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ABSTRACT

Accurate identification of Resident Space Objects
(RSOs) through ground-based photometric light curve
measurements can aid in characterizing collision-prone
objects to orbital assets, planning for commercial use of
space, and possibly understand the intent of foreign ob-
jects. Given an unresolved object’s light curve, in low
earth orbit (LEO), we can characterize it by shape and
spin rate using a hybrid approach of a recurrent neural
network and a hidden Markov model. This integrated
model has been developed to identify tumbling and sta-
bilized objects by testing for aliasing, periodicity, and
feature extraction. The performance of this approach for
RSO classification is demonstrated via simulations. The
model is designed to train and validate using synthetic
light curve measurements of objects such as an ellipsoidal
asteroid, rocket upper-stage, CubeSat, torus, probe, and
box-wing satellite, among others. The fidelity of these
simulations ensures it is both realistic and accurate to
within 10% error, and the computation speed is faster
with flexibility to deal with a larger amount of data.

Keywords: RSO; classification; neural networks; light
curve.

1. INTRODUCTION

In recent years, the number of active and defunct Res-
ident Space Objects (RSOs) have been increasing. Ad-
ditional artificial space objects orbiting Earth is becom-
ing an issue for space situational awareness (SSA). Ac-
curate tracking and identification of RSOs will eliminate
potential threats and enable a better understanding of the
object’s intent. Typically, optical sensors are utilized to
collect astrometric and photometric measurements of ex-
isting space objects. The light detected in these sensors
is significant to determining characteristics of the object.
The brightness (flux of photons) measurements reflected
by an RSO and seen by the observer as a function of time
is defined as a photometric light curve.
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Optical measurements for space object tracking are sen-
sitive to shape, attitude, angular velocity, and surface pa-
rameters [11]. Current state-of-the-art in RSO character-
ization relies heavily on nonlinear state estimation theory
[15] , multiple models [22], and full light curve inversion
(LCI) which is computationally expensive [11]. Addi-
tionally, physical models are used in LCI [17, 18] and
to estimate the model parameters, a priori information is
needed. A data-driven approach for improved accuracy
with a large volume of objects employs the use of deep
neural networks.

As the number of artificial space objects increase, the
availability of astrometric and photometric data obtained
commercially along with high cadence of observations
makes it difficult to sustain continuous and real time anal-
ysis [6]. The state of a satellite cannot be assumed con-
stant and therefore requires machine classification if near
real time assessment of a larger number of objects is de-
sired. Machine learning techniques have been used to an-
alyze variable stars [19], however there isn’t a big data
problem with artificial space objects unlike stellar ob-
jects. As deep space becomes increasingly congested
and anomalous events are common, it is essential that the
SSA community has the tools to reduce information la-
tency [6]. The requirement of timeliness and the consid-
eration of a non-stationary state are unique to man-made
objects. As such, we are considering both active, stabi-
lized objects as well as inactive, tumbling objects.

Time series classification is a supervised machine learn-
ing problem aimed for labeling multivariate series of vari-
able length [3]. Time series data often have a very high
dimensionality and thus, a broad number of features can
be extracted making classification arduous [21, 9]. In-
stead of applying classification methods on raw time se-
ries data, as it’s not very practical, we can employ a
higher-level representation [8]. One such type of higher-
level representation is window-based representation. In
window-based representation, the whole time series is di-
vided into a sequence of equal sized windows (segments).
One or more features are extracted from each frame, and
a vector of these features becomes the data-reduced rep-
resentation. Subsequently, the created vectors are used to
train a classifier. A few commonly used classifiers are
listed as follows: Rule Induction, Support Vector Ma-
chine (SVM), Neural Network (NN). When using any
of the above-mentioned classifiers, the temporal relations
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present in time series data are ignored, leading to inaccu-
rate results. To solve this issue, multiple classifiers can be
utilized to improve the accuracy of time series classifiers.
The viability of using multiple classifiers are evidenced in
[24, 31] and have been found better performing than those
of single classifier systems. Adding a Hidden Markov
Model (HMM) to a Recurrent Neural Network (RNN) is
proposed for this study. This hybrid approach improves
the accuracy of time series classification by executing a
secondary screening accounting for the temporality in the
data. Redundancy in the classifiers from multiple layers
of training and prediction can be eliminated.

