensus algorithm [10, 11, 12]. The
crux of averaged consensus is to iteratively exchange in-
formation among neighborhood sensors until all of them
reach an agreement on some consensus states. Sev-
eral categories of averaged consensus algorithms have
been developed, and two representatives are consensus
on weight and consensus on posterior.

The principle of weight consensus is to maintain the same
particle set at each sensor node and exchange the poste-
rior particle weights within neighboring networks [13].
A prerequisite is that the filters running at all sensors
are enforced to be highly synchronized. For instance,
each local filter needs to have the same random num-
ber generator and the same state transition model to en-
sure the prior particle set at each sensor node is exactly
the same [13]. However, synchronization across a space
surveillance and tracking network is a challenging task,
which prevents the generation of an identical particle set
for achieving consensus. In addition, such a consensus
method necessitates the transmission of the whole set of
particle weights, while the number of particles is gener-
ally considerable high in order to deal with the particle
depletion problem [6].

The method of consensus on posterior generally assumes
a parametric representation of the posterior particle set as
a Gaussian Probability Density Function (PDF) [10, 14]
or Gaussian mixture model [15, 16]. The parameteriza-
tion approach reduces the communication load compared
to diffusing the whole set of particles in the network. In
addition, consensus on posterior gives each sensor the
flexibility to implement localized filtering schemes in-
dependently, which is more applicable in SSA. In addi-
tion, the averaged consensus method gives rise to a limi-
tation that the relative accuracy of the local posteriors is
generally ignored in the fusion process. Intuitively, the
posterior consensus method aims to approach the arith-
metic mean of all local posteriors. Hence, the fusion
performance may be sensitive to biased local posterior
caused by outliers or missed detection. Weighted con-
sensus fusion method [17] is a feasible solution to this is-
sue, while the assignment of fusion weight for improved
performance still needs to be further investigated.

Motivated by these considerations, this paper presents
a comprehensive study on consensus fusion leveraging
the notion of OPMs. A weighted consensus CPF algo-
rithm is developed, and to our knowledge, the method is
the first distributed fusion algorithm that is fully derived
based on the credibility framework. Compared to typical
probabilistic consensus filters, the credibilistic consensus
method can provide advanced performance in the absence
of perfect dynamical and observation models. More-
over, instead of simply pursuing the arithmetic mean of
local posteriors, the weighted consensus method adap-
tively tunes the fusion weight according to the credibilis-
tic information gain of local posteriors. The information-
driven weighting strategy can achieve improved robust-
ness and fast reduction of ignorance in the fusion process.
The developed method is validated using a real space ob-
ject tracking case study, which considers the fusion of
real orbit determination results from four data sets, i.e.,
Planets Labs, LeoLabs, JSpOC, and ASTIRA.

The rest of the paper is organized as follows. The funda-
mental of OPMs and credibility Bayesian filter is briefly
introduced in Sec. 2. Sec. 3 summarizes the procedure
of CPF and the implementation of averaged consensus
credibility particle filter. In Sec. 4, the weighted consen-
sus credibility particle filter is elaborated. The test and
discussions are presented in Sec. 5. The last section con-
cludes the paper.

2. BACKGROUND

The standard particle filter is derived based on the prin-
ciple of sequential importance sampling, which is a fun-
damental Monte Carlo (MC) method for approximating
integrals. According to Ref. [4], CPF is a generaliza-
tion of the widely-used bootstrap particle filter in the
OPM framework. The interpretation of CPF relies on the
credibilistic implementation of Bayesian filtering meth-
ods. In this section, the fundamental of OPMs and the
description of the multi-sensor credibility Bayesian filter
are briefly reviewed.

2.1. OPMs and Possibility Functions

Outer probability measure is a special case of outer mea-
sure, which assumes the measure of the whole state space
X equals to 1 and gives 0 to the empty set. For a subset A
of the state space X, the OPM P̄ (A) ∈ [0, 1] indicates the
credibility of the event X ∈ A, where X is referred to as
an uncertain variable. Compared to the random variable
in probability measure, the concept of uncertain variable
is introduced to model both the aleatory and epistemic
uncertainty of an uncertain system.

In contrast to probability measure, which is an intrinsic
characterization of randomness, OPM defines the upper
bound of the potential probability distribution that char-
acterize the random behavior of the process. Hence, it



is also referred to as an extrinsic description of uncer-
tainty. In addition, OPM is distinct from probability mea-
sure as it releases the additivity assumption and instead
fulfills the subadditivity property, that is, P̄ (A ∪ B) ≤
P̄ (A) + P̄ (B) for any subsets A and B.

