
Streak detection of space debris 
by a passive optical sensor
Rudolf Haussmann1, Paul Wagner2, Tim Clausen2

1Kormoran Technologie, Alte Poststraße 24, 88690 Uhldingen-Mühlhofen, Germany
2German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring 38-40,

70569 Stuttgart, Germany

Abstract

We are developing a passive optical system for the detection of space debris and the determination of their orbits
to allow subsequent laser ranging to uncatalogued objects. In this contribution the focus is on the software for
processing the images and performing the subsequent calculations. The hardware is a sensitive camera which
records pictures every few seconds of a fixed segment of the sky. The software runs in an independent process,
loads the images one after the other and starts the calculations. The hardware and the software communicate via
inter process communication using a named pipe or a message queue. The software works in four steps. In a first
step a smoothed background image is calculated and subtracted from the original image. In this way the spectral
curve in the histogram is contracted into a sharp peak with a small width which represents the background light
of the blue sky. A star, a satellite or a space-debris part must be brighter than the background light. On the upper
intensity side of the background peak we define a robust threshold value which is used to identify the objects to
be observed as regions with larger intensities than the threshold. This method works quite well and independent
of the position of the pixel, whether the position is close to the center of the image or close to the boundary or
somewhere in between. The main challenge is to establish a robust detection of the objects under a wide range of
optimal, normal, and weird conditions which include black night, gray dawn, partly clouded skies,  and lens
flares.

Thus, in a second step the objects (a point for a star or a streak for a satellite or space-debris part) are detected.
The related  x/y  coordinates  are  calculated  in  pixel  units  in  the  image coordinate  system.  This  is  done  by
calculating intensity moments and by adjusting an intensity function. Then, in the third step we transform to
ra/dec (right ascension/declination)  coordinates  of  the equatorial  coordinate frame.  For this purpose we use
astrometry. The observed stars are compared with known star positions of a catalogue in a database so that the
parameters for the transformation are determined. Then the positions of the satellite and space-debris streaks are
transformed from x/y to ra/dec. In a fourth step the streaks of satellites and debris objects observed in several
different images are combined into traces in the sky which represent the orbits of space objects. Streaks are
correlated by the angular velocity and direction. Finally, we fit a straight trace line with constant velocity into the
observed data. This way we obtain a circular fit of the satellites and the debris trajectory. Eventually, for each
found orbit the results are written into a “tracking data message” (TDM) which allows data sharing with other
stations or databases. We present results for images taken under some representative conditions which are clear
skies at deep night, partly clouded skies, and weird conditions with severe overexposure and lens flares.
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1 Introduction
A higher number of space debris leads directly to an increased collision risk of active satellites. Already small
debris can lead to major damage to an active satellite. To prevent collisions between active satellites and debris,
the space debris in the orbits must be regularly cataloged. The orbit of the space debris must be measured and
predicted  with a  high degree  of  accuracy.  For  objects  in  low Earth orbit  (LEO),  the  laser  ranking method
provides accurate predictions [1]. In order to measure the range of an object using laser runtime measurements
the object needs to be tracked. Due to the small field of view (FOV) of a tracking system the object orbits need
be known prior to observation. This requires a separate sensor network to deliver orbital predictions to a laser
ranging system. Currently only radar systems are used for detection of unknown objects in LEO. Their downside
is their high hardware and operating cost. This is why a passive optical staring system is developed, to detect and
measure unknown orbital objects in LEO for subsequent laser tracking.

Such a passive optical staring system is a camera system which records images of the night sky with a fixed line
of sight (LOS). With a reasonable short exposure time (depends on focal length) stars are recorded as points and
LEO objects appear as streaks. This requires the object to be illuminated by the sun while the observer is in the
earth shadow (at night).

The DLR Institute of Technical Physics reported in 2015 [2] and 2016 [3] first results of such a system. For
reliable operation further  improvements  are required to our system. One particular  important  extension is a
reliable image processing chain, which ensures reliable detection of streaks from orbital objects and rejecting
images that contain unwanted objects or distractions, like clouds or flares.

The paper is organized as follows. In chapter 2 we briefly describe the hardware setup and the image recording
software. The main part of the paper is chapter 3 which provides a detailed description of the image processing
software and its four processing steps. In chapter 4 we present results for some pictures taken under represen-
tative conditions. Finally, in chapter 5 we give our conclusions.

2 Hardware setup
The system contains an imaging camera with a lens, a GPS receiver for time synchronization and a computer for
image recording and processing. For autonomous operation a weather station is used to automatically toggle im-
age acquisition and a weather proofed housing protects the equipment from the environment. As observation lo-
cation the first tests were performed at the UFO, Sternwarte Stuttgart [2] and later moved on top of the roof of
our office building in Stuttgart Vaihingen [4]. A picture of the current system is shown in Fig. 1.

