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ABSTRACT

Critical conjunctions in space are occurring at increasing
frequency due to the fast-growing and intensive use of
space. Mitigating the consequent risk of collisions is of
utmost importance for sustainable use of space. A further
challenge is posed in the field by the recent technologi-
cal advances in space propulsion: a growing number of
satellites are equipped with electric propulsion systems.
The problem of designing optimal low-thrust Collision
Avoidance Manoeuvre (CAM) is investigated, with the
aim of developing robust and numerically efficient algo-
rithms. The conjunction dynamics is presented in Carte-
sian reference frame and then projected onto the B-plane,
centred at the secondary object. The optimal low-thrust
manoeuvre is constrained in terms of collision probabil-
ity, squared Mahalanobis distance and miss distance at
the time of closest approach. A fully analytical method is
developed in the perspective of finding fast, reliable, and
iteration-free approaches to manoeuvre design. The ap-
proach is validated in terms of efficiency and robustness
in a simulated scenario accounting for environmental per-
turbations.

Keywords: Collision Avoidance Manoeuvres; B-plane;
Low-thrust; Optimal Control Theory; Space debris.

1. INTRODUCTION

The ultimate purpose of providing efficient methods for
Collision Avoidance Manoeuvres (CAMs) is twofold: on
one hand to avoid damage to satellites, and on the other
to prevent the formation of space debris.
Debris-creating events have become more common: on
average over the last two decades, 12 accidental fragmen-
tations have occurred in space every year, and this trend is
unfortunately increasing. Fragmentation events describe
moments in which debris is created due to collisions, ex-
plosions, electrical problems and even just the detach-
ment of objects due to the harsh conditions in space.
The estimated total number of break-ups, explosions, col-

lisions, or anomalous events resulting in fragmentation
tracked by Space Surveillance Networks since the launch
of the first Sputnik in 1957 is more than 560 [1]. Existing
international guidelines clarify that a sustainable use of
space can be achieved through the following provisions:
design rockets and spacecraft to minimise the material
becoming detached during launch and operation; prevent
explosions by releasing stored energy; design end-of-life
disposal of satellites; prevent in-space impacts through
careful choice of orbits and by performing CAMs.

A collision avoidance manoeuvre is performed when, at
the time of closest approach (TCA), a threshold on the
miss distance (MD), or on the probability of collision
(PoC), is exceeded.
Since 2009, a conjunction message has been sent by Joint
Space Operations Center (JSpOC) to all spacecraft own-
ers and operators, concerning approximately 48000 ob-
jects listed in the Two-Line Element set (TLE) provided
by US Strategic Command. The standard format Con-
junction Summary Message (CSM)/ Conjunction Data
Message (CDM) is used for messages being prepared
by the Consultative Committee for Space Data Systems
(CCSDS).
ESA has implemented the Space Situation Awareness
(SSA) programme, which aims to give Europe the nec-
essary independence to acquire knowledge about the sit-
uation in space. Indeed, Europe is currently dependent on
non-European information sources for its ability to moni-
tor satellite sources of danger such as natural phenomena,
Near-Earth Object (NEO) and space debris. The SSA
programme focuses on Space Weather, NEOs, and Space
Surveillance and Tracking (SST). Providing independent
data and information, the SSA programme also enhances
the reliability and availability of space. An overview of
the programme can be found in [2]. SST refers to the
capacity to detect, catalogue and predict the movements
of space objects orbiting the Earth. The European Union
established in 2014 the Space Surveillance and Tracking
Support Framework, also known as the EU SST, with the
Decision 541/2014/EU of the European Parliament and
the Council (SST Decision).
For a typical satellite in Low Earth Orbit (LEO), hundreds
of alerts are issued every week. For most of them, the
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risk of collision decreases as the week goes by and more
orbital information is gathered, but for some the risk is
deemed high enough that further action is required. As
more satellites are launched into orbit, the current stan-
dard methods for avoiding in-space collisions, and the
creation of debris, will not be enough. Nowadays, CAMs
are planned on-ground, with the support of specific tools.
If the pre-defined threshold on the probability or on the
miss distance is exceeded, a manoeuvre is designed by
mission planners. The Space Debris Office (SDO) is the
department of the ESA in charge of all the activities con-
cerning space debris; a full description of the SDO cur-
rent collision avoidance service can bee found in [3].
From a rigorous standpoint, a collision avoidance ma-
noeuvre is said to be optimal when it reduces the colli-
sion probability of a satellite with one, or more, space
objects to a prescribed threshold while minimising a cost
quantity. Most research deals with optimising impulsive
manoeuvres. In order to provide a fast and efficient nu-
merical scheme to plan last-minute and out of plane ma-
noeuvres, Bombardelli et al. in [4], [5] and [6] studied
closed-form analytic expressions and presented an effi-
cient numerical scheme to solve the optimisation prob-
lem in its most general form. In [5] and [6], a formu-
lation of the relative dynamics model, valid for a generic
collision geometry and arbitrary eccentricity, is employed
as a base for an optimisation process aimed to maximise
the collision miss distance between two colliding objects
for a given magnitude of available ∆v. Then, in [4], the
optimisation based on the minimisation of collision prob-
ability is also presented in case of direct and non-direct
impact.
The existing literature about continuous-thrust CAM op-
timisation is considerably less extensive than for the im-
pulsive case. Multi-objective particle swarm optimisers
are employed by Morselli et al. [7] to design an optimal
continuous-thrust CAM. Research on low-thrust optimi-
sation methods includes the semi-analytical method de-
veloped by Reiter et al. [8] for rapid collision avoidance,
based on the hypothesis that the optimal thrust is always
radial. Salemme in [9] employed an indirect method for-
mulated in Cartesian coordinates for fuel-optimal con-
trol problem (FOP) and energy-optimal control problem
(EOP) solutions reaching a desired collision probability.
The resulting six-dimensional optimal control problem is
not easy to deal with numerically, which motivated the
authors of the same paper to explore semi-analytical so-
lutions. The dissertation of Schiavo [10] is the direct
continuation of the previous study and proposes computa-
tionally efficient methods (analytical and semi-analytical)
for energy optimal manoeuvres with PoC as final con-
straint. More semi-analytical methods were proposed in
[11]; this approach is based on average dynamics and
maximising the miss distance with the assumption of con-
tinuous tangential thrust. The very recent work by Bom-
bardelli and Hernando-Ayuso [12] investigates the prob-
lem of optimum low-thrust collision avoidance between
two objects in circular orbits; the thrust vector of the ma-
noeuvred satellite, applied continuously for a given time
span, is held constant in magnitude the optimal control is
written in B-plane coordinates. The B-plane formulation
allows to reduce significantly the dimension of the result-

ing Two-Point Boundary Value Problem (TPBVP) to only
two and leads to a constant costate vector. Another re-
cent work by Belmonte Hernandez et al. [13] presents
two approaches to compute low-thrust CAM: one applies
a bang-bang transformation to the EOP unbounded so-
lution and the other formulates the manoeuvre design as
a convex optimisation problem. A multi-impulse convex
formulation for collision manoeuvres optimisation is also
investigated in [14].