This paper is organized as follows. First, the acquisition
technique for light curves is briefly explained, followed
by the mathematical background for the components of
the hybrid model. Details of the classification approach
are included with the aggregation of Long-Short Term
Memory (LSTM) RNN to the HMM. Identifiers (labels)
by which classification of light curves is performed as
well as the tests to ensure accuracy are then explained.
Simulation results for the proposed method applied to a
set of synthetic light curves of artificial objects in LEO
are shown, and future improvements will conclude this
work.

2. LIGHT CURVE ACQUISITION

Consider a reference frame attached to the object, with
respect to whom the illuminating source (Sun) and the
observer viewing on Earth are described. The direction
unit vectors to the source and observer from the object
are ω and ω0 respectively. The unit normal vector of a
facet, as depicted in Fig. 1 (modified image from [27]),
is defined as η (specifically η(θ, ψ) where θ is measured
from the pole - see Fig. 1b).

η1 = sin θ cosψ (1)
η2 = sin θ sinψ (2)
η3 = cos θ (3)

The visible, illuminated section of the surface is given
by A. The integrated total brightness of the target ob-
ject (made up of a finite number of facets) as seen by the
observer at a given time is

L(ω0,ω) =

∫
A

S(µ, µ0, α)G(θ, ψ) sin θdθdψ (4)

and the scattering function S(µ, µ0, α) is dependent on
the viewing geometry where

µ = ω · η (5)
µ0 = ω0 · η (6)

cosα = ω0 · ω (7)

The scattering function or bidirectional reflectance dis-
tribution function (BRDF) uses the area of the facet and

(a) Sun-Object-Observer geometry

(b) Object’s normal direction vector and astrometric angles

Figure 1. Simplified geometry involved in light curve ac-
quisition

α is the solar phase angle. The BRDF model describes
light reflection off a surface which comprises the shape’s
reflectance properties. There are different models to de-
scribe the scattering function (i.e. Hapke model) and a
simplified model [23] is depicted as

S(µ, µ0, α) = f(α)

(
µµ0

µ+ µ0
+ Cµµ0

)
(8)

where f(α) is the phase function and C is a relative
weighting factor. The illuminated surface, A, encom-
passes points on the surface where µ, µ0 ≥ 0. The
surface curvature function G(θ, ψ) ≥ 0 is denoted by

G(θ, ψ) =
J(θ, ψ)

sin θ
where J = |J| is the norm of the

Jacobian vector J(θ, ψ) =
∂x

∂θ
× ∂x

∂ψ
and x(θ, ψ) gives

the surface as a function of the surface normal direction.

To numerically compute the integrated total brightness
(equation 4), a more analytical approach of using the
Lebedev quadrature is formulated and presented in [1]
and is chosen for the purpose of generating synthetic light
curves of artificial objects to populate the training and test
datasets.



3. BACKGROUND ON MODEL COMPONENTS

The following section presents the details of the hybrid
model’s components, which include the recurrent neural
network (RNN) and the hidden Markov model (HMM).

3.1. Recurrent Neural Network (RNN)

Of the three important types of neural networks, RNN has
a recurrent connection on the hidden state, which allows
for feedback. The outputs of previous time steps will be
considered as inputs in the current time step, and the re-
sults of the current time step will impact the calculation
of the next time step. This looping constraint ensures that
sequential information is captured in the input data.

Given x1,x2, . . . ,xn are the input vectors,
h1,h2, . . . ,hn are the hidden cell vectors and
y1,y2, . . . ,yn are the output vectors, where n represents
the total number of steps, the equations computing the
resulting output vectors [28] are defined below:

ht = θφ(ht−1) + θxxt
yt = θyφ(ht)

where θ, θx, θy are weights, φ is the activation function
(tanh in most RNNs). The self-connection weight θ is
simply initialized as 1. The subsequent back-propagation
will adjust all the weights in every iteration.