Fig. 1: The staring system (right) during observation located on the top of the DLR office building in Stuttgart,
Germany. The ISS is visible as a streak in the left of the image. The bright object in the center is the full moon.
Credit: Paul Wagner (December 2020).



2.1 Camera and Lens
The system is based on passive optical measurements and the main components are a camera and a lens to
perform angular measurements. As camera we are using large area CCD (charge coupled device) imaging
sensors, namely the FLI PL16804 and the FLI PL09000, see Tab. 1 below for their specifications.

Properties FLI  PL16803 FLI PL09000
Sensor On Semi KAF-16803 On Semi KAF-09000
Sensor size: width x height, diagonal 36.8mm x 36.8mm, 51.7mm
Pixels 4096 x 4096 3056 x 3056
Pixel count 16.8Mpx 9.3Mpx
Pixel size 9µm 12µm
Full well capacity 100 000e- 110 000e-

Typical system noise (@8MHz read out speed) 14e- 15e-

Dark noise (@-35°C) 0.005e- 0.02e-

Shutter Mechanical blade shutter (Uniblitz CS-65)
Common exposure speed 1s
Common binning setting 2
Read out rate 8MHz
Transfer interface USB 2.0

Table 1: Camera specifications and settings as used by the staring system. [5]

These cameras were combined with 2 different lenses, a 135mm and a 200mm consumer single lens reflex 
camera lenses. The specifications for these 2 lenses can be found in Tab 2.

Properties Canon EF 135mm f/2 L USM Canon EF 200mm f/2 L IS USM
Bayonet Canon EF
Focal length 135mm 200mm
f# 2 2
Aperture diameter 67.5mm 100mm
FOV: width x height/diagonal (@FLI) 15.2°x15.2°/21.0° 10.4°x10.4°/14.5°
Pixel scale (@PL16803) 13.8arcsec/px (67µrad/px) 9.3arcsec/px (45µrad/px)
Pixel scale (@PL09000) 18.3arcsec/px (89µrad/px) 12.4arcsec/px (60µrad/px)

Table 2: Lens properties of the two lenses used for observation campaigns. [6]

2.2 GPS synchronization
For the GPS synchronisation, a self-developed Arduino GPS timer based on the Adafruit Ultimate GPS receiver
and the Arduinio Uno microcontroller is used [7]. It can be used to process the UTC timestamp of an incoming
TTL pulse from the camera. The Arduino GPS Timer compares the incoming TTL pulse signal from the camera
with the PPS signal coming from the GPS receiver. This way, it measures the time of a TTL signal with 100μs of
precision [8].

2.3 Module for hardware control and image acquisition
The image recording is managed by the so-called Staring Daemon, which is a Python 3 program based on the
OOOS software package [9]. The task of the Staring daemon is to control the required hardware (weather station,
GPS timer,  camera,  enclosure),  to  start  the  image acquisition and to  manage the data  transfer  between the
individual processes.

The OOOS software package is designed in a modular way and is therefore not hardware-bound.  This enables
the user to use different hardware depending on the respective requirements. The weather station is managed by
the so-called Environment Deamon. The weather data is stored within this process. The camera is controlled by
the Acquisition Process,  which synchronize  the acquisition time by the connected GPS timer.  The captured
images are handed over by the Staring Deamon to the image processing program (presented later in chapter 3)
using  a  message  queue.  Measurements,  such  as  weather  data,  are  made accessible  online  via  the  so-called
Internet  Deamon.  The  following  Fig.  2  gives  an  overview  of  the  external  programs  (Space  Debris,
Astrometry.net), OOOS Daemons, OOOS processes and data transfer between those.



Fig. 2: A schematic illustration of the different sub-processes (purple) and hardware interfaces (blue), which are
connected to the main “Staring Daemon” program (green). External software programs which are used by the
system are marked in (red). Data file storage with in- or output is shown with a solid black contour. 

Images are recorded as FITS files and important meta data is saved in the image header. This includes geodetic
coordinates,  line-of-sight,  sensor  specifications,  lens  properties,  GPS  synced  time  of  start  and  end  of  the
exposure.  The  image  processing  module  is  separate  from  the  python  program,  which  is  why  the  image
processing only takes the FITS files as an input. As output the image processing saves the angular equatorial
coordinates  in  a  Tracking  Data  Message  (TDM) file  for  each  measured  object.  The TDM file  format  is  a
standardized format to save and exchange measured positional information of measured residential space objects
(RSO). The staring daemon also handles the data exchange of the TDM files to a database, which allows further
processing and handover. In this paper we present this image processing pipeline in more detail.