The purpose of this work is to provide robust and numer-
ically efficient algorithms for different types of manoeu-
vres ultimately aiming at on-board autonomous imple-
mentability. In particular, because of the recent progress
on electric propulsion technology, low-thrust manoeuvres
will have an important role in space exploration and ex-
ploitation. Starting from the semi-analytical solution for
the energy-optimal control problem (EOP) proposed by
Schiavo in [10], a fully analytical formula is obtained;
given the collision conditions and quantities in CDM for-
mat, the solution allows to design the optimal manoeuvre
by substituting them directly into an analytical equation.
The paper is organised as follows. In Section 2 the un-
derlying mathematical preliminaries that are necessary to
understand the methods proposed are introduced. Sec-
tion 3 contains a description of the methodology devel-
oped in this work; the EOP for low-thrust CAMs is solved
analytically, both exploiting the dynamics formulation in
Earth Centered Inertial (ECI) reference frame and in B-
plane (BP) coordinates. The performance achieved by
the methods presented are analysed and compared in Sec-
tion 4, leading to the conclusive Section 5.

2. MATHEMATICAL MODELS

This section introduces the underlying mathematical pre-
liminaries necessary to understand the methods proposed
in this work. In particular, the fundamentals of conjunc-
tion dynamics and the formulation in B-plane coordinates
are first of all reported. The definition of collision prob-
ability adopted is stated right after and the derivation of
the State Transition Matrix (STM) is then presented.

2.1. B-plane definition and collision dynamics de-
scription

Let us consider two objects experiencing a conjunction
event with an expected closest approach relative position
re. We will refer to the manoeuvrable object calling it
“primary”, using the symbol Op, while the debris or un-
cooperative object is the “secondary” object, Os. We de-
fine xp = (rp,vp) and xs = (rs,vs) the state vectors
(position and velocity) of the center of mass of the pri-
mary and secondary objects respectively, expressed in a
generic (inertial or a local) reference frame (r.f.) <̂.
Let {x, y, z} represent an inertial r.f. centred at Os at the



impact time and with axes directions defined as:

ux =
vp
‖vp‖

, uz =
vp × vs
‖vp × vs‖

, uy = uz ×ux.

(1)
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Figure 1. Encounter frame and B-plane: snapshot of
Op −Os encounter geometry (x− y plane) after CAM.

Within a small interval of time ∆t � 1 around the im-
pact event, one can consider the motion of both objects as
uniform rectilinear with good approximation (hypothesis
of short-term encounter, see [15]).
To describe the collision avoidance dynamics using the
B-plane, the formulation of [16], centred at Os, is
adopted. The B-plane, represented in Fig. 1, is the en-
counter plane of the two colliding objects; it is perpendic-
ular to their relative velocity and contains both the bod-
ies at the moment of closest approach. We introduce the
position vector b3D = [ξ, η, ζ]>, expressed in B-plane
coordinates, defined as follows:

• uξ =
vs × vp
‖vs × vp‖

direction orthogonal to the geo-

centric velocity vectors vp and vs;

• uη =
vp − vs
‖vp − vs‖

direction of the velocity of Op

relative to Os;

• uζ = uξ × uη direction opposite to the projection
of the B-plane of the velocity of Os.

The unit vectors define the rotation matrix from the iner-
tial reference frame to the B-plane

Rb,3D = [uξ, uη, uζ ]
>, (2)

while the projection in the η-axis is achieved by

Rb,2D = [uξ, uζ ]
>. (3)

At TCA, the orbital elements of Op are defined as: a0
semi-major axis, e0 eccentricity, Rc radial orbital dis-
tance, θc true anomaly.

For the ease of notation, the 2D position vector in the B-
plane is defined as b = [ξ, ζ]>, constructed from the first
and third components of the b3D vector.
The following subsections summarise the dynamics in B-
plane coordinates after the derivations reported in the pre-
vious sections, and specifies the equations of motion for
both the cases of impulsive manoeuvre and continuous-
thrust CAM.

2.1.1. Impulsive manoeuvre

In case of direct impact (i.e., the position of the primary
and secondary objects at TCA coincides) the position in
B-plane coordinates achieved after the manoeuvre is:

b = RKD∆v = M∆v, (4)

where R,K,D are respectively the rotation, kinetics
and dynamics matrices derived in [5] and listed in Ap-
pendix A. The matrix M is function of: φ, ψ, χ (parame-
ters describing the transformation from vp to vs, see Ap-
pendix A), e0, a0, θc, the Earth gravitational parameter µ
and the true anomaly θ of the manoeuvring point.
Considering the general case of a non-direct impact (i.e.,
a conjunction whose expected miss distance is not zero)
where be is the relative position of the two objects at
TCA in B-plane r.f.:

be = Rb,2Dre = Rb,2D(rp − rs). (5)

Hence the position b at generic time can be written as:

b = be + M∆v. (6)

2.1.2. Low-thrust manoeuvre

When the manoeuvrable spacecraft Op is equipped with
a low-thrust propulsion system, a realistic CAM scheme
is to apply optimally oriented thrust acceleration contin-
uously over a thrust arc. In an infinitesimal time δt, the
control acceleration ac produces the velocity variation

δv = acδt. (7)

This leads to a B-plane displacement δb = [δξ, δζ]>:

δb = RKDacδt = Macδt. (8)

Approximating to the first order the Eq. 8, it is obtained:

db

dt
= Mac (9)

and the dynamics of the system can be written as:{
ḃ = Mac
b(t0) = be = [ξe, ζe]

>.
(10)



2.2. Probability of collision and square Mahalanobis
distance

There are several methods for calculating the 2D collision
probability, many of which are collected and compared
in [17]. It is chosen to follow PoC definition of Chan
in [15] truncated at m = 3. The computation of PoC
can be made equivalent to integrating a properly scaled
isotropic Gaussian distribution function over an elliptical
cross section. If the latter is approximated as a circular
cross section of equal area, the final computation of the
collision probability reduces to a Rician integral that can
be computed with the convergent series:

PoC(u, v) = e−
v
2

∞∑
m=0

vm

2mm!