The specific form of OPMs needs to be defined for deriv-
ing further applications, and the simplest OPM is given
by [3]

P̄ (A) = max
x∈A

f(x), (1)

where the non-negative function f → [0, 1] is a possibil-
ity function that describes the uncertain variable x. Theo-
retically, the definition of possibility function is the same
as the possibility distribution in possibility theory, and
OPM can also be referred to as possibility measure [18].

The commonly used Gaussian possibility function is de-
fined by

N̄ (x;µ, S) = exp
(
− 1

2
(x− µ)TS−1(x− µ)

)
, (2)

for some µ ∈ Rd and some d × d positive definite ma-
trix S, where µ and S are defined as probabilistic mean
and variance, respectively. The probabilistic counterpart
of the mean µ represents a state that is statistically most
likely, while the possibilistic mean µ does not have the
same statistical property, and it instead implies a state that
all evidence has not discarded. The possibilistic variance
S describes the spread of the function.

A Gaussian possibility function can be easily turned into
a Gaussian PDF by multiplying a scaling parameter 1/√
|2πS|. However, the Gaussian PDF characterizes the

randomness of the process, while a Gaussian possibility
function presents a representation of the total amount of
information available to us, or more intuitively, it can be
interpreted as a Gaussian-shaped upper bound for the un-
certainty.

2.2. Multi-Sensor Credibility Bayesian Filter

Consider an SSA network consists of N sensors that
jointly observing a space object. Supposing the charac-
teristics of the orbital motion is not well-known, and the
state of the target of interest can be modeled by an uncer-
tainty variable x. The state evolution model at time tk is
described by a possibility function F , i.e.,

xk = F
(
xk−1, Qk

)
. (3)

In the context of SSA, F is a function of orbital dynam-
ics and the uncertain variable Qk is the process noise
that models the imperfection of the dynamic models em-
ployed in the propagator. Similarly, modeling the obser-
vation as an uncertain variable denoted by zk, then, the
observation model of sensor n is given by

znk = Hn
k

(
xk, R

n
k

)
, (4)

whereHn denotes the function of the observation process
of sensor n. The observation noise Rnk is an uncertain
variable representing the imperfect information embed-
ded in the observation process of sensor n, and it is as-
sumed independent across the sensor network in this pa-
per. The measurements of all sensors can be summarized
in a matrix zk = [z1k, · · · , zNk ], and the observation func-
tion of all sensors is defined by Hk = [H1

k , · · · , HN
k ].

In the case where all sensor measurements zk are avail-
able to a fusion center, a credibility Bayesian filter can
be implemented to process all measurements in a central-
ized manner. Following the derivation of Refs. [3, 4], a
credibility Bayesian filter yields the same predict-update
recursion if all possibility functions are Gaussian. Sup-
posing the information of the target state at epoch tk−1
is modeled by a posterior possibility function fk−1, the
prior possibility function at epoch tk is calculated using
the the following prediction equation

fk|k−1(x|z1:k−1) = sup
x′∈Xk−1

m(x|x′)fk−1(x′|z1:k−1),

(5)
where the conditional possibility function m describes
the transition of the object’s state from time k − 1 to
k. The prediction formula is the analog of the Chapman-
Kolmogorov equation used in the standard Bayesian es-
timation method, while the integral is replaced by supre-
mum.

The prior possibility function fk|k−1(x|z1:k−1) can then
be updated by the information contained in the new ob-
servations zk of all sensors based on Bayesian inference,
the resultant posterior possibility function at time tk is
given by

fk(x|z1:k) =
l(zk|x)fk|k−1(x|z1:k−1)

sup
x′∈Xk

l(zk|x′)fk|k−1(x′|z1:k−1)
. (6)

The update equation takes a similar form as the Bayes’
theorem, but the integral is replaced by supremum, and
the global likelihood function l(zk|x) is a possibility
function, which can be factorized into a product of local
likelihood functions

l(zk|xk) =

N∏
n=1

l(znk |xk). (7)

3. CONSENSUS CREDIBILITY PARTICLE FIL-
TER

In this section, the credibility particle filter is first sum-
marized in Sec. 3.1, following by the averaged consensus
implementation of the credibility particle filter presented
in Sec. 3.2.