RNNs share the parameters across different time steps.
This results in fewer parameters to train and decreases
the computational cost. Deep RNNs suffer from the van-
ishing and exploding gradient problem.

A comparison of the characteristics of the artificial, recur-
rent and convolutional neural networks (ANN, RNN and
CNN) are summarized in Table 1. Although all three have
a common disadvantage of vanishing and exploding gra-
dient, RNN is the optimal choice for time-series data with
the recurrent connections and less computational burden
from parameter sharing.

Table 1. Attributes of ANN vs. CNN vs. RNN

Attribute ANN RNN CNN
Data compatibility - Yes Yes

Recurrent connections - Yes -
Parameter sharing - Yes Yes

Spatial relationship - - Yes
Vanishing & Exploding gradient Yes Yes Yes

Of the numerous types of RNNs, Long Short-term Mem-
ory (LSTM) has been chosen for this application and the
logistics and equations are detailed in the following sec-
tion.

3.1.1. Long Short-term Memory (LSTM)

Long Short-term Memory RNN is specifically designed
to avoid the long-term dependency problem [12] and
there are many slight variations [16]. We will use the
definition from [13] in this context. As seen in Fig. 2,
a cell of LSTM RNN has three gates, which control the
involvement of the past context information: input gate,
output gate, and forget gate. The latter is used to scale the
influence of the previous cell on the current cell state.

Figure 2. LSTM cell structure [28]

The equations for computing the gate outputs [28] are de-
fined below:

it = σ (θxixt + θhiht−1 + bi)
ft = σ (θxfxt + θhfht−1 + bf)
ot = σ (θxoxt + θhoht−1 + b0)
gt = tanh (θxgxt + θhght−1 + bg)

ct = ft · ct−1 + it · gt
ht = ot · tanh (ct)

(9)

where ht−1 is the output of the last time step, xt is the
cell input at the current step, and ht is the cell output.
The t in the subscripts represents the current step number.
The i,f ,o, and g respectively denote the output vectors
of input gate, forget gate, output gate and the cell itself. θ
are the weights. For example, θxi is the weight between
the input vector xt and the input gate vector it, whereas
θhi is the weight between the output vector ht−1 and the
gate vector it. b represents biases, ct and ct−1 are the
cell outputs in the current step and the previous step, re-
spectively, and σ represents a sigmoid function (output
0 to 1). LSTM usually limits the activation function to
tanh (output -1 to 1) for gt and ht, and sigmoid for it,
ft, and ot. Other activation functions, like rectified linear
unit (ReLU), make LSTM diverge [5], hence, the sigmoid
and tanh are suitable choices.

Generally, the RNN cannot retrieve data deep into its
memory and LSTM RNN helps mitigate that problem as
shown in [14]. LSTM RNN has become a popular choice
for modeling inherently dynamic processes [28] and is
expected to result in a high accuracy.



Figure 3. General Framework with two phases: Training and Classification

3.2. Hidden Markov Model (HMM)

A Markov chain satisfies the Markov property (Eq.
10) where the next state depends only on the current
state and not on the sequence of states that preceded it
[25]. The model consists of a finite number of states
{s1, s2, . . . , sn} and some known probabilities P =
{pij} where pij is the probability of moving from state
si to the state sj [8].

P (st+1 | s0, s1, . . . , st) = P (st+1 | st) (10)

Hidden Markov model (HMM) is a Markov chain in
which the observations, dependent on the state, are visi-
ble instead of states. Each state has a probability distribu-
tion over the possible output observations. The sequence
of observations is linked to its corresponding sequence of
states. In a HMM, the observer does not know which state
the system is in, but only a probabilistic insight on where
it should be. It is defined by equation 11 as formulated in
[8].

µ = (S,O,A,B,π) (11)

where S = {s1, s2, . . . , sn} is the set of hidden states,
O = {o1, o2, . . . , om} is the set of observations,A is the
transition matrix, B is the emission matrix, and π is the
initial state matrix, where πi is the probability that state
si is a start state. The matrices have been defined in the
following equations.