[
1− e−u

2

m∑
k=0

uk

2kk!

]
,

(11)
where u is the ratio of the impact cross-sectional area to
the area of the 1σ covariance ellipse in the B-plane:

u =
s2A

σξσζ
√

1− ρ2ξζ
, (12)

and v is the squared Mahalanobis distance (SMD):

v = SMD, (13)

=

[(
ξe
σξ

)2

+

(
ζe
σζ

)2

− 2ρ2ξζ
ξeζe
σξσζ

]
/(1− ρ2ξζ),

(14)

= (rf − rs)
>R>b,2DC−1Rb,2D(rf − rs), (15)

= b>f C−1bf . (16)

C is the combined covariance matrix in B-plane axes,
which corresponds to the sum of the individual covari-
ance matrices of the two bodies, expressed in the same
orthonormal base, when the two (Gaussian) quantities are
statistically independent, and then projected into 2D B-
plane with components {ξ, ζ}:

C =

[
σ2
ξ ρξζσξσζ

ρξζσξσζ σ2
ζ

]
. (17)

The miss distance is simply defined as d =
√
ξ2e + ζ2e =

‖bf‖ = ‖Rb,2D(rf − rs)‖.

2.3. State Transition Matrix

The State Transition Matrix (STM) maps the variation of
the state δx at an arbitrary final time t with respect to δx0

at an arbitrary time t0. The STM is defined as the matrix
Φ(t, t0) such that:

Φ(t, t0) =
δx

δx0
. (18)

For time-varying systems, STM is found by integrating

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t0, t0) = In×n, (19)

where A(t) is the state matrix of the linear system

ẋ(t) = A(t)x(t). (20)

In non-linear problems such as the controlled dynamics
of the Keplerian orbital motion, the goal is to linearise the
equations of motion f(x, t) of the optimal control prob-
lem (OCP) around the nominal trajectory represented by
the state xn, hence:

A(t) =
∂f(x, t)

∂x

∣∣∣∣
xn

. (21)

3. ENERGY-OPTIMAL CONTROL PROBLEM

This section covers the derivation of methods for optimal
low-thrust CAMs exploiting the dynamics formulation in
Earth-Centred Inertial (ECI) reference frame and the dy-
namics description in B-plane coordinates. The OCP is
formulated following optimal control theory, in particu-
lar [18] is used as the main reference.

3.1. EOP in ECI coordinates

Let us consider the controlled motion of the primary ob-
ject around Earth, considering a Keplerian orbit model.
The state vector x = [r,v]> consists in the position and
the velocity of the satellite in ECI coordinates {x, y, z}.
In this formulation, the mass is not included in the state
variables, since its equation is decoupled from the other.
Thus, to simplify the equations, it is considered sepa-
rately:{

ṙ = v

v̇ = − µ
r3

r + ac
ICs :

{
r(t0) = r0
v(t0) = v0

(22)

ṁ = − 1

ce
‖ac‖m IC : m(t0) = m0 (23)

where ce is the effective exhaust velocity, product of
the specific impulse Isp and the Earth’s standard grav-
ity acceleration g0. In minimum-energy formulation,
the control parameter is the acceleration vector ac =
[ac,x,ac,y,ac,z]

> and the cost function is defined as:

J =

ˆ tf

t0

Ldt, L =
1

2
a>c ac, (24)

and the terminal function can be written in terms of SMD
(which can be translated in a PoC value, by means of
Eq. 11) or MD. These two cases are discussed separately
in the following subsections.



3.1.1. Square Mahalanobis distance constraint

The terminal function is written such that the SMD value
corresponding to the final position rf = r(tf ) matches
with an enforced value SMD:

Ψ(x(tf ), tf ) = SMD (rf )− SMD (25)

where, from Eq. 15, using notation R2D = Rb,2D for sim-
plicity:

SMD (rf ) = (rf − rs)
>R>2DC−1R2D(rf − rs). (26)

The augmented performance index is:

J = ν
[
SMD (rf )− SMD

]
+ˆ tf

t0

{
1

2
a>c (t)ac(t) + λ>(t) [ẋ(t)− ẋ(t)]

}
dt, (27)

and the Hamiltonian:

H =
1

2
a>c ac + λ>r v + λ>v

(
− µ
r3

r + ac

)
. (28)

Exploiting optimal control theory (a complete formula-
tion can be found in [18]), the equations of motion for
the costate are derived and the Hamiltonian system asso-
ciated to the EOP is:

ṙ = v

v̇ = − µ
r3

r + ac

λ̇r =
µ

r3
λv −

3µr · λv
r5

r

λ̇v = −λr



r(t0) = r0
v(t0) = v0

λr(tf ) = ν
∂SMD(rf )

∂rf

λv(tf ) = ν
∂SMD(vf )

∂vf
(29)

with the control acceleration law deriving from the Pon-
tryagin’s minimum principle which states that the optimal
control is the one that minimises the Hamiltonian:

ac = −λv. (30)

The problem can be formulated as a TPBVP (known as
Euler-Lagrange equations):

ṙ = v

v̇ = − µ
r3

r− λv

λ̇r =
µ

r3
λv −

3µr · λv
r5

r

λ̇v = −λv

(31)

BCs :


r(t0) = r0
v(t0) = v0

λr(tf ) = ν2R>2DC−1R2D(rf − rs)

λv(tf ) = 0

(32)

with a constraint on the final square Mahalanobis dis-
tance:

SMD(rf )− SMD = 0. (33)

Several numerical techniques exist for solving TPBVPs,
usually iterative and time-consuming methods where the
convergence depends on the first guess. In this research
the problem is solved in a completely analytical way
avoiding numerical methods, and the procedures is de-
scribed in detail hereafter. The purpose is to determine
the initial costates λr0, λv0 to transform the problem into
an Initial Value Problem (IVP). The STM and the equa-
tion of the final constraint are exploited to achieve this
goal.

ṙ = v

v̇ = − µ
r3

r− λv

λ̇r =
µ

r3
λv −

3µr · λv
r5

r

λ̇v = −λv

ICs :


r(t0) = r0
v(t0) = v0

λr(t0) = λr0
λv(t0) = λv0.

(34)
Once the IVP is obtained, it can be solved for the state
variables [r,v] and the costates [λr,λv]. The control
acceleration profile of the optimal manoeuvre can be
simply found by substituting the velocity costate into the
control low in Eq. 30.

To find the initial costates, the deviations of the
spacecraft from the nominal trajectory are linearised
using the STM. The nominal ballistic trajectory consists
in the natural motion of the satellite around the Earth:

ṙn = vn

v̇n = − µ
r3

r

λ̇rn = 0

λ̇vn = 0.

