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ABSTRACT

In this work, the effect of uncertainties in the re-entry
and break-up of satellites is combined with a destructive
re-entry analysis of object-oriented codes. The approach
used to model the re-entry and propagate the relevant un-
certainties is based on the continuity equation, where the
uncertainty probability density is propagated alongside
the trajectory to predict its evolution in time. The prop-
agation can only be done for discrete points in the state
space so that density reconstruction must be performed.
This is achieved using the Starling suite developed at the
Politecnico di Milano. The developed framework is in-
tegrated with an object-oriented approach so that the un-
certainties related to the parent spacecraft re-entry, the
break-up, and the child components re-entry are consid-
ered in a comprehensive fashion. The framework is ap-
plied to relevant test cases of uncontrolled re-entries and
the results.

Keywords: re-entry, demise, object-oriented, gaussian
mixture models, casualty risk.

1. INTRODUCTION

The analysis fo the re-entry of space objects and of the
possible effects they may have on people and properties
on the ground is an important task. In fact, when a space-
craft re-enter the Earth’s atmosphere, operators must en-
sure that the casualty risk on ground derived by possible
surviving fragments is lower than the well-known limit
of 10−4 for uncontrolled re-entries. The compliance with
this regulation has also to be verified during the design
and development phases of a space missions. This ul-
timately means that a spacecraft can be disposed via un-
controlled re-entry only if its design guarantees a casualty
risk below the aforementioned threshold. In case this is
not possible, more expensive controlled re-entry strate-
gies must be employed. To verify the compliance of a
spacecraft design, operators and manufacturers perform
analyses using destructive re-entry codes, which analyse
the demise of the spacecraft and predicts the landing of
the surviving fragments, together with their casualty risk.

Among these software suite, the most commonly used are
the so-called object-oriented models [2, 4, 19, 21, 20, 22].
With these kinds of codes, the spacecraft is schematised
in a hierarchical fashion subdividing the main spacecraft
structure (the parent) from the internal components (the
children). All the components are modelled using basic
geometrical shapes and the aero-thermodynamics loads
are assessed via engineering correlations and averaging
factors. These types of codes are in general determinis-
tic and rely on Monte Carlo techniques to perform un-
certainty analyses, running a large number of simulations
changing initial conditions and relevant parameters.

In this work, we explore the possibility of interfacing
the deterministic nature of object-oriented codes with the
statistically-based continuum propagations. In a con-
tinuum propagation, the uncertainty probability density
associated to the uncertainties is propagated alongside
the equations of motion, using the continuity equation,
so that the actual evolution of the probability density is
available as a function of space and time. Such a method-
ology has been already applied to the propagation of
interplanetary dust, swarms of satellites, Earth orbiting
fragments derived from collisions, and in re-entry appli-
cations [6, 12, 17, 18, 3]. In this work, this methodology
is subsequently applied to the different phases that char-
acterise object-oriented simulations. First, to the propa-
gation of the parent spacecraft until break-up. Then, to
model the break-up event describing a random impulse
given to the internal components by the erratic behaviour
and the explosion occurring at break-up. Finally, to the
analysis of the internal components until they reach the
ground or demise. When using the continuum propaga-
tion, the value of the density is only known at discrete
points in the state space. Therefore, a reconstruction
methodology must be used to obtain the uncertainty dis-
tribution in the entire domain. In this work, a fitting is
performed using the Starling suite developed at the Po-
litecnico di Milano, which is currently based on Gaus-
sian Mixture Models (GMM) [3]. The current work si
based on previous works [17, 18] and expands on them
by introducing the mass loss dynamics into the equations
of motion and the density conservation equation. The
challenges and limitations of introducing such equation
for the propagation and the continuity hypothesis are dis-
cussed. The continuum propagation and the reconstruc-
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tion methodology using Starling is applied to a relevant
example, highlighting the capabilities of the methodol-
ogy and its integration with object-oriented codes. The
difference between the implementations with and without
including the mass loss to the dynamics is also discussed.