3.1. A Summary of the Credibility Particle Filter

Standard particle filters suffer from the particle degener-
acy issue, meaning that a large portion of particles will
have negligible weight after a few iterations of recursive
estimation. The degeneracy issue is particularly severe in
a space object tracking scenario, especially when the sen-
sors are accurate and/or the measurements are too sparse.
Several approaches have been developed to deal with this
issue, e.g., data adaption method [13], unscented particle
filter [19], particle Gaussian mixture filter [20, 21].

In this paper, a parametric representation approach is ap-
plied to approximate the prior SMC set as a Gaussian
possibility function, such that an unscented Kalman fil-
ter update step can be performed instead of the stan-
dard importance weight update. Posterior particles can
be reallocated to high likely state space through sam-
pling from the posterior Gaussian possibility function.
The proposed CPF preserves the non-linear uncertainty
propagation property of the particle filter and enables an
unscented Kalman update to cope with the particle degen-
eracy problem. The detailed procedure of CPF is outlined
as the following steps.

• Initialization
Suppose the information of the initial orbit state is
modeled as an OPM that approximated by a set of
weighted particles {(wj0, x

j
0)}Mj=1, and the particle

set is normalized with maximum weight equals one,
i.e., max1≤j≤M wj0 = 1. The initial OPM is given
by

P̄0(x) = max
1≤j≤M

wj0δxj
0
(x), (8)

where δX(Y ) is the Kronecker delta function with
δX(Y ) = 1 if and only if x = Y and δX(Y ) = 0
otherwise.

• Prediction
Given the posterior OPM P̄k−1 represented by a
set of particles {(wjk−1, x

j
k−1)}Mj=1, the prior OPM

P̄k|k−1 at epoch tk is approximated by the particle
set {(wjk|k−1, x

j
k|k−1)}Mj=1 based on Eq. (5). The

state and weight of the jth particle is given by

xjk|k−1 ∼ pc(m(xjk|k−1|x
j
k−1)), (9)

wjk|k−1 =
wjk−1m(xjk|k−1|x

j
k−1)

max
1≤i≤M

wjk−1m(xjk|k−1|x
j
k−1)

. (10)

The state transition function m is a conditional pos-
sibility function N̄ (xjk|k−1; ok(xjk−1), Qk), where
ok represents the orbit propagator. Note that one
cannot sample from a possibility function directly,
and pc(m) represents a PDF approximation of the
state transition function m based on the maximum-
entropy principle [4]. The prediction step yields the
prior OPM expressed as follows

P̄k|k−1(x) = max
1≤j≤M

wjk|k−1δxj
k|k−1

(x). (11)

• Parameterization
Instead of taking the statistical mean and covari-
ance of the prior particles {(wjk|k−1, x

j
k|k−1)}Mj=1, a

Gaussian possibility function f̃k|k−1 is constructed
as the minimal bound of their weights, i.e.,

{(wjk|k−1, x
j
k|k−1)}Mj=1 → f̃k|k−1(x), (12)

where fk|k−1(x) = N̄ (x;µk|k−1, Sk|k−1), and
the parameters µk|k−1 and Sk|k−1 are estimated
through an optimization process detailed in our ear-
lier work [22]. This approximation preserves the in-
formation carried by the particle set.

• Update
Measurement update of a Gaussian possibility func-
tion follows the standard unscented Kalman filter
update step. We first generate a set of sigma points
{χik}2di=0 of the Gaussian possibility function as fol-
lows:

χik =
[
µik|k−1, µ

i
k|k−1 ±

(√
d+ λGk|k−1

)i]
,

(13)
where Gk|k−1 = chol(Sk|k−1) is the Cholesky fac-
torization of the prior covariance, d is the dimen-
sion of the state, λ is a scaling parameter. The
expected measurement ẑk, measurement variance
Sk,z , and cross-variance Sk,xz are calculated via the
unscented transform method as:

ẑk =

2d∑
i=0

W iγik, (14)

Sk,z =

2d∑
i=0

W i(γik − ẑk)(γik − ẑk)T +Rk, (15)

Sk,xz =

2d∑
i=0

W i(χi − µik|k−1)(γik − ẑk)T , (16)

where the sigma points {γik}2di=0 are generated using
the predicted sigma points and the observation func-
tion: γik = Hk(χik). The weights W i = δ0(i) λ

d+λ

if i = 0, and W i = λ
2(d+λ) otherwise.