(35)

Expanding the dynamics in Eq. 34 about the ballistic so-
lution Eq. 35, the state matrix A can be computed from
Eq. 21 and reads:

A =

 03×3 I3×3 03×3 03×3
−A34 03×3 03×3 −I3×3
03×3 03×3 03×3 A34

03×3 03×3 −I3×3 03×3

 (36)

where

A34 =
µ

r3n
I3×3−

3
µ

r5n

 rn(x)2 rn(y)rn(x) rn(z)rn(x)
rn(x)rn(y) rn(y)2 rn(z)rn(y)
rn(x)rn(z) rn(y)rn(z) rn(z)2

 . (37)

Here, rn(x), rn(y) and rn(z) are the components of the
position vector on the nominal orbit rn, expressed in ECI.
Using the STM, computed by integrating Eq. 19, the vari-
ations of the initial states are then linearly mapped into
variations of the final state: δrfδvf

δλrf
δλvf

 =

Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44


 δr0δv0

δλr0
δλv0

 . (38)



In this approach the initial state is fixed, hence δr0 =
0, δv0 = 0 and the costates are zero on the nominal
trajectory (see Eq. 35), therefore: δλr0 = λr0, δλv0 =
λv0. The variations of state and costate at the time of
closest approach after the manoeuvre are:

δrf = rf − rp, (39)
δvf = vf − vp. (40)

The equations derived from the STM are now used to ex-
press the initial costates λr0, λv0 as a functions of the
final position rf .
Since the final velocity is free, the associated costate is
zero: δλvf = λvf = 0. Thus, from the fourth row of
Eq. 38, it can be derived:

0 = Φ43δλr0 + Φ44δλv0, (41)

and from the third row of Eq. 38:

δλrf = Φ33δλr0 + Φ34δλv0

= (Φ33 −Φ34Φ
−1
44 Φ43)δλr0

= Bδλr0

−→ λr0 = B−1δλrf .

(42)

Considering now the first row of Eq. 38:

δrf = Φ13δλr0 + Φ14δλv0

= (Φ13 −Φ14Φ
−1
44 Φ43)δλr0

= Dδλr0

= DB−1δλrf

(43)

B = Φ33 −Φ34Φ
−1
44 Φ43 (44)

D = Φ13 −Φ14Φ
−1
44 Φ43. (45)

Recalling now that δλrf = λrf ,

δrf = DB−1λrf = DB−1ν
∂SMD(rf )

∂rf
(46)

Hence the variation of the position vector can be written
as the product of the multiplier ν and a function g of the
final position rf :

δrf = νg(rf ) (47)

where, computing the derivation of the squared Maha-
lanobis distance from Eq. 26:

g(rf ) = 2DB−1R>2DC−1R2D(rf − rs). (48)

A non-linear system in rf and ν is obtained form Eq. 47
and Eq. 33: {

δrf = rf − rp = νg(rf )

SMD(rf ) = SMD.
(49)

By means of Eq. 26, Eq. 39 and Eq. 48, the non-linear
system in Eq. 49 can be rewritten as:{

rf − rp = 2νDB−1R>2DC−1R2D(rf − rs)

(rf − rs)
>R>2DC−1R2D(rf − rs) = SMD,

(50)

recalling that rp, rs are respectively the position of the
primary and the secondary object at TCA, C is the 2D
combined covariance matrix in BP coordinates and R2D
is the rotation matrix from ECI r.f. to BP r.f.
The first equation of Eq. 50 is multiplied to the left by
R2D and the second one is rewritten in terms of final po-
sition bf in B-plane (Eq. 16):{

R2D(rf − rp) = 2νR2DDB−1R>2DC−1R2D(rf − rs)

b>f C−1bf = SMD.
(51)

Focusing on the first equation of Eq. 51, recalling that a
generic position b in BP coordinates can be written as
b = R2D(r− rs):

R2D(rf − rs − rp + rs) =

2νR2DDB−1R>2DC−1R2D(rf − rs) (52)

bf − bp = 2νR2DDB−1R>2DC−1bf . (53)

Let us define the matrix E = 2R2DDB−1R>2DC−1.
Eq. 53 becomes:

bf = (I2×2 − νE)−1bp. (54)

By substituting Eq. 54 into the second equation of Eq. 51,
the latter can be written as a scalar equation with un-
known ν. Setting the matrix Q = C−1, it reads:

[(I2×2−νE)−1bp]
>Q(I2×2−νE)−1bp = SMD. (55)

Since:

(I− νE)−1 =
1

det(I− νE)
[I− νdetE · (E)−1] (56)

Equation 55 becomes:

1

det2(I− νE)
[(I− νdetE ·E−1)bp]

>Q

(I− νdetE ·E−1)bp = SMD. (57)

Let us introduce also the matrix Ẽ = detE · E−1 in or-
der to simplify the notation. Equation 57, through simple
algebraic steps, is written as:

[(I−νẼ)bp]
>Q(I−νẼ)bp = SMDdet2(I−νE) (58)

[b>p − ν(Ẽbp)
>]Q[bp − νẼbp] = SMDdet2(I− νE)

(59)

b>p Qbp − νb>p QẼbp − ν(Ẽbp)
>Qbp+

ν2(Ẽbp)
>Q(Ẽbp) = SMDdet2(I− νE). (60)

The analytical equation is finally written in the normal
polynomial form and can be solved in a closed-form for
ν:

ν2(Ẽbp)
>Q(Ẽbp)− ν[b>p QẼbp + (Ẽbp)

>Qbp] =

SMDdet2(I− νE)− b>p Qbp. (61)



Equation 61 has four solutions, since the term with the
quadratic determinant contains ν at the fourth degree.
The solutions corresponds to the two local minima and
two local maxima in terms of equivalent ∆v (as it is
shown in the results section, Fig. 8).
The final position reached after the manoeuvre rf can be
found by plugging the solution ν into the first equation of
Eq. 50. Once rf is known, recalling that δrf = rf−rp, it
is finally possible to compute the initial costates λv0 and
λv0 from Eqs. 41 and 43:

λr0 = D−1δrf , (62)

λv0 = −Φ−144 Φ43δr0. (63)

The IVP in Eq. 34, given all the initial conditions, can
now be integrated.

3.1.2. Miss distance constraint

The EOP manoeuvre can be reformulated considering a
constraint not on the final PoC/SMD but on the final MD
value. Remember that the miss distance d can be written
as: d =

√
ξ2e + ζ2e = ‖bf‖ = ‖R2D(rf − rs)‖.