2. METHODOLOGY

This section outlines the methodology used in this work,
which is based on a continuum approach to uncertainty
propagation and its interface with object-oriented de-
structive re-entry codes. First, a brief overview of
object-oriented re-entry codes is given and the possibility
of interfacing the continuum propagation its discussed.
Subsequently, the continuum-based methodology is de-
scribed, together with the dynamical model used in the
present work.

2.1. Object-oriented destructive re-entry codes

Object-oriented destructive re-entry codes are used in the
field of re-entry to predict the level of demise of a re-
entering object and assess its possibility to be a threat for
people and properties on the ground [13, 14, 10, 19, 20,
21, 23, 22]. They are routinely used by national and in-
ternational space agencies to perform risk assessment of
re-entry campaign and check the compliance of space-
craft with the casualty risk regulations. In general, the
main features of these types of codes are:

• Hierarchical spacecraft definition;

• Schematisation of components and structures with
primitive shapes (cube, cylinder, sphere, and flat
plate);

• Use of engineering correlations for aerodynamics
and aerothermodynamics interactions.

The first hierarchical level is the main spacecraft struc-
ture (the parent object). Here the overall spacecraft mass
and dimensions are specified. In addition, the solar pan-
els can be defined and schematised as flat plates. The
re-entry simulation of the solar panels is not performed
and they are assumed to demise; however, their area is
taken into account in the computation of the aerodynamic
cross-section of the satellite until they detached at a user
specified altitude [5, 4, 11]. The second level defines the
main internal components and subsystems such as tanks
and reaction wheels assemblies. Additional levels can be
used for the definition of sub-components such as battery
cells.

The simulation of an object-oriented code can be broadly
divided into three parts. A first part that only takes into
account the parent spacecraft, until the main break-up al-
titude is reached. In this phase, only the parent structure

can interact with the external heat flux. It is assumed that
the internal components do not experience any heat load
during this phase. A second part that simulates the main
break-up of the spacecraft. In this case, the user usually
sets a threshold that triggers the break-up such as the al-
titude or the heat load for example. Usually, the internal
components are then released with the same state as the
parent at the break-up instant. However, additional break-
up conditions, such as small impulses that can further
scatter the internal components can be modelled [18, 9].
After the break-up, the internal components are released
and their trajectory and demise analysed.

In the present work, these three phases that characterise
object-oriented codes, are tackled from a continuum point
of view. With this respect, uncertainties are included in
each one of these phases. First, the uncertainties related
to the parent spacecraft are taken into account until break-
up. Subsequently, the break-up is modelled via break-up
model, which describes the impulse given at the break-up
via a distribution function, which is combined with the
uncertainties of the parent spacecraft. This combination
results in the initial conditions for the propagation of the
internal components. The internal components are then
propagated taking into account their uncertainties.

2.2. Continuum-based propagation

As previously mentioned, the proposed methodology is
based on the continuum approach for the propagation of
the probability density of re-entry uncertainties. This can
be obtained applying the continuity equation to the spe-
cific dynamical problem in exam.

∂n(x, t)

∂t
+∇ · f(x) = ṅ+ − ṅ−, (1)

where n(x, t) is the density at time t and state x,∇· f(x)
represents the forces acting on the system from slow, con-
tinuous phenomena such as gravity and atmospheric drag,
and ṅ+− ṅ− represents the fast and discontinuous events
(sources and sinks). For the case in exam, the source and
sink terms are neglected. Knowing the probability den-
sity distribution at the initial time, n(x, 0), Eq. (1) allows
the propagation of the density evolution in time. This is
a Partial Differential Equation (PDE) with the joint Prob-
ability Distribution Function (PDF) n(x, t) being the de-
pendent variable. Such an equation regulates the con-
servation of the total probability mass of the joint PDF
through its spatial-temporal evolution due to the forces
acting on the system.

Eq. (1) can be solved using the Method of Character-
istics (MOC), where the partial differential equation is
transformed into a set of Ordinary Differential Equations
(ODE) as follows [6]:
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. . .
dαm
ds = vαm(α1, . . . , αm)
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ds = −

[
∂vα1

∂α1
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∂αm

]
n(α1, . . . , αm)

(2)

where s is the independent variable, (α1, . . . , αm) are the
state variables of the system. It is possible to observe how
the evolution of the density is regulated by the trace of the
Jacobian of the dynamics describing the system.