3 Software for image processing and object detection
The software is written in c++ for a desktop computer with an Ubuntu Linux operating system. We mainly use
Ubuntu 18.04 LTS, however, the software was tested successfully also on Ubuntu 20.04 LTS and on the current
openSUSE Tumbleweed rolling release  (of March 2021). Two versions were developed.  First, a GUI version
using the Qt 5 library  [10]  allows the operator to watch each step of the image processing and to adjust and
optimize the parameters.  Secondly, a console version is provided for an automatic operation of the machine.
Both  versions are  designed  to  process  a  whole folder  of  recorded  images.  The second version is  designed
additionally  for online  image  processing  where  the  staring daemon  can  be  connected  by  the  inter  process
communication (IPC) of the Linux system using either a  named pipe or a  message queue. In the operational
mode of the entire system, the communication via a message queue is used. 

The images are read in the FITS format which is widely spread in astronomic and astrometric applications. For
this purpose we use the software package cfitsio [11]. Since this package is written in the programming language
c while our software uses c++, we need the wrapper CCfits which makes the functions available in  c++. The
image processing is done by self-developed algorithms supported by some functions of the computer vision
library openCV [12]. For the astrometric calculations we use the software package Astrometry.net [13]. It turns
out that all those software packages are already included in the Ubuntu 18.04 LTS operating system so that we
may just install them. Alternatively, if we want to use the most recent versions of the Astrometry.net we must
compile this and some other software packages by ourselves.

The software works in four stages. First, the image is preprocessed by searching for bright objects like stars and
streaks of satellites. A background image is calculated, smoothed, and subtracted. The contrast of the image is
enhanced so that  the objects  are more clearly seen and optimally detectable.  Second,  the stars  and satellite
streaks are detected. Their positions are calculated in pixel coordinates of the image. Third, astrometry is applied
in order to transform the positions into the equatorial frame of the earth in ra/dec  (right ascension/declination)
coordinates. Fourth, the resulting streaks in ra/dec coordinates are correlated on the sky and combined into orbits
of  the satellites.  Finally,  a TDM of  the  satellite  data is  generated  and saved  in  a  file.  The four stages  are
described in the following four subsections.



3.1 Preprocessing of the image and enhancement of the contrast
Once an image is loaded from a file, we first calculate the histogram of the image in order to obtain an overview
over  the  distribution of  the  intensities.  In  Fig.  3  an  original  image is  shown on the  left-hand side  and  its
histogram on the right-hand side. We have chosen a rather problematic image with strong front lighting and
strong reflections in the lens system so that we can show the capabilities of our software. This characteristic is
typically seen in images when the full moon is present and dust accumulated on the front window of the weather
proofed housing.

Fig. 3: An original image with strong front lighting (left) and the related histogram (right).

We use 16-bit images which means that we have  216=65536 discrete intensities from full black to full white.
These 65536 intensities are shown on the horizontal axis of the histogram. The violet  curve is the intensity
distribution which represents the histogram. Since we have used maximum resolution for the binning (one bin
for each of the 65536 intensities) this curve is rather noisy. A smoother curve is the integrated intensity which is
shown by  the  green  curve.  It  starts  with  value  zero  on  the  left-hand  side  and  ends  with  value  unity  (the
normalized maximum) on the right-hand side. The green curve is a staircase function. However, due to the high
resolution, the stairs are not visible so that the green curve is almost continuous. 

The  violet  curve  shows  a  big  intensity  peak  which  represents  the  scattered  light  of  the  blue  sky  and  the
reflections in the lens system of the optics. A visible star or a visible satellite must have an even higher intensity
than the blue sky. For this reason, their intensities must lie beyond the right side of the big peak, sufficiently far
away in the right tail of the curve. Only in this case the star or satellite can be detected. We calculate the mean
intensity and the median intensity of the histogram distribution function and indicate them as violet and green
vertical lines, respectively,  pointing from the lower boarder and from the upper boarder.  Both intensities are
close to each other and located near the middle of the big peak. These may be interpreted as the mean intensity
and the median intensity of the scattered background light. Furthermore, we calculate two threshold values, a
lower and an upper one, which mark the left end and the right  end of the big intensity peak. These threshold
values are indicated as light blue vertical lines left and right of the peak. They are calculated by a sophisticated
extrapolation scheme from the green curve. Later the upper threshold will be used to identify the stars and the
satellite streaks. Any pixel with an intensity above the upper threshold might belong to a star or to a satellite
streak. All other pixels with lower intensities are excluded. The minimum intensity of the image is shown by the
red vertical line, which is found on the left-hand side of the peak near the light blue line of the lower threshold.
The maximum intensity is shown by a blue vertical  line. Since here the maximum value is 65535, the blue
vertical line is on the right border of the histogram and hence hard to see.

The 65536 values represent a rather large resolution of the intensity. If we plot an image with  black=0 and
white=65535, then in most cases we do not see very much because the intensity interval is too large. The main
contrast of an image is restricted to a subset of the intensities. For this reason, we must select a small window of
the intensities  in  order  to  enhance  the  contrast.  We choose  black=lower  threshold and  white=upper  thres-
hold+offset where  on default  we  use offset=2420.  The offset  value is  chosen  by experience  in  practice.  In
between black and white the gray values are linearly interpolated. In the histogram the black and white values
are indicated by the shorter black and white vertical lines, respectively. The image on the left-hand side is plotted
using this scale for the gray values between black and white. Since the peak in the histogram is rather broad, in
the image not very much is seen. A very faint streak line of a satellite can be seen if one looks from the lower
border 25% upward and from the right border 25% left.