The non-linear system in Eq. 49 becomes:{
δrf = 2νDB−1R>2DC−1R2D(rf − rs)

d(rf ) = d,
(64)

{
R2D(rf − rp) = 2νR2DDB−1R>2DC−1R2D(rf − rs)

‖R2D(rf − rs)‖ = d.
(65)

One can apply the same procedure of the previous para-
graph (Eqs. 52 - 54), and the first equation of Eq. 65
reads:

bf = (I2×2 − νE)−1bp. (66)

The second equation of Eq. 65 becomes:∥∥(I− νE)−1bp
∥∥ = d, (67)

and similarly to Eqs. 56 - 58:∥∥∥∥ 1

det(I− νE)
(I− νẼ)bp

∥∥∥∥ = d. (68)

ν2(Ẽbp)
>(Ẽbp)− νb>p (Ẽbp)− ν(Ẽbp)

>bp =

det (I− νE)2d
2 − b>p bp (69)

In analogy to what has been explained for the SMD
case, Eq. 68 is algebraically manipulated and analytically
solved for ν and used to find the initial costates and inte-
grate the IVP.

3.2. EOP in B-plane coordinates

The EOP formulation can be projected onto the B-Plane
and the resulting approach simplifies the problem by re-
ducing the dimension of the system from six to two.
The detailed derivation of the conjunction dynamics ex-
pressed in B-plane coordinated can be found in [12].
The state vector in B-plane coordinates {ξ, ζ} is b =
[bξ, bζ ]

>. The control parameter is the acceleration, ex-
pressed in ECI r.f.: ac = [ac,x,ac,y,ac,z]

>. The dynamic
system can be written as:{

ḃ = Mac
IC : b(t0) = b0.

(70)

recall the definition of the matrix M as the product of the
three matrices that describe the rotation, kinematics and
dynamics from ECI r.f. to the B-plane:

M(t) = RKD(t). (71)

The performance index is:

L =
1

2
a>c ac (72)

and as in Cartesian coordinates, the terminal function can
be written in terms of SMD (which includes also the PoC
case) or MD.

3.2.1. Squared Mahalanobis distance constraint

The problem is constrained such that the final SMD value
matches with an enforced value SMD. Thus the terminal
function can be written as:

Ψ(x(tf ), tf ) = b>(tf )C−1b(tf )− SMD. (73)

The augmented cost function is:

J = ν
[
b>(tf )C−1b(tf )− SMD

]
+

+

ˆ tf

t0

{
1

2
a>c (t)ac(t) + λ>(t)

[
M(t)ac(t)− ḃ(t)

]}
dt

(74)

and the Hamiltonian reads:

H =
1

2
a>c ac + λ>Mac. (75)

The Hamiltonian system associated to the EOP results to
be: 

ḃ = Mac
λ̇ = 0

b(t0) = b0

λ(tf ) = ν2C−1b(tf )

ac = −M>λ.

(76)



By substituting the resulting definition of the control ac-
celeration ac as function of the costate λ into the dynam-
ics, the TPBVP can be written as:{

ḃ = −M(t)M>(t)λ

λ̇ = 0
BCs :

{
b(t0) = b0

λ(tf ) = ν2C−1b(tf )
(77)

with the constraint on the final squared Mahalanobis dis-
tance

b>(tf )C−1b(tf )− SMD = 0. (78)

Since the Hamiltonian does not explicitly depend on the
b vector coordinates, λ remains constant in time:

λ(t0) = λ(t) = ν2C−1b(tf ), ∀t ∈ (t0, tf ) (79)

As explained in Section 3.1, relative to the Cartesian for-
mulation of the problem, also in this case the TPBVP can
be translated into a IVP after λ0 is known. Equation 79
already links λ to the final position bf , thus bf needs to
be estimated using the STM and the constraint in Eq. 78
in order to formulate the initial conditions for an IVP:{

ḃ = −M(t)M>(t)λ

λ̇ = 0
ICs :

{
b(t0) = b0

λ(t) = λ0.
(80)

The natural motion of the satellite around the Earth ex-
pressed in B-plane dynamics is expressed by means of
Eq. 8: {

ḃn = −MM>λn
λ̇n = 0.

(81)

The State Transition Matrix is computed by integrating:

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t0, t0) = I4×4 (82)

where A(t) is the state matrix of the linear system

ẋ(t) = A(t)x(t). (83)

For this formulation of the problem it can be written as:

A =

[
02×2 −MM>

02×2 02×2

]
, such that:

[
ḃ

λ̇

]
= A

[
b
λ

]
.

(84)
Hence the STM turns out to be:[

δbf
δλf

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
δb0

δλ0

]
. (85)

Considering that the initial state is fixed δb0 = 0 and
the costate is zero on the nominal trajectory (see Eq. 81),
δλ0 = λ0, the variations of state and costate at the time
of closest approach after the manoeuvre are:

δbf = bf − be, (86)
δλf = λf . (87)

The equations derived from the State Transition Matrix
are now used to find another expression to link the initial
costate λ0 to the final position bf . From the first row of
Eq. 85, it can be derived:

δbf = Φ12δλ0 = Φ12λ0 (88)

and from Eq. 79:

λ0 = ν2C−1bf (89)

Hence Eq. 88 can be rewritten as:

δbf = νΦ122C−1bf , (90)

and exploiting the constraint on the squared Mahalanobis
distance value (Eq. 78), the non-linear system in ν and rf
is obtained:{
δbf = νΦ122C−1bf
SMD(bf ) = SMD

{
bf − bp = νΦ122C−1bf
b>f C−1bf = SMD.

(91)
Manipulating the first equation of Eq. 91

bf (I2×2 − νΦ122C−1) = bp, (92)

and plugging the expression for bf into the second equa-
tion, one obtains:

bf = (I− νΦ122C−1)−1bp

[(I− νΦ122C−1)−1bp]
>C−1(I− νΦ122C−1)−1

bp = SMD.
(93)

Let us define F = 2Φ12C
−1 for easier notation and re-

call matrix Q = C−1. The second equation of Eq. 93
becomes a scalar equation that can be solved for ν:

[(I− νF)−1bp]
>Q(I− νF)−1bp = SMD. (94)

Since:

(I− νF)−1 =
1

det(I− νF)
[I− νdetF · (F)−1] →

(95)

1

det2(I− νF)
[(I− νdetF · F−1)bp]

>Q

(I− νdetF · F−1)bp = SMD. (96)

Introducing also F̃ = detF · F−1, and manipulating the
equation through simple algebraic steps:

[(I−νF̃)bp]
>Q(I−νF̃)bp = SMDdet2(I−νF) (97)

[b>p − ν(F̃bp)
>]Q[bp − νF̃bp] = SMDdet2(I− νF)

(98)

b>p Qbp − νb>p QF̃bp − ν(F̃bp)
>Qbp+

ν2(F̃bp)
>Q(F̃bp) = SMDdet2(I− νF) (99)

The analytical equation is finally written in the normal
polynomial form and can be solved in a closed-form for
ν:

ν2(F̃bp)
>Q(F̃bp)− ν[b>p QF̃bp + (F̃bp)

>Qbp] =

SMDdet2(I− νF)− b>p Qbp. (100)



In analogy with the final formula obtained with Cartesian
dynamics, Eq. 100 has four solutions corresponding to
the two local minima and two local maxima in terms of
equivalent ∆v.
The variation of the position reached after the manoeuvre
in BP r.f. bf is found by plugging the solution ν into the
first equation of Eq. 93. Once bf is known, it is possible
to compute λ0 from Eq. 89 and the IVP in Eq. 80, given
all the initial conditions, can be integrated.