The updated mean µk and variance Sk are given by

µk = µk|k−1 +Kk(zk − ẑk), (17)

Sk = Slk|k−1 +KkSk,z(Kk)T , (18)

where the Kalman gain isKk = Sk,xz(Sk,z)
−1. The

update step provides a posterior Gaussian possibility
function with the form f̃k(x) = N̄ (x;µk, Sk).

• SMC Recovery
To proceed with the next iteration of the particle
filter, a set of samples {(wjk, x

j
k)}Mj=1 are drawn

from the maximum entropy PDF [4] of the posterior



Gaussian possibility function. The state and weight
of a sample are given by

xjk ∼ Pc(f̃k(x)),

wjk =
f̃k(xjk)

max
1≤j′≤n

f̃k(xj
′

k )
.

(19)

The resultant particle set forms the posterior OPM,
i.e.,

P̄k(x) = max
1≤j≤M

wjkδxj
k
(x). (20)

The commonly used state estimation method in a typi-
cal particle filter is the Maximum A Posteriori (MAP)
method. In the credibilistic MAP estimate, the state of
the particle with the maximum posterior weight is taken
as the best state estimation, that is x̂k = xτk, where
τ = arg maxj w

j
k.

Remark 1. Theoretically, a Gaussian possibility function
is able to bound many probability distributions, mean-
ing that the parameterization method is applicable even
if the prior does not follow a Gaussian distribution. In
the case when the prior is multi-modality, a more reason-
able alternative is to approximate the prior as a Gaussian
max-mixture using a clustering method. However, this
approach introduces additional difficultly for the follow-
ing consensus fusion process. The fusion of two Gaus-
sian max-mixtures has not been conducted in literature
according to our knowledge. Developing an effective fu-
sion rule for Gaussian max-mixtures will be studied in
future research.

3.2. Averaged Consensus Credibility Particle Filter

The CPF presented in the above section is implemented in
a centralized fashion, which achieves optimal estimation
accuracy by collectively integrating the knowledge from
all sensor nodes. In this section, an averaged consensus
credibility particle filter, namely AC-CPF, is presented
for the use of more practical distributed SSA networks.
The parametric representation in CPF improves the effi-
ciency of the consensus fusion. Specifically, the commu-
nication cost of broadcasting two quantities, possibilistic
mean and variance, through the network is significantly
lower than transmitting a set of particles. In addition, the
parametric representation approach is more applicable in
engineering practice since it releases the requirement of
synchronization between local filters.

The communication topology of a distributed network
can be represented by a Graph G = {V, E}, where
V = {1, · · · , N} is a vertex set with each represents a
sensor node, and E ⊂ V × V represents the edge set,
which models the communication links between sensors.
An edge set E(m,n) denotes that sensor m and n can
communicate with each other. The edge set can be time-
variant, while it is assumed as a constant matrix in this
paper for brevity.

The update step of each localized CPF yields a local pos-
terior that is updated based on its own measurement. The
task of consensus fusion is to determine a global poste-
rior to every sensor. The consensus states are the pos-
terior mean µk and variance Sk. Based on the consensus
rule, sensor n updates its consensus states by iterating the
averaged consensus equations, i.e.,

µnk (i) = βn,nµ
n
k (i− 1) +

∑
m∈Nn

βn,mµ
m
k (i), (21)

Snk (i) = βn,nS
n
k (i− 1) +

∑
m∈Nn

βn,mS
m
k (i), (22)

where i indicates the index of iteration, Nn denotes the
neighborhood nodes of sensor n with n excluded. A pop-
ular choice of the fusion weight βn,m is the Metropolis
weight [23]:

βn,m =


1

1+max{|Nn|,|Nm|} if (n,m) ∈ E
1−

∑
(n,m)∈ε βn,m if n = m

0 otherwise,
(23)

where |Nn| represents the degree or cardinality of sen-
sor n. If the communication graph remains connected,
and the fusion weight matrix B = [βn,m]N×N is prim-
itive and doubly stochastic, then the consensus method
achieves the sample mean of the consensus states asymp-
totically as the number of iteration tends to infinity [23],
that is

lim
i→∞

µnk (i) =
1

N

N∑
n=1

µnk (0), (24)

lim
i→∞

Snk (i) =
1

N

N∑
n=1

Snk (0). (25)

Also, it has been proved that a global consensus can be
achieved in a finite number of iterations [13, 16].

The procedure of the AC-CPF is shown as the flowchart
in Fig. 2. The overall process of AC-CPF is similar to
the centralized CPF, while only the consensus fusion step
requires communication among neighboring nodes and
all remaining steps can run locally.