We obtain a background image if we remove all pixels which have intensities above the upper threshold. Then
we have holes in the image. These holes are closed by an inpainting method based on a fast-marching algorithm
using the intensities of their surroundings. Next, the background is smoothed by applying a box filter several
times. Then, we subtract the smoothed background from the original image. In order to keep all intensities in the
interval between 0 and 65535 we shift the intensities by a constant value so that the minimum intensity is fixed
and the red vertical line in the histogram does not change its position. The result is shown in Fig. 4. The image
on the left-hand side has much more contrast now. Stars are seen as small bright points. A satellite streak can be
seen  clearly  25% upward  from the  lower  border  and  25% left  from the right  border.  In  the histogram the
intensity  peak has  become very  narrow.  The light  blue vertical  lines  which  mark  the  upper  and  the lower
threshold are close to each other. Furthermore, the vertical black line and the vertical white line are close to each
other. They mark the contrast window for the gray values from black to white. In this way the contrast of the
image is considerably enhanced which is clearly seen on the left-hand side of Fig. 4. The maximum intensity is
seen by the blue vertical lines far on the right-hand side of the histogram.

Fig. 4: A processed image with strong front lighting (left) and the related histogram (right).

We have enlarged the pixel resolution of the contrast enhanced image in Fig. 5 below. Here one clearly sees the
strongly enlarged satellite streak. Furthermore, in Fig. 5 we have strongly increased the horizontal resolution of
the histogram. Now, the peak of the scattered light is  rather  smooth and has a shape similar to a Gaussian
distribution function with a small width described by a standard deviation of about only 200 intensity values.
The  distance of  two light blue vertical lines which represent  the lower and the upper threshold value is only
about 1000 intensity values. The tails of the peak will be larger than the tails of a common Gaussian function.
One should notice that the high intensity tail on the right-hand side represents the stars and the streak lines which
we want to observe. In Fig. 5 the right light blue vertical line is the upper threshold. All pixels which have
intensities above this threshold may belong to stars or satellite streaks.

Fig. 5: Strongly enlarged: The processed image with strong front lighting (left) and the related histogram (right).



If we consider Fig. 4 we may ask the question why in the histogram the intensity peak becomes so sharp once we
subtract the smoothed background image. The answer is: The sharp peak represents the scattered light of the blue
sky. The width of the peak is related to the fluctuations of the scattered light and to the fluctuations of the
hardware electronics. The first fluctuations are a physical effect of the atmosphere while the second depend on
the measurement system. The position of the peak depends on the brightness of the blue sky. At dawn the blue
sky might be rather bright so that the position is located at large intensities more right in the histogram. At deep
night the blue sky is rather dark and nearly black so that the position is located at small intensities more left in
the histogram. It turns out that the position of the peak does not influence our algorithm for the detection of the
stars and the streak lines because the relevant criterion is due to the upper threshold which is located just right of
the peak and indicated by the right light blue vertical line.

On the other hand, if we consider Fig. 3 we may ask the question why the peak is so broad for the original
image. One reason is that the lens optics implies a mapping of the intensity values which depends on the pixel
position within the image. Near the image center located at the optical axis the mapped intensity of the blue sky
is maximum. It decays with the distance of a pixel from the optical center. This effect will broaden the intensity
peak in the histogram. Another source for broadening may be inhomogeneous conditions for the scattering of
light  in  the  atmosphere.  One  cause  might  be  clouds  in  the  air.  Another  source  for  inhomogeneities  and
broadening  may be reflections  in  the optical  lens  system which  may appear  strongly enhanced  under  front
lighting conditions. The basic concept of our algorithm subtracting a smoothed background image relies on the
fact that the mean intensities of the light peak are local and vary with the pixels in the image. If we subtract the
local mean intensities we remove the broadening.

In our example image the broadening is very large because of the front lighting. We have chosen this worst-case
example in order to show how much the subtraction of the smoothed background can improve the image and
sharpen the intensity peak. Under optimal conditions when the images are taken deep in the night at clear air
conditions with no clouds, the intensity peak in the histogram of an original image is much sharper so that the
effect of our algorithm is much less. However,  the resulting peak width in the histogram is nearly the same
whether we start with original images taken under optimal conditions or taken under worst case conditions.