3.2.2. Miss distance constraint

The EOP in B-plane coordinates can be reformulated by
constraining the final miss distance (MD) instead of the
final PoC/SMD. Recalling the definition of miss distance
in BP coordinates d =

√
ξ2e + ζ2e = ‖bf‖, the non-linear

system in Eq. 91 becomes:{
δbf = νΦ122C−1bf
d(bf ) = d

{
bf − bp = νΦ122C−1bf
‖bf‖ = d

(101)
Manipulating the first equation of Eq. 101 and plugging
bf into the second one:{

bf = (I2×2 − νΦ122C−1)−1bp∥∥(I2×2 − νΦ122C−1)−1bp
∥∥ = d.

(102)

and similarly to Eqs. 95 - 97:∥∥∥∥ 1

det(I− νF)
(I− νF̃)bp

∥∥∥∥ = d. (103)

In analogy to what has been explained for the squared
Mahalanobis distance case, Eq. 103 is algebraically
manipulated and analytically solved for ν and used to
find the initial costate and integrate the IVP in Eq. 80.

4. RESULTS

4.1. Test case

The methods presented are applied to a test case extracted
from a large database of conjunction cases derived from
the ESA Collision Avoidance Challenge [19] and then
processed and collected in [20] and available for down-
load. For the competition, ESA provided the teams with
real conjunction data extracted from 162, 634 CDM,
corresponding to 13, 154 unique events. These data were
filtered to consider conjunctions with d ≤ 2 km and
PoC > 10−6 resulting in a new data file with 2, 170
conjunctions. All the conjunctions are relative to objects
in LEO.
It is chosen to show the results considering a representa-
tive test case selected from the collision database. The
method produces similar results for all conjunctions. A

representation of the selected test case can be found in
Fig. 2 and Tab. 1 reports the position and velocity vectors
of the primary and secondary spacecraft at conjunction
in ECI frame, the collision probability PoC, the squared
Mahalanobis distance SMD and the miss distance d. The
combined cross-sectional radius of the spacecrafts is
sA = 29.7 m.

Figure 2. Test case collision representation.

Table 1. Test case conjunction data.

rp[km] [2.3305, -1103.7, 7105.9]>

rs[km] [2.3335, -1103.7, 7105.9]>

vp [km/s] [-7.4429, -6.1373e-04, 3.9514e-03]>

vs [km/s] [7.3537, -1.1428, -0.19825]>

PoC 1.3604e-01
SMD 0.87166
d [km] 0.0432

The position uncertainties covariance matrices of the two
satellites, expressed in their respective LVLH r.f., are:

Cp =

[
0.9317 −2.6234 0.2360
−2.6234 1778.0 −0.9331
0.2360 −0.9331 0.1917

]
· 10−4 km2

(104)

Cs =

[
6.3466 −19.6229 0.7077
−19.6229 0.0820 11.3982

0.7077 11.3982 2.5103

]
· 10−4 km2

(105)
The corresponding combined covariance matrix in
B-plane coordinates is:

C =

[
7.21756 −0.7580
−0.7580 51.9201

]
· 10−4 km2 (106)

In the following subsections the methods with ECI and
B-plane dynamics are validated and compared using a



dynamic model which only considers Keplerian motion.
All the simulations presented are run on a Dell Inspiron
5593 with a processor 1.50 GHz Intel Core i7, 10th
generation and 16 Gb Ram Memory.

4.2. EOP in ECI coordinates

To illustrate the results of the proposed formulation and
assess its accuracy, the optimal CAM is computed for
each initial manoeuvring point in a range of 100 equally
spaced values of true anomaly starting from 2 orbits be-
fore the TCA until the expected impact, ∆θ ∈ [0, 2 ·2π].
The enforced value of squared Mahalanobis distance and
the corresponding collision probability are:

SMD = 25 → PoC = 2.4036 · 10−6. (107)

The method described in Sec. 3.1 is applied, and after
the control application the final position for each ∆θ is
reported in BP r.f.in Fig. 3.
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Figure 3. Final position in B-plane r.f. reached after the
optimal CAM, for 100 initial manoeuvring points from 2
orbits before TCA until the expected impact. EOP with
ECI dynamics and constrained SMD.
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Figure 4. Collision probability profile after the dynamics
propagation. EOP with ECI dynamics and constrained
SMD.

The collision probability computed directly after the res-
olution of the system in Eq. 49 with the value of rf result-
ing by Eq. 47 perfectly matches the enforced value (the
maximum error is 2.2371 · 10−15). Then the actual final
PoC is calculated with the final position rf obtained af-
ter the integration of the manoeuvred dynamics in Eq. 34
and the resulting profile is shown in Fig. 4. The profile
remains close to the threshold without ever exceeding it.
The result is acceptable since at 2 orbits before the CA
the maximum deviation is 1.1729 · 10−8, two orders of
magnitude lower than the constraint value.
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Figure 5. Equivalent impulse ∆v (top) and maximum
control acceleration ac (bottom) for each initial manoeu-
vring point. EOP with ECI dynamics and constrained
SMD.
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Figure 6. Control acceleration profile for a manoeuvre
starting 2 orbits before TCA. EOP with ECI dynamics
and constrained SMD.