As it is convenient to express the evolution of the re-
entry trajectory using re-entry parameters, we specialize
Eq. (2) to the re-entry problem, where we have used the
radius as the independent variable.

where λ is the longitude, ϕ the latitude, v the velocity, γ
the flight-path angle, β = m

CDS
the ballistic coefficient,

α = CLS
m a modified lift coefficient of the re-entering ob-

ject, and gr and gϕ are the radial and transversal compo-
nents of the gravitational acceleration, respectively. The
expression for the derivative of the density as a function
of r has not been expanded for a better readability.

In this expression, the primes refers to partial derivatives
with respect to the radius. Any gravitational and atmo-
spheric model can be used, as long as they can be mod-
eled with a continuous and differentiable function. For
the case in exam, the 1976 US Standard Atmosphere [15]
was considered for the atmosphere and a model including
the effects of the Earth oblateness for the gravitational ac-
celeration [16].

The system of Eq. (3) has to be numerically integrated.
The integration can be performed using a standard ODE
solver such as the Runge-Kutta method. In such fashion,
the time evolution of the density in the considered state
space can be obtained for a specified set of time instants.
As the solution for the re-entry problem is not analytical,
it is necessary to sample the initial density distribution
and to integrate the system of Eq. (3) for each one of the
sampled points. Subsequently, the distribution can be re-
constructed at each time step by fitting the scattered data
over the state space domain.

The dynamics of Eq. (3) can be used to describe the mo-
tion of a component under uncertainties when its mass
is not changing. This type of dynamics can be used to
analyse the motion of the parent spacecraft and of those
internal components that tend not to demise, such as the
ones made of high melting point materials (e.g. titanium
alloys, ceramics).

2.2.1. Components demise

For components made with materials with lower heat re-
sistance, it is necessary to include the mass variation in-
side the equations of motion. In the current work the mass

variation is considered by using a lumped mass model
[17, 22]. Eq. (4) describes the variation of mass with the
radius as this is the independent variable chosen for this
work.

m′ =

{
− Aw
hfv sin γ (Fq q̇ − εσT 4) if Q ≥ Qm

0 elsewhere
(4)

where Aw is the component wet area, hf is the material
heat of fusion, ε is the material emissivity, σ is the Stefan-
Boltzman constant, T is the temperature in Kelvin, q̇ is
the conductive heat rate acting on the component, and Fq
is a shape factor that takes into account the shape and
motion of the components. Shape factors are commonly
used in combination of engineering correlations to esti-
mate the average heat rate on a component of a given
shape and motion. The contribution of v sin γ is included
to convert the independent variable from time to radius.
Q and Qm are the integral heat load on the component
and the integral heat load required to reach the melting
temperature respectively. If we consider temperature in-
dependent material properties, Qm can be expressed as
follows:

Qm = mcp(Tm − T0), (5)

where m is the mass of the object, cp the heat capacity
at constant pressure of the material of the object, and Tm
and T0 are the melting temperature and initial tempera-
ture, respectively. The initial temperature is commonly
set to 300 K. The condition in Eq. (4) expresses the com-
mon fact that, in a lumped mass model, the object starts to
lose mass only after the melting temperature is reached.

The expression of the heat rate, q̇, is based on the Detra-
Kemp-Riddel correlation as follows [22]:

q̇ = 1.99876× 108

√
0.3048

rn

√
ρ

ρSL

(
v

7924.8

)3.15

(6)

where rn is the nose radius of the component, ρ is the
free-stream density, ρSL is the sea-level atmospheric den-
sity and v is the free-stream velocity. The tempera-
ture dependence in Eq. (4) is considered in a simpli-
fied fashion. The temperature can be expressed as T =
min (T0 +Q/(mcp), Tm), where the integral heat load
Q can be integrated together with the set of equations of
motion.

Including Eq. (4) into the continuum approach presents
also the added difficulty that such expression is not con-
tinuous. In fact, a discontinuity is presented by the fact
the the mass loss is null before the component reaches
the melting temperature, and abruptly switch to a finite
value once the melting temperature is reached. To tackle
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this issue, a simple yet effective method, is to halt the
propagation once the threshold is met and restart it. This
procedure allows for the conservation of the probability
density throughout the motion, including the demise dy-
namics into the set of equations of motion.