3.2 Detection of the stars and satellite streaks
Once the images have been preprocessed and an optimally enhanced contrast image has been generated we are
ready to detect the stars and satellites. We search for all pixels which have intensities above the upper threshold
given by the right light blue vertical line in the histogram. We then investigate whether the selected pixels form
connected areas of certain sizes and certain shapes. We count the pixel numbers of a connected area and require
a lower minimum number for a star and a higher minimum number for a satellite streak. If these requirements
are not satisfied the connected areas are discarded. We calculate moments of first, second and higher order in
terms of averages and correlations functions using the intensities as weights. From the first moments, we obtain
the mean position of the object. From the second moments we obtain the main axis lengths and directions of an
ellipsis which is fitted into the connected pixel area. If the lengths of the main axes are nearly equal and not too
large, the object is identified as a star. If one main axis is very large and the other very small, then we have found
a  satellite  streak.  Investigating  the  second  moments  more  closely  we  have  several  conditions  with  several
adjustable parameters in order to identify an object as a star, as a satellite or something else. We calculate even
some higher invariant  moments similar to the Hu moments in order to have one more criterion. With these
efforts we try to distinguish a star or a satellite from something else like an airplane or a cloud fraction.

Once we have safely detected the stars and satellites we create three new types of images from the image with
enhanced contrast. In the first image we keep the stars and remove all other objects. In the second image we keep
the satellite streaks and remove all other objects. Finally, in the third image we remove all objects and all pixels
with intensities above the upper threshold. We remove the objects by using our inpainting method we have
described above. In this way we have several images for each object class which can be watched by the user in
the GUI version of the software (see Fig. 10 below for an example). Next, we calculate the positions of the stars
in pixel coordinates from the first moments. The satellites appear as streaks which are short lines with two end
points. We calculate the pixel positions of the two endpoints by combining our results for the first and second
moments. The results from the moment calculation proved to be very precise and accurate. For the enlarged
streak line in Fig.  5 we show our result in Fig.  6 on the left-hand side.  There is a thin blue square which
surrounds the nearly white streak line. This square is the bounding box of all the pixels of the streak line with
intensities above the  upper threshold. Inside the white streak line there is a red thin line which represents the
results of the moment calculation. The endpoints of the red thin line represent our results for the endpoints of the
streak line in x/y pixel coordinates. Obviously, they are rather accurate. 



Fig. 6: A satellite found by momenta (left) and detected by adjusting a special fit function (right).  One should
focus on the red thin line. The changes of this line are very small from the left to the right figure.

In order to improve the accuracy of the endpoint positions, in a following step we adjust an intensity distribution
function to the streak line. In transversal direction we use a Gaussian weight function. In longitudinal direction
along the streak line we set the intensity to be constant. At the end points we extend the constant longitudinal
distribution by half Gaussian functions in order to confine the streak line.  In a minimization calculation we
adjust  several  parameters.  We have an  underground intensity  and  an amplitude  for  the  Gaussian functions.
Furthermore, we have parameters to vary the position, the length, and the direction of the streak line. Finally, we
allow a slightly curved streak line and adjust the curvature. Moreover, we have implemented a special algorithm
to handle and discard outlier intensities. The adjustment works quite accurate and robust. The curvature is an
additional  parameter  to  distinguish  if  a  streak  line  is  a  satellite  or  something  else.  The curvature  must  be
sufficiently small and below a given maximum value so that a satellite is identified. The result for our example is
shown in Fig. 6 on the right-hand side. Differences are very small between the left and the right figure so that
one should enlarge the figures and look closely. One should focus on the red thin line which has slightly moved,
especially in the upper left corner. Now, the positions of the two endpoints are located somewhat better and more
accurately. While the effect is very small we note that we want to detect the endpoints with subpixel accuracy as
good as possible. Eventually, we use these end point positions for our further calculations.

3.3 Applying astrometry to find ra/dec coordinates
Until now we have calculated the positions of the stars and of the streak-line endpoints in x/y coordinates which
represent  the  pixel  positions  in  the  images.  In  the  next  step  we  must  transform  the  positions  into  ra/dec
coordinates  of  the  equatorial  coordinate  system of  the  sky.  For  this  purpose  we use  the  software  package
Astrometry.net [13] which provides  the functions  solve-field,  wcs-xy2rd,  and  wcs-rd2xy.  First,  we write  the
positions of the stars in the image in x/y pixel coordinates into a file. Then, we start the executable program
solve-field with some parameters  set  in  the GUI  and with this  file  as an input.  The program compares  the
measured star positions with the positions of known stars in a catalog which is read from a database. It optimizes
the parameters for the transformation between the x/y pixel coordinates and the ra/dec equatorial coordinates. At
the end, it calculates the ra/dec coordinates of the stars detected in the image. We note that the star positions we
have detected are necessary for the function solve-field to find the parameters of the coordinate transformation.

Now, we have the parameters for the coordinate transformation between x/y and ra/dec for a single image. There
exist two further programs of the software package with names wcs-xy2rd and wcs-rd2xy. With these programs
we can transform forward from x/y to ra/dec and backward from ra/dec to x/y, respectively. Thus, we save the
x/y coordinates of the endpoints of the streak lines into a file, apply the program wcs-xy2rd, and then read the
calculated ra/dec coordinates from a new generated file. In this way, we obtain the ra/dec coordinates of the
satellite streaks in the equatorial coordinate frame.