The output of the averaged consensus method is a global
posterior Gaussian possibility function across the net-
work. Determining a global posterior particle set is pos-
sible, whereas this requires either another circle of dis-
tributed communication or a common random seed gen-
erator to achieve synchronization on the particles. In this
paper, the posterior mean of the global posterior is taken
as the state estimation. This enables the SMC recovery
step to run locally without extra synchronization opera-
tions.

4. WEIGHTED CONSENSUS CREDIBILITY
PARTICLE FILTER

The major drawback of the AC-CPF method is that the
fusion process does not take into account the relative ac-



Figure 2: Flowchart of the consensus credibility particle filter

curacy of local information. Thus, the algorithm is sen-
sitive to biased local estimations and may yield poor per-
formance when some low-precision sensors are involved
in the network. To address this issue, a Weighted Con-
sensus Credibility Particle Filter (WC-CPF) is developed,
in which the fusion weight is adaptively determined ac-
cording to the information content carried by local mea-
surements. In general, more informative measurements
indicating more accurate state estimation [24], and the
information content carried by measurements is propor-
tional to the information gain of replacing the prior by
the posterior. Hence, it is expected that weighting each
local posterior based on its information gain can achieve
an improved accuracy than simply taking the averaged
consensus. The principle of information-driven fusion
strategy has been investigated in Refs. [25, 26] to address
the multi-sensor multi-target tracking problem. The WC-
CPF method presented in this section is derived within
the framework of OPMs, which is fundamentally differ-
ent from the state of the art. To implement WC-CPF, two
research questions need to be resolved. The first is to de-
termine the uncertainty of a possibility function, and the
second is to quantify the information gain between the
prior and local posterior. Feasible solutions to these two
questions are presented in the following sections.

4.1. Credibility Information Gain

The overwhelming approach for measuring uncertainty
in probability theory is Shannon entropy or entropy for
brevity. The entropy of a random variable measures
the expected amount of information on its possible out-
comes. For a probability distribution, its uncertainty is
considered as equivalent to the information content in
general. The concept of entropy is designed for proba-
bility measure, and adapting it to OPMs is less applica-
ble. A possibilistic counterpart of the Shannon entropy,
namely U-uncertainty is derived in Ref. [27]. The infor-
mation closeness of possibility functions based on the U-
uncertainty is presented in Ref. [28]. The U-uncertainty
and information gain function for possibility functions
are briefly discussed in this section.

Uncertainty of Possibility Functions

Given a finite set X = {x1, · · · , xm} and a possibility
function f , the possibility value of the ith point is wi =
f(xi), i ∈ Nm, so we can define a discrete possibility
function as follows

f̃ = (w1, · · · , wn) ∈ F , (26)

where F denotes the set of possibility functions with at
least one non-zero element. The information of each dis-
crete possibility function can be summarized in a level set
Lf , that is

Lf = {` | (∃i ∈ Nm)(wi = `) or ` = 0}. (27)

Each element ` in Lf represents a unique possibility
value in f̃ . Further, the level set is defined in ascending
order: Lf = {`1, · · · , `r}, where `1 = 0, for any i < j,
`i < `j , and r = |Lf | in general. The maximum level of
the set is denoted as `f = maxi wi.

Given a discrete possibility function and its level
set, its credibility uncertainty is defined by the U-
uncertainty [27]

U(f̃) =
1

`f

r−1∑
i=1

(`i+1 − `i) log2 |c(f, `i+1)|, (28)

where c(f, `) is a `-cut function, and

c(f, `) = {i ∈ Nm|wi ≥ `}. (29)

This `-cut function consists of all the possibility values
greater than or equal to a level `, and |c(f, `)| denotes the
cardinality of this set.

Eq. (28) can also be rewritten as a form of integration as
follows

U(f̃) =

∫ 1

0

log2(c(f, `))d`. (30)

However, it is intractable to numerically solving Eq. (30)
for a continuous possibility function. To adapt the
method to measure the uncertainty of continuous pos-
sibility functions, a sampling procedure is first required
to discrete the possibility function as a finite set. Given
a Gaussian possibility function f0 = N (x;µ0, S0), the



discretization is achieved by generating a set of m sam-
ples {xi}mi=1 from a PDF Pc(f0) that generated as the
maximum entropy approximation [4] of f0. The possi-
bility values of the samples form the associated discrete
possibility function f̃0 = {wi = f0(xi)}mi=1 ∪ 0 with
0 included. A discrete possibility function needs to be
normalized, i.e., maxi wi = 1, before the computation
of the U-uncertainty. The level set Lf0 is generated and
sorted in ascending order. The U-uncertainty can then be
calculated using Eq. (28).