After solving the optimal control problem, the control ac-
celeration profile is found. For each ∆θ the equivalent
cost in terms of ∆v is calculated by integrating the ac-
celeration profile and the resulting values are reported at
the top of Fig. 5. The equivalent ∆v increases consis-
tently when the manoeuvre is performed close to the ex-
pected collision. The plot at the bottom of the same fig-
ure displays the trend of the maximum control accelera-
tion required, with components in LVLH reference frame.
Starting from the furthest points from the TCA, the trans-
verse component dominates the others, but below a cer-
tain value of ∆θ close to CA the radial component be-
comes the largest. The profile of the control accelera-
tion highly depends on which point is selected to start



the manoeuvre (value of ∆θ). The results corresponding
to a manoeuvre starting 2 orbits before TCA are shown
in Fig. 6. The manoeuvre is mostly performed in the
transverse direction. The maximum thrust required by
the spacecraft and the necessary fuel mass can be seen in
Fig. 7. The initial mass of the satellite is set to m0 = 500
kg and the specif impulse Isp = 220 s. As it can be no-
ticed, the nearer to the collision point (∆θ = 0) the high-
est the mass required to match the constraint imposed on
the collision probability.
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Figure 7. Maximum thrust (left) and mass variation
(right) profile vs. ∆θ for EOP with ECI dynamics and
constrained SMD.
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Figure 8. Solutions of EOP at 2 orbits before TCA com-
pared with the ∆v profile on the boundaries of the avoid-
ance region.

As previously discussed, Eq. 61 has four solutions. A
confirmation that those are two local maxima and two
local minima in terms of total cost of the manoeuvre is
achieved by the analysis of the objective function’s be-
haviour on each point of the elliptical boundary. This
analysis is done by sampling the ellipse of equal PoC with
300 points and solving optimal control problems where
the final position is constrained to each specific point.
Fig. 8 shows the results, where the stars indicates the four
solutions of the equation. The examined cases have sim-
ilar objective function structure, with the two minima lo-
cated at the opposite side of the ellipse and corresponding

to thrust mainly aligned with either the tangential or the
anti-tangential direction.

4.2.1. Miss distance constraint

Considering miss distance constraint and setting d = 0.3
km, the final positions in B-plane coordinates after the
controlled propagation are reported in Fig. 9. Similar to
the previous case, the “estimated” miss distance (com-
puted with rf resulting from Eq. 65) perfectly matches
the enforced value (maximum error: 1.1347 · 10−11 km).
The actual final miss distance trend, calculated after the
forward propagation, is displayed in Fig. 10; the profile
remains close to the threshold without ever exceeding it,
with a maximum deviation of 1.1687 · 10−4 km, three
orders of magnitude lower than the constraint value.
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Figure 9. Final position in B-plane r.f. reached after the
optimal CAM, for 100 manoeuvring points from 2 orbits
before TCA until the expected impact. EOP with ECI dy-
namics and constrained MD.
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Figure 10. Miss distance profile after the dynamics prop-
agation. EOP with ECI dynamics and constrained MD.

4.3. EOP in B-plane coordinates

The results relative to the EOP formulation in BP dynam-
ics are here reported. The same test case and the same



constraint values of Sec. 4.2 are considered. The method
described in Sec. 3.2 is applied and, after the control ap-
plication, the final positions for each ∆θ ∈ [0, 4π],
as expected, are almost indistinguishable from the ones
reached exploiting ECI dynamics. The two solutions with
ECI and BP dynamics are shown together on the same
enlarged area of the B-plane in Fig. 11 and a better un-
derstanding can be achieved from the comparison of the
trends of the final collision probability.
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Figure 11. Final position in B-plane r.f. reached after the
optimal CAM: comparison between EOP in ECI and BP
coordinates, constrained SMD (detail of Fig. 3).
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Figure 12. Collision probability profile after the dynam-
ics propagation: comparison between EOP in ECI and
BP coordinates, constrained SMD.

Fig. 12 shows the differences between ECI and BP dy-
namics in terms of final collision probability profile for
each true anomaly of the initial manoeuvre point, cal-
culated with the actual final position rf /bf obtained af-
ter the integration of the manoeuvred dynamics. Even
though the ECI algorithm is more accurate and it never
exceeds the threshold, both of them are close to the en-
forced value: for the B-plane algorithm the maximum de-
viation is 5.6354 · 10−8, still in the same order of mag-
nitude of the error with ECI coordinates, two order lower
than the threshold.

4.3.1. Miss distance constraint

The results of the EOP formulation with terminal func-
tion expressed in terms of miss distance are shown here-
after. As for the PoC/SMD case, the final position is
nearly indistinguishable from the achieved with ECI dy-
namics formulation. Fig. 13 shows the final miss distance
trend, computed through ECI and BP algorithm. The
maximum deviation in the BP behaviour, 3.3818 · 10−4

km, is acceptable compared to the one in ECI r.f. of
1.1687 · 10−4 km, three order of magnitude lower the
imposed value d = 0.3 km.
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Figure 13. Miss distance profile after the dynamics prop-
agation: comparison between EOP in ECI and BP coor-
dinates, constrained MD.

4.4. Perturbations effect

To test the accuracy of the EOP methods, a numerical
propagation of the non-linear equations of motion is per-
formed, using a more accurate dynamical model includ-
ing environmental perturbations.
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Figure 14. Final position in B-plane r.f. reached after
the optimal CAM propagated with high fidelity model ac-
counting for environmental perturbations; EOP in ECI
coordinates with constrained SMD.

The same test case is adopted for the validation. Due to
the fact that the collision occurs in LEO, the manoeuvre is



validated accounting for air drag perturbation (with coef-
ficient cD = 2.2 and area-to-mass ratio equal to 0.3) and
the first 10 Earth’s gravitational harmonics. The algo-
rithm presented in Sec. 3.1 is validated adjoining the per-
turbed dynamics: the problem in Eq. 34 is solved with the
analytical solution, hence the control profile is retrieved
with Keplerian dynamics and then it is applied and vali-
dated with a propagation using the more complete model.
The final position reached after the propagation, for each
initial point of the manoeuvre with ∆θ ∈ [0, 4π], is re-
ported in BP r.f. in Fig. 14. The results are almost indis-
tinguishable from the ones reached exploiting the two-
body problem dynamics (see Fig. 3). The two solutions
with Keplerian and perturbed dynamics are shown to-
gether on the same enlarged area of the B-plane in Fig. 15
and a better understanding can be achieved from the com-
parison of the trends of the final collision probability.
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Figure 15. Final position in B-plane r.f. reached after
the optimal CAM: comparison between Keplerian and
perturbed dynamic model; EOP in ECI coordinates with
constrained SMD. (Detail of Fig. 3 and Fig. 14).