We note that here we rely on the existing software package Astrometry.net. We cannot influence the accuracy of
and the CPU time needed for the calculations. In our test runs of the software we find that the calculation time
needed for the astrometry is somewhat larger than the calculation time needed for the two preceding steps, the
image preprocessing and detection of the stars and satellites.



3.4 Correlation of the objects into satellite orbits
Our space-debris surveillance system works continuously. It takes images one after another each few seconds.
Whenever an image is saved in a file the image processing software is called for processing the image. In the
three steps described above satellite streaks are detected, and the positions of their endpoints are calculated as
ra/dec coordinates. Further data are saved like the date and the time when the picture was taken and the exposure
time how long the camera was open. Thus, from the calculations up to here we obtain lots of satellite streaks
with lots of data saved.

Each image observes an area of the sky with a certain diameter. This diameter represents an angle of about 15 to
20 degrees (see Tab. 2 above for FOV). A satellite moves slowly over the sky. If it is seen by the camera, it will
move slowly through the observed area from one side to the other. Consequently, a satellite will be detected
several times in several images. As a result, not all of the observed satellite streaks are independent. They can be
put together into groups which belong to the same satellite. This grouping is done by the fourth step which is
described here in this subsection.

The ra/dec coordinates parameterize the surface of a sphere onto which we map all objects observed on the sky.
We assume that a satellite moves approximately on a straight line through the observed area. Thus, we may
assume that an orbit is a great circle which lies on the sphere and on a plane which hits the center point of the
sphere. The normal vector of this plane parameterizes this great circle uniquely. We calculate the normal vectors
for all  satellite streaks.  Now, if  we compare  the normal vectors  within certain tolerances,  we obtain a  first
criterion for the grouping of the satellite streaks.

We  have  an  additional  second criterion for  the  grouping.  The  satellites  move  through  the  observed  area
approximately with a constant velocity. Since we know the exposure time for each image and the length of each
satellite streak, we can calculate the velocity of each observed object on the sky. Furthermore, we know the
positions and the times for different images so that we calculate a further velocity for the motion of a satellite
from one image to the next. We check if all these velocities are equal and have the same direction within some
tolerances. All those satellite streaks which have the same velocity belong to the same group.

There is a third criterion for the grouping. A satellite needs a finite time to move through the observed area in
the sky which has a diameter of about 15 to 20 degrees.  We assume that the needed time is less than 100
seconds. Thus, only those satellite streaks can belong to the same group whose times do not differ by no more
than 100 seconds.

Our surveillance system operates in a continuous mode. It takes one image after the other and provides one
detected satellite streak after the other. Consequently, our grouping method using the three criteria also operates
continuously. Once a satellite streak is found, we check by the above criteria if it belongs to an existing group. If
yes, we put it to the existing group. If no, we open a new group. Afterward we check all open groups if the time
since the beginning is less than 100 seconds. If the time is larger, a group is closed so that no further satellite
streaks can be added any more. 

For a closed group we check how many streaks it contains. It must contain at least two streaks, otherwise this
group is discarded and deleted. This check is a further test whether an object is a real satellite or not. Then, we
perform the next step. We note that a valid group contains several  satellite streaks belonging to a particular
satellite. We calculate the satellite orbit on the sky by two optimization processes using two least squares fits to
all the streaks. First, we adjust the normal vector of the plane which parameterizes the great circle on the sky.
Secondly, we adjust a linear function along the great circle so that we obtain a particular position for a particular
time and the velocity on the sky. Since we use angular coordinates on a sphere the position is an angle and the
velocity is an angular velocity. While the first fit determines the transversal coordinates, the second fit yields the
longitudinal  coordinates  of  the satellite  motion.  In  order  to  obtain measures  for  the  accuracy  of  the  fit  we
calculate several  root-mean-square (rms) deviations. In this way we find a rms deviation for the transversal
coordinates, a rms deviation for the longitudinal coordinates, a rms deviation for the direction of the orbit, and a
rms deviation for the velocity on the sky.

Once  the  calculation  is  done,  a  tracking-data-message  (TDM) is  generated  for  each  found  satellite.  In  the
comments we write the algorithm which specifies the fit function and the parameters which describe the satellite
orbit. Furthermore, in the comments we save the rms values which describe the accuracy of the fit. Then, using
the great circle and the linear function we calculate each position for each time in ra/dec coordinates on the sky.
Thus, in the data section of the TDM for each position we write the date and the time, the right ascension
(ra=ANGLE_1), the declination (dec=ANGLE_2), and the magnitude (MAG) of the object. Once the TDM is
completed, we write it into a file. Afterward the data of the closed orbit are stored in a data array which later is



no longer used by our computer program. Then, the surveillance system is ready to continue with the next image.
This means it is ready to take and to process the next image of the sky.