A = {aij} , aij = P (sj | si) for i, j = 1, . . . , n
(12)

B = {bij} , bij = P (oj | si) for i = 1, . . . , n,

j = 1, . . . ,m
(13)

πi =
1∑
Si

i = 1, . . . , n (14)

All states have equal probabilities to be the initial state as
depicted in the equation for πi.

Hidden Markov Models are used to model temporal and
sequence data. In order to improve the accuracy of the
time series classifier, the HMM is trained to evaluate,
confirm and correct the classification results performed
by the LSTM (initial classifier). The general framework

of the approach is sketched in Fig. 3 (from [8]) which
shows the two phases of this approach. During training
phase, the confusion matrix and the classified data out-
putted by the first classifier will be used. In the classifi-
cation phase, the trained HMM will be used to reclassify
the sequence of classified samples. The correct samples
will be confirmed and the misclassified samples will be
corrected. Classifying any time series data will require
two stages.

A confusion matrix C = cij for i, j = 1, 2, . . . , n is
denoted such that cij represents the number of samples
that belong to state si but they have been misclassified
as sj . Confusion matrix is also used in computing the
emission matrix,B.

Unlike traditional classifiers (i.e. support vector machine
(SVM)), HMM classifies the data on the basis of their
temporal relations [8]. To classify a given sequence of
observations, we need to find the most likely sequence of
states (path) that produces these observations.

4. CLASSIFICATION SCHEME

There are different traits by which classification can
be performed. Using the taxonomy and classification
scheme for artificial space objects [10] as a reference,
we have selected attitude and shape as classifiers. We
will primarily use light curves of artificial space objects
in LEO as the training and testing datasets. The first clas-
sification determination is made from the control states.
The control profiles include (three-axis) spin stabilized,
and tumbling/irregular. The control states are not limited
to ones used in this work and other states are possible (i.e.
regularly spinning/rotating), but for this study, these are
sufficient. The next classification is determined using the
shape model, either separating it as regular or irregular.
Under regular, for example, we have objects in the bank
such as ellipsoid, cylinder, cone, cubesat, torus, probe,
box-wing satellite, probe, disk and rocket body. A se-
lect few of these models have been included in Fig. 4. If
the object cannot be identified as one from the aforemen-
tioned list, it will be categorized as an irregular object,
which includes fragments.



Figure 4. Models of artificial space objects. From left
to right, (1st row): 1U Cubesat, torus, disk, Pioneer 9
probe. (2nd row): rocket nose cone at different viewing
geometries, NASA RASSOR drum, box-wing satellite.

Light curves of tumbling objects have a wide variety of
features in contrast with stable objects. Stable satellites
tend to have a single main peak around low solar phase
angles caused by a solar panel glint [6]. Additionally, ob-
served brightness values tend to have relatively low vari-
ance about their trend. On the other hand, tumbling ob-
ject light curves tend to take one of two forms: sinusoidal,
or aliased. A sinusoidal signature will have several peaks
and troughs. An aliased light curve is caused by the sen-
sor sampling at a rate below the Nyquist frequency unable
to properly capture the periodic behavior. These light
curves do not have a distinguishable trend and look like
scattered data points. To enhance our ability to identify
these forms, we utilize tests for periodicity, aliasing and
feature selection. A schematic of the decision flowchart
is depicted in Fig. 5 encompassing all the tests, given an
object’s light curve as the input. These additional tests
have been discussed in further detail below.

Figure 5. Classification flow diagram

4.1. Periodicity Test

Assuming the data is not aliased, we can test for period-
icity to detect the presence of periodic waveforms, which
differentiates tumbling from stable objects. One test that
can be used to confirm the significance of a signal’s pe-
riodic component is Fisher’s Exact Test for Periodicity

[20]. The test statistic is found by extracting the most
significant frequencies. As noted from the analysis in [2],
the Lomb-Scargle periodogram has proven to be success-
fully consistent in finding dominant frequencies as it does
not require observations to be uniformly spaced, which is
rare in real photometric data. Furthermore, heavy user
influence in trimming the search frequency range is not
present unlike other fourier and phase-folding methods.
If the light curve has a significant periodic component,
we will assume that it came from a tumbling object. Since
stable objects can have a single peak in its periodogram,
a threshold must be set on the period length that would
be tested such that the test does not indicate that stable
objects are periodic (with a long period). This eliminates
false positives.