Of course, the inclusion of Eq. (4) into the equations of
motions, also requires to take care of the evolution of the
probability density, which in turns consists into adding a
component to the trace of the Jacobian. However, in this
case, Eq. (4) does not directly depend on the mass, so that
we have

∂m′

∂m
= 0. (7)

Therefore, adding the lumped mass model to the dynam-
ics does not directly change the equation governing the
evolution of the density.

2.3. Break-up uncertainties

As introduced in Section 2.1, in object oriented code the
modelling phases also include the break-up of the par-
ent spacecraft and the subsequent dispersion of the in-
ternal components. In this work, we take into account
the break-up of the parent spacecraft using a probability
distribution to generate a delta-V impulse that is given
to the internal components at the break-up instant. We
use a probability function to describe such a behaviour
as it can take into account the uncertainties in the pro-
cess and is also perfectly integrate with the philosophy
of the continuum approach. For this work, the break-
up induced impulse is modelled via the NASA Standard
Break-up Model (SBM) [8]. This model has been orig-
inally developed for in-orbit breakups and its use in re-
entry simulation is a preliminary extrapolation. Nonethe-
less, the NASA SBM has already been adopted in ESA

DRAMA to describe the possible explosions and conse-
quent fragmentation of components during re-entry [5].
In that context it was used by directly sampling the distri-
bution to generate the fragments in a Monte Carlo fash-
ion. In this case, it is used to model the ejection velocity
and direction that can be imparted to a component during
the break-up event.

The NASA SBM models the ejection velocity of a com-
ponent at break-up through a log-normal distribution as
follows:

p∆v(χ, ν) = N (µ(χ), σ(χ), ν), (8)

where N is a Normal distribution, χ = log10(A/M) is
the logarithm in base ten of the area-to-mass ratio, ν =
log10(∆v), and µ(χ) = 1.85 + 0.2 · χ and σ(χ) = 0.4
are the mean and standard deviation of the Normal distri-
bution. Here, the coefficients for explosions of the NASA
SBM have been used.

Eq. (8) provides the expression for probability distribu-
tion of ∆v as a function of ν. The first step is thus to
transform it into an expression as a function of ∆v as fol-
lows:

pA/M,∆v(A/M,∆v) =
p∆v(χ, ν)

log(10)
2 ·∆v ·A/M

. (9)

where p∆v(χ, ν) is the distribution obtained from the
NASA SBM in the variables χ and ν, Deltav is the im-
pulse imparted to the object, and A/M is the area-to-
mass ratio of the object. The probability value p∆v(∆v)
can be then obtained by marginalization of Eq. (9). The
∆v provided by the NASA SBM only gives the abso-
lute value of the impulse; however, to properly model the
break-up we consider that the ejection can happen ran-
domly in any direction relative to the S/C re-entry veloc-
ity. Therefore, the provided impulse is transformed into



a vector quantity ∆v = (∆vx,∆vy,∆vz), where the x
axis is oriented along the North direction, the z axis is
oriented along the radial direction, ant the y axis comes
from applying the right-hand rule (Fig. 1).

Figure 1: Reference frame for the velocity decomposition
to compute the velocity after the break-up impulse.

The decomposition of the absolute velocity into its com-
ponents, requires a transformation of the probability den-
sity of Eq. (8) as follows:

p∆v(∆v) =
p∆v(∆v)

4π∆v2
, (10)

The contribution of the ∆v impulse is then combined to
the velocity of the object before the break-up event. In
this way, we obtain a fully statistical description of the
event. The velocity of the internal component after the
break-up will thus be a combination of the parent velocity
and the break-up impulse given by the NASA SBM.