Information Gain of Possibility Functions

Following the definition in Ref. [28], given two possibil-
ity functions f1 and f2, if their discrete possibility func-
tions are comparable and f̃1(x) ≤ f̃2(x) for all x ∈ X ,
the information gain of replacing f̃2 by f̃1 is the Eu-
clidean distance between their U-uncertainties, that is

g(f̃1, f̃2) = U(f̃2)− U(f̃1). (31)

As f̃1(x) ≤ f̃2(x), it is straightforward to conclude that
g(f̃1, f̃2) is non-negative, and g(f̃1, f̃2) = 0 if and only
if f̃1 = f̃2.

Eq. (31) is valid if two possibility functions are com-
parable with each another, e.g., f̃1 ≤ f̃2 or f̃1 ≥ f̃2,
∀x ∈ X . Theoretically, two Gaussian possibility func-
tions are comparable only if they have the same mean
value, which prevents the application of Eq. (31) in prac-
tice. In the Bayesian estimation framework, the prior
Gaussian possibility function is generally not compara-
ble with the posterior PDF since they have different mean
values. Therefore, their information gain cannot be cal-
culated using Eq. (31).

To calculate the information gain of two possibility dis-
tributions without comparability, it is useful to define the
joint distribution f̃1 ∨ f̃2 as follows:

(f̃1 ∨ f̃2)(x) = f̃1(x) ∨ f̃2(x),∀x ∈ X, (32)

where f̃1(x) ∨ f̃2(x) = max(f̃1(x), f̃2(x)).

Based on the above definition, a new distance metric
G(f̃1, f̃2) is introduced as follows [28]

G(f̃1, f̃2) = g(f̃1, f̃1 ∨ f2) + g(f̃2, f̃1 ∨ f̃2). (33)

Let f̃3 = f̃1 ∨ f̃2, the distance metric can be rewritten as

G(f̃1, f̃2) = g(f̃1, f̃3) + g(f̃2, f̃3)

= 2U(f̃3)− U(f̃1)− U(f̃2).
(34)

Unlike Eq. (31), which measures the information gain of
replacing a possibility distribution by another, Eq. (33)
reflects the variation on the information content, but does
not indicates whether the information is gained or lost. A
proper interpretation of Eq. (33) is that it assesses the in-
formation variation or information closeness of the given

possibility distributions. In general, the information vari-
ation between the prior and posterior possibility functions
can also be seen as the information gain of the posterior
obtained through measurements. Therefore, it is reason-
able to employ Eq. (33) for evaluating the information
gain in a Bayesian estimation framework.

Finally, considering a Bayesian estimation process, and
let the information gain of the posterior fk with respect
to the prior fk|k−1 be I(fk, fk|k−1), then we have

I(fk, fk|k−1) =

{
g(f̃k, f̃k|k−1) if f̃k ≤ f̃k|k−1
G(f̃k, f̃k|k−1) otherwise.

(35)

The calculation of the U-uncertainty and information
gain of Gaussian possibility functions is illustrated using
the following example.
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Figure 3: Examples of U-uncertainty and information
gain

The top subfigure in Fig. 3 shows the U-certainty of
Gaussian possibility functions with zero mean, but dif-
ferent variance values ranging from 0.1 to 10. In order to
perform a fair comparison, the uncertainty is calculated
using 1000 uniformly distributed samples. Clearly, the
larger variance value yields a higher uncertainty level.

To illustrate the information gain function, the informa-
tion closeness between a Gaussian possibility function
N (x; 0, 0.1) and a set of Gaussian possibility functions
N (x; 0, S) with variance values ranging from 0.1 to 10 is
calculated. The result shown in the bottom subfigure of
Fig. 3 is as expected, where the information divergence
between the two functions is proportional to the variance
value.

4.2. Weighted Consensus Credibility Particle Filter

This section introduces the implementation of WC-CPF.
The overall procedure is similar to AC-CPF as the
flowchart shown in Fig. 2, and the major difference is the
way to design the fusion weight.