Outliers are inevitable in photometry and should be re-
moved because they can distract from periodic compo-
nents that are truly present in a light curve. They also
cause some undesired results in the periodogram and in
turn, the test for periodicity itself. Additionally, there are
some frequencies that we do not expect in the light curve
from a tumbling object. For instance, if the fundamental
frequency of a light curve is too low, that frequency may
correspond to one or fewer periods occurring within the
observation window. Then this frequency is likely not
representative of the tumble rate. Generally, there is a
clear peak close to zero for the unstable object’s period
while the stable objects’ periods tend to be much longer
[6].

4.2. Test for aliasing

An assumption of stationarity is sufficient to give us the
ability to detect aliasing in a temporally sampled sig-
nal process [29]. We can ensure stationarity using the
Augmented Dicky Fuller test. Once this is confirmed,
we can use bispectral analysis to identify aliased signals
[30]. The bispectrum of a discrete-time signal is a peri-
odic function in two frequency indices ω1, ω2. The bis-
pectrum, defined to be the triple Fourier transform of the
third-order autocorrelation, reduces to a function of two
frequencies since stationarity confines the spectrum to the
origin of the plane.

Assuming a real-valued discrete time series, all non-
redundant information is confined to the square 0 ≤
ω1, ω2 ≤ π. Due to symmetries, the non-redundant in-
formation in the bispectrum is confined to a particular
triangle inside this square. The triangle consists of two
pieces (isosceles and irregular). The discrete bispectrum
is non-zero only in the isosceles triangular when no alias-
ing is present.

4.3. Feature selection

Certain features in a light curve can be correlated to phys-
ical structures on objects. The primary light curve fea-
tures are narrow and broad brightness peaks correlating to



structures such as the main payload enclosure, solar pan-
els, and communications antennas. Large antennas are
often located on the eastern and/or western sides of the
nadir-facing main body as seen in a box-wing satellite.
This asymmetry is observed in the reflected light of the
photometric curves. Narrow features are narrow peaks
whereas broad features include either a broad peak or a
shoulder [6]. Feature selection prior to classification is
essential as it removes irrelevant and redundant features
to improve accuracy [4]. We can extract the feature infor-
mation via wavelet decomposition, which is elaborated in
the next section.

4.3.1. Wavelet Analysis

A wavelet is a sum of elementary functions with two re-
quirements that it should integrate to zero, and that the
function has to be well-localized. A wavelet is mathe-
matically described as,

Xa,b =

∫ ∞
−∞

x(t)ψa,b(t)dt (15)

where x(t) is the real signal, ψa,b(t) is an arbitrary
mother wavelet, a is the scale and b is the translation.
The scale is inversely proportional to the frequency of
the mother wavelet and the same as the size of the win-
dow. The translation parameter is analogous to how far
we ”slide” the window from the starting point.

The Discrete Wavelet Transform (DWT) is utilized to ex-
tract the wavelet coefficients: approximation and detail.
By applying the DWT again on the approximation coef-
ficients of the previous DWT, we get the wavelet trans-
form of the next level. At each next level, the original
signal is also sampled down by a factor of 2 (sometimes
de-noising). The Wavelet Transform automatically ad-
justs the window width to give good time resolution and
poor frequency resolution at high frequencies, and good
frequency resolution and poor time resolution at low fre-
quencies [7]. The limit of the time and frequency resolu-
tions is given by ∆t∆f ≥ 1

4π . If a coefficient scores a
high statistic value, data (in terms of this coefficient) can
be easily separated by the classifier.