v̂ =

√
(vx + ∆vx)2 + (vy + ∆vy)2+

(vz + ∆vz)
2

γ̂ = tan

(
vz+∆vz√

(vx+∆vx)2+(vy+∆vy)2

)−1

χ̂ = tan

(
vy+∆vy
vx+∆vx

)−1

(11)

where v̂, γ̂, and χ̂ are the velocity magnitude, flight-path
angle, and heading angle after the break-up, and vx, vy ,
and vz are the same components before the break-up, ex-
pressed in the same reference frame as the ∆v compo-
nents, which can be expressed as follows:


vx = v cos γ cos(2π − χ)

vy = v cos γ sin(2π − χ)

vz = v sin γ

(12)

To overlap the break-up distribution with the parent dis-
tribution, consider the parent spacecraft at break-up point
has an uncertainty distribution p(v, γ, χ), and that the
impulse uncertainty p∆v(∆v) is independent from this
state. We can then create an extended probability distri-
bution as follows:

p(v, γ, χ,∆vx,∆vy,∆vz) = p(v, γ, χ) · p(∆v). (13)

Applying Eq. (11) and using the Dirac generalized trans-
formation we can obtain the distribution in the new vari-
ables after the break-up (v̂, γ̂, χ̂) in Eq. (14), where
det J(ϕ) is the determinant of the Jacobian of the trans-
formation of Eq. (11).

The values of vx, vy , and vz are then obtained inverting
the transformation of Eq. (11).

3. APPLICATION TO THE OBJECT-ORIENTED
PARADIGM

In this section, the methodology described in Section 2 is
applied to a test case with a typical object-oriented sim-
ulation pipeline. Recalling Section 2.1, the pipeline is
essentially constituted by three phases: the parent space-
craft simulation, the break-up event, and the internal
component analysis. In the following section, we will
show the application of the continuum approach to each
of these sections.

3.1. Parent spacecraft simulation

As previously mentioned, we first simulate the trajectory
of the parent spacecraft. The trajectory starts from an alti-
tude of 120 km and is propagated up to a standard break-
up altitude of 78 km. The initial conditions and relevant
simulation parameters are summarised in Table 1.

Table 1: Mean and standard deviation for the initial con-
ditions of the parent spacecraft and values of the relevant
parameters.

Initial state Symbol Unit µ σ
Longitude λ0 ° 10.0 0.2
Latitude ϕ0 ° 0.0 0.2
Velocity v0 km/s 7.6 0.012
Flight-path angle γ0 ° -1.5 0.05
Heading angle χ0 ° 90 0.2
Parameter Symbol Unit Value
Initial altitude h0 km 120
Ballistic coeff. β kg/m2 500.0
Lift coefficient α m2/kg 0.0

The trajectory of the parent spacecraft is then simulated
using Eq. (3) up to the break-up altitude. After the sim-
ulation, at each time step, we have the evolution of the
parent trajectory and its associated uncertainty density.
As the probability is only known at discrete point, a fit-
ting is required, which is performed using the Starling
suite [3] developed at the Politecnico di Milano, which
is based on Gaussian Mixture Models. Fig. 2 shows an
example of the distribution reconstructed with Starling at
the predefined break-up altitude of 78 km.



p(v̂, γ̂, χ̂) =

∫
p(vx, vy, vz,∆v) δ(v̂ − ϕ1) δ(γ̂ − ϕ2)δ(χ̂− ϕ3) dvx dvydvz d∆v

=

∫∫∫
p(v̂, γ̂, χ̂,∆v)

|det J(ϕ)|
d∆vx d∆vy d∆vz, (14)

Figure 2: Snapshot fit using Starling at the break-up alti-
tude of 78 km.

3.2. Break-up event

To model the break-up event, we combine the snapshot
of Fig. 2 with a the delta-V impulse distribution obtained
from the NASA SBM as described in Section 2.3. To
obtain the distribution it is also necessary to provide the
area-to-mass ratio of the considered component. The
component selected for this test case is a reaction wheel,
which is a component that usually survives re-entry. The
characteristics of the considered reaction wheel are sum-
marised in Table 2.

Table 2: Characteristics of the reaction wheel used in the
test case.

State Symbol Unit Value
Diameter D cm 15.66
Height H cm 6.26
Mass m kg 9.5
Drag coefficient CD 1.535
Cross-section (average) S m2 0.0161

Fig. 3 shows an example of the initial conditions ob-
tained sampling the break-up distribution obtained from
Eq. (14). This is only a subset of the state space, limited
to the (v, γ, χ) variables, as they are the only ones af-
fected by the break-up. Latitude and longitude are left un-
changed as the break-up event is assumed instantaneous.