The fusion weight βn,m in Eq. (23) is computed based
on the credibilistic information gain at each sensor node.
Specifically, the prior fnk|k−1 and posterior fnk of sensor
node n are discretized as possibility distributions follow-
ing the description given in Sec. 4.1. The information
gain I(fnk|k−1, f

n
k ) can then be calculated using Eq. (35).

Let I(fnk|k−1, f
n
k ) of sensor n at epoch k be Ink for sim-

plicity, the WC-CPF method is achieved by replacing the
Metropolis weight by the following information-driven
weights

βn,m =


Imk

Ink +
∑

(n,m)∈ε I
m
k

if (n,m) ∈ E
1−

∑
(n,m)∈ε βn,m if n = m

0 otherwise.

(36)

It has been proved that if the fusion weight matrix B =
[βn,m]N×N is primitive and row stochastic, then the con-
sensus states can asymptotically converge to the weighted
arithmetic mean of the given inputs [17], i.e.,

lim
i→∞

µnk (i) =

N∑
m=1

βn,mµ
m
k (0), (37)

lim
i→∞

Snk (i) =

N∑
m=1

βn,mS
m
k (0). (38)

Compared to the averaged consensus fusion approach,
WC-CPF requires further computational effort to calcu-
late the information gain at each local node, but it does
not yield additional communicational load to the consen-
sus process. The information-driven weighting method is
able to automatically assign more weights to local poste-
riors that are updated by more informative measurements.
The fusion weight of a local posterior without measure-
ment update is exactly equaled to zero since no informa-
tion is gained. In such a scenario, the information gain
is assumed as a small value, e.g., In = 0.01 in order to
avoid totally abandon this local information from the fu-
sion process.

5. TEST AND DISCUSSION

To illustrate the proposed method, a case study of consen-
sus fusion is presented in this section. The scenario con-
siders the fusion of some real orbit determination results
provided by four space object catalog using the consen-
sus fusion method. These orbital states can be interpreted
as human “opinions” since the absence of sufficient sta-
tistical information to characterize their accuracy.

5.1. Test Design

The consensus fusion of orbit determination results from
multiple data providers, i.e., Planet Labs, LeoLabs,
JSpOC, and ASTRIA is studied. Each data provider

maintains a space object catalog to provide a timely up-
dated 6-dimensional orbit state based on their own ob-
servations. Specifically, the orbital estimations provided
by Planet Labs, LeoLabs, and JSpOC are generated us-
ing GPS data, radar measurements, and TLE data, re-
spectively. Orbital estimation from ASTRIA is generated
by jointly processing LeoLabs’ radar measurements us-
ing the unscented Kalman filter.

Figure 4: Orbit determination results of 0E2F shown in
ASTRIAGraph

The tested target is a Flock 2P satellite: 0E2F (the cor-
responding NORAD ID assigned by the USSTRATCOM
is 41612) operated by Planet Labs. Orbit determination
results of 0E2F by the 4 data providers can be visual-
ized in ASTRIAGraph1. The top subfigure of Fig. 4 is a
screenshot of the ASTRIAGraph, where the colorful dots
surrounding the Earth shows the crowded environment of
outer space, and the orange curve actually represents the
4 osculating orbits of 0E2F, while they are too close to
be distinguished. The bottom subfigure is an enlarged
plot, where the four orange curves with labels from 1 to
4 represent the orbits determined by JSpOC, Planet Labs,
LeoLabs, and ASTRIA, respectively, and the dot in each
curve is the position of 0E2F at some epoch. Clearly,
the difference between these 4 orbits is striking. By us-
ing these results for decision-making, e.g., sensor task-
ing, collision avoidance maneuver, may lead to conflict-
ing results. This confusion, however, can be eliminated
by using the consensus algorithm to achieve an agreement
among different orbits.

Note that each data provider can only update one to two

1ASTRIAGraph is an interactive visualization application
for space traffic monitoring, space safety, and sustainability.
http://astria.tacc.utexas.edu/ASTRIAGraph/



orbital estimations of a target every day. Determining ac-
curate tracking and fusion results based on such sparse
data points is extremely challenging. Therefore, an in-
terpolation method is utilized to generate a set of virtual
orbital estimates by propagating a real orbit forward to
some epoch that synchronized across the network until
the next real orbit is available.