5. SIMULATION RESULTS

The training dataset consists of light curve vectors as in-
puts and class vectors as outputs. The model is trained to
assign each measurement vector to a class using a set of
training examples. The classification approach is tested
using simulated data as well. Synthesizing light curves
for each of the models in the bank using Lebedev quadra-
ture at differing angular rotation speeds (from ω = 1
to ω = 20 deg /s) for revolutions about its own spin
axis makes up a portion of the volume of the training
dataset. Variations in viewing geometries, altering size

Figure 6. Synthetic light curves of Disk, RASSOR drum
and Pioneer probe for training data set (Top to Bottom)

dimensions and interpolated surface reflectance proper-
ties across the facets also populate the training dataset.
Python and Matlab are used as the simulation environ-
ment for this work.

The simulation parameters used to generate the light
curve measurements are as follows. The material sur-
face properties were set to include ambient, diffuse and
specular reflection (ka = 0.8, kd = 0.1, ks = 1) respec-
tively. Artificial space objects are primarily made of plas-
tic, fiberglass and hard wood, hence the choices of coef-
ficients to reflect these material properties. The lighting
conditions are ideal to produce uniform white light at a
point source that radiates as a headlight. The position of
the object with respect to the observer’s location on earth
has coordinates to approximate an altitude of 1000 km.
The spin-axis orientation is user-defined. A few examples
of the simulated light curves are included in Fig. 6.

The various layers in the first classification stage using
LSTM RNN is visualized in Figure 7.



Figure 7. LSTM layers

The state space for the Markov chain is S = {S, T}
where S represents stable and T represents tumbling
RSOs. For the HMM, we assumed the initial probabilities
are equal for both states giving P (X1 = S) = P (X1 =
T ) = 0.5, which forms our initial state matrix, π. This
means it is equally likely that the first time series came
from a stable or a tumbling object. The transition ma-
trix contains the probabilities that the underlying Markov
sequence transitions from one state to another. We as-
sumed the object is likely to stay in its stable state, unless
it begins tumbling, in which case, it will very likely stay
tumbling. This gives us the transition matrix,A:

P =

[
P (S | S) P (T | S)
P (S | T ) P (T | T )

]
=

[
0.9 0.1
0.01 0.99

]
where the notation P (S | T ) means the probability that
the current state is S, given that the previous state was T .
Finally, the emission matrix contains the probabilities of
each possible observable, for each state.

Figure 8. Training and Validation accuracy plots

After running 100 epochs, the resulting validation accu-
racy is 91.7%, which is an acceptable value by simulation
standards in literature. The higher the number of epochs,
the accuracy in turn increases. A more comprehensive

visual depicting the accuracy and loss in training and val-
idation is observed in Fig. 8.

6. CONCLUSION AND FUTURE WORK

A hybrid classification model, inclusive of an LSTM re-
current neural network and a HMM, is proposed to clas-
sify an unresolved object’s light curve, in low earth orbit
(LEO), by its shape and spin rate. It is distinguished be-
tween two control profiles (tumbling and stabilized) with
additional tests for periodicity, aliasing and feature se-
lection to enhance the process. This modified approach
improves the accuracy of time series classification by ex-
ecuting a secondary screening accounting for the tempo-
ral relations in the data and eliminating redundancy in the
classifiers. The fidelity of these simulations ensures it is
both realistic and accurate to within 10% error, and the
computation speed is faster with flexibility to deal with a
larger amount of data.

Future improvements include incorporating real light
curves in our test dataset. One thing to note with real
data is that photometric observations with a gap in collec-
tion time can possess changes like slowing of tumbling
rate. Here, it is important to use key identifiers in the
light curve to match for resemblance. However, if the
period is similar, we can correlate them to be the same
object regardless of the gap in collection. Sample selec-
tion bias is also a parameter to remember. It can cause
catastrophic errors in predictions on the testing data be-
cause standard assumptions for machine-learned model
selection procedures break down, and dense regions of
testing space might be completely devoid of training data
[26]. An effective technique for artificial RSOs with min-
imal user interference to rectify sample selection bias is
required.
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