From the figure we can observe a distribution with a
fairly localised peak around the average values of veloc-
ity, flight-path angle and heading angle. This is a result
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Figure 3: Break-up distribution in v, γ, χ obtained with
the procedure of Section 2.3.

of the sampling from a log-normal distribution. It is also
a reasonable distribution as we can expect the impulse
given by the break-up event to be smaller than the veloc-
ity of the spacecraft, which is in the order of kilometres
per second.

3.3. Internal components analysis

Once the initial conditions for the internal components
after break-up have been obtained following the proce-
dure of Section 3.2, we can analyse their re-entry trajec-
tory. The procedure is analogous to the one of the par-
ent spacecraft: the trajectory is propagate using Eq. (3)
for 500 sampled points and then reconstructed at each
snapshot using the Starling suite. Fig. 4 shows an ex-
ample of the fitting results obtained using Starling, for
the landing snapshot. In the figure, the off diagonal plots
represent the scatter data points used in the fitting, while
the orange crosses represent the position of the kernels
of the GMM surrogate model. The diagonal plots instead
show the marginals obtained using Starling in orange, and
the corresponding histogram approximated using Monte
Carlo. The results of the fitting are comparable to the
Monte Carlo simulation.

The advantage of the Starling approach is the possibility
to retrieve the uncertainty distribution and its marginals
as a continuum function that is a sum of Gaussian kernels.
This is a considerable advantage for the post-processing
of the results. We present here an application in which
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Figure 4: Landing snapshot fit using Starling. The orange
crosses are the kernel locations of the Gaussian distribu-
tions. On the main diagonal plots a comparison between
the marginal obtained with the fitting (in orange) and the
histogram obtained with Monte Carlo.

the marginal in longitude and latitude hs been extracted
from the landing snapshot and combined with the Grid-
ded World population [1] to compute the casualty risk.
In fact, by multiplying the landing probability at a loca-
tion with the population density and the cross-section of
the component we can obtain a risk map, an example of
which is shown in Fig. 5.
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Figure 5: Casualty risk distribution for the reaction wheel
test case.

3.4. Demisability analysis

The previous example has been obtained considering that
the object is not subject to mass loss. As this is not neces-
sarily the case for several internal components, it is nec-
essary to include the the mass variation into the equations
of motion Eq. (4). Given the nature of the continuum ap-

proach, in order to add the mass to the propagation, it is
necessary to add to the initial distribution an uncertainty
in the mass parameter, which is then propagated together
with the probability density. For the case in exam, the
standard deviation associated to the mass is σm = 0.1 kg,
for an average mass equal to the one of the previous case
and reported in Table 2. The considered material is the
stainless steel AISI304 with the following properties:

Table 3: AISI304 material properties.

Variable Symbol Unit Value
Density ρm kg/m3 7900
Melting temp. Tm K 1650
Heat of fusion hf J/kg 286098
Heat capacity Cp J/kg/K 545
Emissivity ε 0.35

Such a component and material combination has been se-
lected as it allows to have a simulation in which the mass
starts to decrease at a certain point during the re-entry,
but the component does not completely demise. Instead,
when the heat load is not sufficient any more, the demise
stops and the mass does not vary any more. An exam-
ple of this behaviour is presented in Fig. 6, where we
can observe the stable evolution of the probability den-
sity until an altitude of about 55 km, with the mass stable
around the mean value of 9.5 kg. Once a certain altitude
is reached, the component starts to lose mass. As ex-
pected, the mass loss is concentrated in a relatively small
altitude interval. In fact, the mass loss stops at an altitude
of about 45 km, and remains stable until the end of the
propagations.

Figure 6: Mass distribution variation as a function of the
altitude.

It is possible to observe in Fig. 6 that the simulations
stops just below an altitude of 20 km. Differently to the
previous test case (Section 3.3), where the full trajectory
had been solved and fitted with Starling, in this case, the
fitting was achieved until an altitude of 18 km. Below this
altitude, the GMM surrogate model of Starling could not
converge. Fig. 7 shows the evolution of the probability
integral obtained from the fitting with Starling.