Fig. 16 shows the differences between Keplerian and per-
turbed dynamics in terms of final collision probability
profile for each true anomaly of the initial manoeuvre
point, calculated with the actual final position rf ob-
tained after the integration of the respective dynamics.
Predictably, accounting for perturbations, the final colli-
sion probability deviates more from the enforced value
with respect to Keplerian dynamics propagation, model
in which the control is built. Nevertheless, the maximum
deviation with disturbances is 1.0531 ·10−7, a value that,
compared to the two-body model error 1.1729 · 10−8, is
acceptable and still one order of magnitude lower than the
threshold.
In conclusion, the variations introduced by atmospheric
disturbances are minimal. Thus, they can be consid-
ered negligible for the optimal control problem presented,
which turns out to be valid and accurate with the simple
Keplerian orbit model.
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Figure 16. Collision probability profile after the dynam-
ics propagation: comparison between Keplerian and per-
turbed dynamic model, EOP in ECI coordinates with con-
strained SMD.

4.5. Computational Time

In this section the computational time (CT) of the method
is analysed. The algorithms have been run on MATLAB®

2020a. Because the CT is of the order of fractions of sec-
ond, to have results independent of the specific simula-
tion conditions, every simulation is performed over 100
different collisions from the database and then averaged.
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Figure 17. Computational time contributions of the EOP
method with ECI dynamics and constrained SMD: time
required to find the analytical solution from Eq. 61, time
for the forward propagation and integration time of the
STM.

The CT required for the EOP solution with ECI dynam-
ics is plotted for ∆θ ∈ [0, 12π] in Fig. 17, showing the
different contributions. In case of CAM performed close
to the TCA, the integration time of the STM is low, but
anticipating the manoeuvre, it becomes the main contri-
bution.
Furthermore, consistently with the reduced dimension of
the optimal control problem (the OCP in B-plane coor-
dinates is has dimension two instead of six), the method
with BP coordinates tends to be slightly faster than the
algorithm with ECI dynamics.
The computational times obtained with MATLAB® are



in the order of magnitude of 10−1 seconds: they promise
good performances if implemented on-board.

5. CONCLUSIONS

A completely analytic solution for the energy-optimal
control problem (EOP) was proposed for the optimal
design of low-thrust collision avoidance manoeuvres
(CAMs). Overall, the main assumptions of the pro-
posed methods were constant and uncorrelated covari-
ances, short-term encounters and spherical object approx-
imation. The main conclusions are listed hereafter.

• Fully analytical solutions for continuous-thrust ma-
noeuvre designs were proposed and validated, con-
sidering constraints in terms of final collision prob-
ability, squared Mahalanobis distance and miss dis-
tance.

• The EOP formulation projected into B-plane was
found to be accurate and computationally more ef-
ficient than the algorithm in Cartesian coordinates,
consistently with the reduction dimension of the op-
timal control problem from dimension six for the
ECI formulation to dimension two.

• In the cases investigated, the optimal manoeuvres
proved to be not too far from purely tangential ma-
noeuvres in direction of the satellite’s velocity.

• It was verified that environmental perturbations in
LEO negligibly affect the accuracy of the method,
therefore the manoeuvre design using the approxi-
mation of Keplerian dynamics is accurate.

• Finally, the computational times obtained with
MATLAB® promise the feasibility of on-board im-
plementation or massive calculation of CAMs.

The main limitations of the energy-optimal approach pre-
sented are the unbounded control in terms of thrust and
acceleration and the non-optimal form in terms of pro-
pellant consumption. A possible future research activity
could focus on transforming the unbounded acceleration
profile into a bang-bang structure.

A. APPENDIX: R,K, AND D MATRICES

R is the 2D rotation matrix:

R =

[
0 0 −1

− sinβ − cosβ 0

]
where the angle β can be expressed as:

cosβ =
1− χ cosψ cosφ√

1− 2χ cosψ cosφ+ χ2

sinβ =
√

1− cos2 β

and:
φ = atan2[(vp × vs) · uh1,vp · vs]

ψ = tan−1
[

(vs · uh1) ‖vs × uh1‖
v2s − (vs · uh1)2

]
χ =

vs
vp
.

where uh1 is the normal of Op orbital plane.
The kinematics matrix K reads:

K =
−vp

√
Rc

µ sinαc 0

0 − cosαc sinφ cosψ√
1− cos2 ψ cos2 φ

sinψ√
1− cos2 ψ cos2 φ

0
cosαc sinψ√

1− cos2 ψ cos2 φ

sinφ cosψ√
1− cos2 ψ cos2 φ


where αc is the flight path angle of Op at the TCA which
obeys:

sinαc =
e0 sin θc√

e20 + 2e0 cos θc + 1
,

cosαc =
1 + e0 cos θc√

e20 + 2e0 cos θc + 1
.

The dynamics matrix D reads:

D =

√
R3
c

µ

[
dtr dtθ 0
drr drθ 0
0 0 dwh

]

where dtr, dtθ, drr, drθ and dwh are non-dimensional
functions of time that can be derived using the gener-
alised Pelaez’ orbital elements (see [21]) of the initial Op
orbit:

q10 =
e0√

1 + e0 cos θc
,

q30 =
1√

1 + e0 cos θc
.

drr =
sin (θc − θ)

q30(q30 + q10 cos θc)2
,

drθ =
2q30(1− cos((θc − θ)))− q10 sin θ sin (θc − θ)

q30(q30 + q10 cos θ)(q30 + q10 cos θc)2
,

dwh =

√
q230 + q10q30 cos θc
q30 + q10 cos θ

sin (θc − θ),

dtr =
1

q30(q230 − q210)2(q30 − q10 cosE)

× [er1(Ec − E) + er2(sinEc − sinE)

+ er3(sin 2Ec − sin 2E) + er4(cosEc − cosE)

+ er5(cos 2Ec − cos 2E)],

dtθ =
1

q30(q230 − q210)5/2(q30 − q10 cosE)

× [eθ1(Ec − E) + eθ2(sinEc − sinE)



+ eθ3(sin 2Ec − sin 2E) + eθ4(cosEc − cosE)

+ eθ5(cos 2Ec − cos 2E)],

where:

eθ1 = 3q30(q230 − q210),

eθ2 =
1

2
[3q310 − (2q230 − q210)(4q30 cosE − q10 cos 2E)],

eθ3 =
q10q30

4
[4q30 cosE − q10(3 + cos 2E)],

eθ4 = q30[(4q230 − 2q210) sinE − q10q30 sin 2E],

eθ5 = −q10

4
[(4q230 − 2q210) sinE − q10q30 sin 2E],

er1 = 3q10q30 sinE,

er2 = −2(q230 + q210) sinE,

er3 =
q10q30

2
sinE,

er4 = −2q30(q30 cosE − q10),

er5 =
q10

2
(q30 cosE − q10).

where Ec and E are the eccentric anomalies correspond-
ing to θc and θ respectively, and accounting for multiple
revolutions.
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