The fusion process starts from May 2, 2020 00:00:00
(UTC) to May 3, 2020 20:30:00 (UTC). Orbital states
are assumed to be generated every 10 min, 30 min, and
60 min. The ground truth is obtained by using a batch
least-squares method to process both GPS and radar data.
A high-fidelity orbit propagator is considered, which em-
ploys perturbation models of 20× 20 Earth gravitational
field, MSIS00 atmospheric drag, solar radiation pressure
assuming the objects are spherical with an area-to-mass
ratio of 1.5×10−3m2/kg−1, and lunisolar third-body per-
turbations. The process noise Qk at each local node is a
diagonal variance matrix with the variance defined as 10
m and 0.1 m/s for position and velocity respectively.

The filtering orbit states are modeled by the inertial posi-
tion and velocity, and the initial filtering state of the tar-
get is generated by adding a zero-mean Gaussian noise
to the truth. The standard deviation of the noise is ap-
proximately 10 km and 1 m/s for position and velocity,
respectively. The initial variance of the target is the same
as the standard deviation value. The uncertainty of dif-
ferent data sets is assessed using a training process prior
to the filtering period. The approach is to model the dis-
crepancy of two conserved quantities that determines the
trajectory of a space object, namely the specific angular
momentum and specific orbital energy. The detailed cred-
ibilistic uncertainty quantification approach can be found
in Refs. [6, 7].

Three fusion methods, WC-CPF, AC-CPF, and central-
ized CPF, are compared using the same measurements
and filtering parameters. The topology of the centralized
and distributed SSA network is shown in Fig. 5, where
each data provider is modeled as a local sensor node. In
the centralized network, there is a CPF running at the fu-
sion center to process all the local posteriors from the four
sensor nodes. From the perspective of sensor network
architecture, all sensors are assumed to have a common
FOV and the target is able to appear at the FOV multiple
times within the filtering period.

Figure 5: Schematic of the centralized and distributed
sensor network (Plabs stands for Planet Labs)

5.2. Results

The accuracy of the WC-CPF, AC-CPF, and centralized
CPF methods are validated by taking the averaged posi-
tion error over 50 MC runs. The test results are drawn
in Fig. 6. As we can see from the first three subfig-
ures, although the three fusion methods can ultimately
achieve a similar accuracy, their performance during the
tracking time period is distinct. The centralized fusion
achieves the most accurate and stable orbital state esti-
mation among the three methods, and it is able to yield
the same level of accuracy regardless of differences in
the density of measurements. The results of WC-CPF in
the three figures demonstrate that it can provide a sim-
ilar performance to the centralized approach, especially
when the measurements are not too sparse. The AC-
CPF method, however, yields the worst accuracy in all
the three subfigures. The difference between WC-CPF
and AC-CPF is more evident as the increase of the time
interval between measurements, see Figs. 6b and 6c.

The error of both AC-CPF and WC-CPF increases at the
first half of the tracking. This can be illustrated by the
error of the four data sources. Fig. 7 shows the position
error in the case of 30 min. The measurement errors of
the other two cases are omitted as they have a similar ten-
dency. JSpOC’s TLE data yields a large position error,
and the magnitude is consistent with the solution given
in Refs. [6], where the uncertainty quantification of the
specific orbital energy suggest dozens of kilometers off-
set in the semi-major axis component. Furthermore, the
measurements of Planet Labs show a rapid increase at
the first half of the time window, while the measurement
error at the second half is relatively small. Given these
measurement errors, the tracking results validated that
the WC-CPF method is able to adaptively reduce the fu-
sion weight of local estimations with large measurement
noise, and therefore outperforms the AC-CPF in terms of
robustness for sensors with different noise profiles.

6. CONCLUSION

In this paper, a novel consensus fusion method, called Av-
eraged Consensus Credibility Particle Filter (AC-CPF),
is developed leveraging the notion of Outer Probability
Measures (OPMs). This method provides the capability
to handle the situation of ignorance or imperfect infor-
mation in the fusion problem. On the basis of AC-CPF,
a Weighted Consensus CPF (WC-CPF) method is further
developed, where the fusion weight is automatically ad-
justed based on the credibilistic information gain of lo-
cal posteriors. The information-driven weighting method
is able to lead to a fast reduction of ignorance. A real-
world test scenario using orbit determination results from
4 data sets, i.e., Planet Labs, LeoLabs, JSpOC, and AS-
TRIA is presented. Results demonstrated that the AC-
CPF method performs well when a sufficient number of
measurements are available for analysis, and the WC-
CPF method is more robust to sparse measurement sce-
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Figure 6: Position error using orbit determination results

narios and it can yield similar performance compared to
the centralized fusion results.
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