Figure 7: Evolution of the total probability as a function
of the altitude.

It is evident from the figure that the stability of the fit-
ting is high in the initial part of the trajectory, right up
until the mass loss starts. When this happens, the fit-
ting is still stable but the value of the total integral has
higher oscillations. This behaviour indicates that includ-
ing the mass loss equation into the continuum dynamics
reduces the stability of the fitting. This is possibly due to
the non-continuous nature of Eq. (4), to the extension of
the state space, which is now six-dimensional instead of
five-dimensional, and to the added non-linearities intro-
duced by the change of mass during the propagation.

Fig. 8 shows an example of a snapshot that the GMM
surrogate model of starling was not able to fit. It is in-
teresting to discriminate between the physical state space
of the propagation and the space in which Starling per-
forms the fitting. The lower-triangular part of the plot
represents the actual physical space. It is possible to ob-
serve how some of the variables, velocity, flight-path an-
gle and mass, show a strong correlation. This correlation
becomes stronger as the propagation progresses and can
be among the reasons for a reduced fitting stability. In
fact, in general, it is difficult for fitting and interpolation
routines to deal with these types of domains. The upper-
triangular part of the plot is, instead, the space in which
Starling performs the fitting to the GMM. This space is
obtained via a standardisation and principal component
decomposition of the state space. This is a standard pre-
processing procedure to improve the stability of fitting
routines. In this case, however, the non-linearities intro-
duced by the re-entry dynamics generate a domain that
is difficult to fit for GMM surrogate models. In fact, the
highly distorted, non-Gaussian behaviour, together with
bounded set of points make this type of domain challeng-
ing to fit for Starling. Possible mitigation measures may
be taken to improve the quality and stability of the fitting.
Examples are a variable transformation or the dimension-
ality reduction, exploiting the correlations that forms dur-
ing the propagation between some of the variables in play.

4. CONCLUSIONS

The presented work has outlined a methodology to propa-
gate and reconstruct re-entry uncertainties using the con-
tinuity equation and Gaussian Mixture Models and its

integration with object-oriented codes: from the parent
simulation, to the internal components analysis, passing
through the modelling of the break-up event. In addition,
the mass loss dynamics has been included into the equa-
tions of motion. The models were applied to a represen-
tative test case in which a spacecraft trajectory is prop-
agated until break-up and its uncertainties are then used
in combination with a break-up model to obtain the ini-
tial conditions for the release of an internal component.
In this particular case, the re-entry of a reaction wheel
has been considered. The results show that the contin-
uum propagation combined with the Starling suite is able
to capture the evolution of the trajectory and its uncer-
tainties with a limited number of samples. In addition,
the marginal distribution in longitude and latitude can be
readily obtained and used for the prediction of the on-
ground casualty risk. This is achieved by combining the
resulting landing probability with the population density
in the same area and the casualty area of the surviving
fragment, giving a more realistic and statistically sound
prediction. The same test case has then been applied in-
cluding the contribution of the mass loss. The propaga-
tion and reconstruction has been achieved until an altitude
of about 20 km, with a good fitting stability. It has been
observed how the mass loss introduces some difficulties
in the propagation and fitting of the probability density.
First, the mass loss equation has a discontinuity, which
must be properly included into the continuum propaga-
tion, for example, by stopping and re-starting the integra-
tion. Secondly, including the mass both extend the di-
mension of the state space to be fitted and introduces fur-
ther non-linearities that make the fitting more challeng-
ing. Nonetheless, the methodology has been integrated
with the object-oriented paradigm. Its application can be
still explored, possibly considering alternatives to the fit-
ting via GMM surrogate models [7].

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 679086 - COMPASS).

REFERENCES

1. Center for International Earth Science Information
Network (CIESIN). Gridded Population of the
World, Version 4 (GPWv4), 2018. URL https:
//doi.org/10.7927/H4PN93PB. Accessed:
2020-06-20.