In Fig. 7 we provide the results for two satellites where two orbits are determined by our circular fit process. We
have processed 15 images of our worst-case example with strong front lighting and considerable reflections in
the lens system. The first 6 images provide 6 streaks with overall 12 endpoints for the first satellite shown in the
left figure. The last 9 images provide 9 streaks with overall 18 endpoints for the second satellite shown in the
right figure. Even though the optical conditions are quite weird, we unexpectedly obtain quite accurate results for
the two orbits.

Fig. 7: Two satellites found in the image sequence with identification codes 
           20181201_044752_001_station (left) and 20181201_051328_001_station (right).

The horizontal direction in these two figures represents the longitudinal angle along the great circle. The lengths
of the two orbits are 15 degrees and 16 degrees, respectively. The vertical direction represents angle deviations
enlarged by a factor of 70. The red straight line is the fitted satellite orbit. The light blue line shows the satellite
streaks observed by the camera. Since the vertical direction represents the strongly enlarged transversal angle
one clearly sees that the transversal fit is quite good. The endpoints of the streaks are marked by short ticks on
the lines. Two ticks close to each other represent one streak. One clearly sees that the distance between two
streaks is about four times the length of a streak. In order to judge the accuracy of the longitudinal fit one should
compare the positions of the ticks on the red line with those on the light blue line. The deviations are very small.
We have depicted the deviations strongly enlarged in vertical direction by the yellow line. Also in this case the
fit appears to be quite good. Nevertheless, we observe that the fit of the longitudinal coordinates is less accurate
than the fit of the transversal coordinates. The reason may be that either the length of the satellite streaks is less
well determined or the exposure time is less accurately known. We infer this from the sawtooth form of the
yellow curves. Finally, we conclude that in both cases in Fig. 7 the satellite orbits are quite well determined.

4 Results
The software of our passive optical system was thoroughly tested offline and online. In the offline mode folders
of different sets of images were considered and processed by the software. The results are many TDM files each
of which represents an observed satellite. The system was also tested in online mode. Here each few seconds an
image was taken from the sky and transferred immediately to the software which then processed the images,
detected satellites, determined the orbits and finally wrote the results into TDM files. The found satellites were
then compared with known satellites which are catalogued in databases. Here we can compare the observed
orbits with known orbits from the databases. As a result, we find good agreement. Thus, we conclude that our
passive optical system can determine orbits of satellites with appropriate accuracy.

We have tested the software with different  kinds of images.  In chapter  3 we have considered  a worst-case
example in order to show the capabilities of our software. Here we present some more examples. First, we have
selected a best-case example which is shown in Fig. 8. This is an image taken at night under clear air conditions.
The original image is shown on the left-hand side. The contrast is enhanced by choosing the black color for the



lower threshold intensity and the white color for the upper threshold intensity plus an offset  value which is
chosen as 2420. The gray values interpolate the intensities linearly in between. The procedure is the same for all
images shown in this paper, including Figs. 3, 8, and 9. In the left-hand image of Fig. 8 many stars are seen, and
a quite long streak line of a satellite. The right-hand figure shows the processed image where the stars have been
removed and the streak line has been detected. The blue rectangle is the bounding box of the satellite pixels
which have intensities above the upper threshold value. The red line marks the streak line. The result appears to
be quite good with subpixel accuracy. In the original image (left) one sees a higher intensity of the background
light in the center where the intensity decreases towards the boundaries. In the processed image (right) this effect
has been removed by the subtraction of the background image.

Fig. 8: Image taken under optimal conditions at night with clear sky. Left is shown the original image. Right is
shown the processed image with the background subtracted, the stars removed, and the satellite detected.

Fig. 9: Image taken at night with cloudy sky. Left is shown the original image. Right is shown the processed
image with the background subtracted, the stars removed, and the satellite detected.

As a second example we have chosen an image of a cloudy sky. This is shown in Fig. 9. In the original image
(left) one clearly sees the clouds. On the other hand, in the processed image (right) the clouds are removed by
subtracting the smoothed background. Also, the stars are removed by our inpainting procedure. Eventually, there
remains one streak line which has been detected successfully.  This streak is indicated by the red line in the
middle of the image somewhat to the right. The blue square represents the bounding box of the streak pixels.
Also, in this case the satellite has been detected robustly with subpixel accuracy. One should note that in the
original image with clouds (left) the streak line is present but very hard to see.

In an image there might appear artefacts  generated by reflections of the lens system and objects other than
satellites which we do not want to detect. As artefacts there occur reflexes which are vertical lines down from a
star. Such an artefact might be detected as a satellite streak. However, in order to identify a real satellite and
determine its orbit, there must be detected streaks in two or more pictures which fit together into an orbit. Here



we check that the streaks lie on a great circle in the sky and that the satellite moves with a constant velocity. For
reflexes this check usually fails so that they are robustly excluded. Another type of objects are airplanes flying in
the sky. They move similar like satellites and hence are more difficult to distinguish. Usually, an airplane has
flash lights or shows several parallel traces in the sky. In most cases, the calculation of the higher moments
provides a criterion which enables to identify and to discard airplanes. However, the method is not so robust and
safe. Airplanes are not discarded absolutely in all cases.