2. J. Dobarco-Otero, R. Smith, K. Bledsoe, R. Delaune,
W. Rochelle, and N. Johnson. The object reentry sur-
vival analysis tool (orsat)-version 6.0 and its applica-
tion to spacecraft entry. In Proceedings of the 56th
Congress of the International Astronautical Federa-
tion, the International Academy of Astronautics, and

https://doi.org/10.7927/H4PN93PB
https://doi.org/10.7927/H4PN93PB


Figure 8: Example of snapshot with unsuccessful fitting. Physical state space in the lower-triangular part. Fitting space in
the upper-triangular part.

International Institute of Space Law, IAC-05-B6, vol-
ume 3, pages 17–21, 2005.

3. S. Frey, C. Colombo, S. Lemmens, et al. Applica-
tion of density-based propagation to fragment clouds
using the starling suite. In 1st International Orbital
Debris Conference (IOC), pages 1–10, 2019.

4. J. Gelhaus, N. Sanchez-Ortiz, V. Braun, C. Keb-
schull, J. C. de Oliveira, R. Dominguez-Gonzalez,
C. Wiedemann, H. Krag, and P. Vorsmann. Upgrade
of DRAMA-ESA’s Space Debris Mitigation Analy-
sis Tool Suite. In ESA Special Publication, volume
723, page 62, 2013. ISBN 1609-042X.

5. J. Gelhaus, C. Kebschull, V. Braun, N. Sanchez-
Ortiz, E. Parilla Endrino, J. C. de Oliveira, and
R. Dominguez-Gonzalez. Upgrade of ESA’s Space
Debris Mitigation Analysis Tool Suite. Technical Re-
port ESA contract 4000104977/11/D/SR, European
Space Agency, 2014.

6. N. N. Gor’kavyi, L. M. Ozernoy, and J. C. Mather.
A New Approach to Dynamical Evolution of In-
terplanetary Dust. The Astrophysical Journal, 474
(1):496–502, jan 1997. ISSN 0004-637X. doi:
10.1086/303440.

7. A. Halder and R. Bhattacharya. Dispersion Analysis
in Hypersonic Flight During Planetary Entry Using
Stochastic Liouville Equation. Journal of Guidance,
Control, and Dynamics, 34(2):459–474, 2011. doi:
10.2514/1.51196.

8. N. L. Johnson, P. Krisko, J.-C. Liou, and P. Anz-
Meador. Nasa’s new breakup model of evolve
4.0. Advances in Space Research, 28(9):1377–1384,
2001.

9. S. Limonta, M. Trisolini, S. Frey, and C. Colombo.
Modelling the break-up and re-entry propagation of

meteorites through a continuum approach. Number
IAC-20-C1.2.10, oct 2020.

10. T. Lips and B. Fritsche. A compari-
son of commonly used re-entry analysis
tools. Acta Astronautica, 57:312–323, 2005.
doi: 10.1016/j.actaastro.2005.03.010. URL
http://search.ebscohost.com/login.
aspx?direct=true{&}db=edselp{&}AN=
S0094576505000767{&}site=eds-live.

11. C. E. Martin, J. E. Cheeses, N. Sanchez-Ortiz,
H. Klinkrad, K. Bunte, S. Hauptmann, B. Fritsche,
and T. Lips. Introducing the ESA DRAMA tool. Sci-
ence and Technology Series, 110:219–233, 2005.

12. C. R. McInnes. Autonomous ring formation for a
planar constellation of satellites. Journal of Guid-
ance, Control, and Dynamics, 18(5):1215–1217,
1995. ISSN 07315090. doi: 10.2514/3.21531.

13. National Astronautics and Space Administration.
ORSAT, 2009. URL http://orbitaldebris.
jsc.nasa.gov/reentry/orsat.html.

14. National Astronautics and Space Administra-
tion. Debris Assessment Software, 2015. URL
http://orbitaldebris.jsc.nasa.gov/
mitigate/das.html.

15. National Oceanic and Atmospheric Administration.
U.S. Standard Atmosphere 1976, 1976.

16. A. Tewari. Atmospheric and Space Flight Dy-
namics: Modeling and Simulation with MAT-
LAB® and Simulink®. Birkhäuser, 2007. ISBN
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