A satellite may rotate and hence change its brightness periodically with time. For the streak lines this means that
the intensity may not be constant.  If  we calculate  the higher moments our criterion will  then discard those
satellites. It is hard to treat this case, and our software does not have a solution here. A further difficulty arises
for stars which may lie close to a streak line. It may happen that the pixels with intensities above the upper
threshold form a connected area which includes both the streak line and the star. If we then calculate the higher
moments, our criterion will exclude this streak line. In principle, this fact should be no problem. Usually, for a
satellite there are detected streaks in several images. If one of the streaks is discarded, the remaining streaks of
the other images are still enough to find the orbit and to generate the TDM file. In order to see this one should
look into Figs. 7 left and right and think what happens if one streak line is taken out.

On the next page, in Fig. 10 we provide one representative example of a streak line with a nearby star. The
images in Fig. 10 are strongly enlarged so that we can see the details. Here the criterion with the higher moments
and with the width of the line have been weakened so that this streak line was not excluded. In the top-left figure
the original image is shown, similar like the left-hand images in Figs. 3, 8, and 9. One clearly sees the streak line
and a nearby star. In the top-right figure the processed image is shown. Here, the contrast is even somewhat
better. The following images are then obtained from this processed image. The middle-left figure shows the
background image where all objects, stars, satellites, and artefacts, have been removed by our inpainting method.
In the middle-right figure the stars are detected by crosses of red and green lines. The blue rectangles are the
bounding boxes of the pixels with intensities above the upper threshold. The streak line has been removed by our
inpainting  method.  The  star  positions  are  then  used  by  the  function  solve-field  of  the  software  package
Astrometry.net [13] in order to determine the transformation between the x/y pixel coordinates and the ra/dec
equatorial coordinates. The bottom figures left and right show the streak line where the stars are removed by our
inpainting method. The blue square again represents the bounding box of the pixels with intensities above the
upper threshold. In the bottom-left  figure the coordinates  of the streak line are obtained by the momentum
calculation. The result is shown by the red line. Here one clearly sees that the nearby star causes wrong moments
so that the red line deviates from the streak line. Also, a larger thickness of the streak is found which is indicated
by the short perpendicular green line. In the bottom-right figure a model intensity function is adjusted to the
streak line in an iterative process where the results of the momentum calculation are used for the initial values.
Here the bright intensity pixels of the nearby star act as outliers and are discarded in the iterative adjustment
process. As a result, we obtain a read line which lies perfectly on the streak line and a short perpendicular green
line which indicates the thickness correctly. In this way we obtain good results for the end-point coordinates with
subpixel accuracy. However, we note that this iterative procedure is not robust and does not work in all cases.
For these reasons, it is better to discard streak lines with nearby stars by the momentum criterion.

While for a satellite we calculate the positions observed in the streak lines as shown in Fig. 7, we also determine
mean values for the parameters of an orbit. Additionally, we calculate root mean square (rms) values for the
deviations in  order  to estimate the accuracy  of an orbit.  The results are  shown in Tab.  3 below. First,  we
calculate the angle difference for the observed orbit length. Our images cover up to 20 degrees on the sky so that
the observed orbit lengths of about 15 degrees on the sky are reasonable. Secondly, we calculate the angular
velocity which indicates how fast the satellite moves on the sky across the FOV. Furthermore, we present the
related rms values for these two longitudinal results. The transversal rms deviation indicates the deviation from
the great circle in the sky. Finally, we provide the rms deviation of the direction of the orbit. All values are
calculated for the two orbits shown in Fig. 7 left and right.

Orbit of Fig. 7 left Orbit of Fig. 7 right

Longitudinal angle difference (observed orbit length) 14.852983 deg 15.951709 deg

Longitudinal angular velocity (mean value) 0.562817 deg / sec 0.389015 deg / sec

Longitudinal angle deviation 0.015638 deg 0.020672 deg

Longitudinal angular velocity deviation 0.001805 deg / sec 0.001599 deg / sec

Transversal angle deviation 0.006262 deg 0.001989 deg

Deviation of the orbit direction 0.073568 deg 0.022663 deg

Tab. 3: Mean values and rms deviations of the orbit parameters.



Fig. 10: Image taken at night with clear sky. Nearby the satellite streak there is a star which is too close so that it
cannot be separated and hence disturbs the calculations. The image is strongly enlarged in order to see the effect.
Top left: original image; top right: processed image; mid left: background, all objects are removed; mid right:
stars detected; bottom left: satellite detected by moment calculation, bottom right: result improved by adjusting
intensity function.

5 Conclusions
A  reliable  image  processing  chain  was  demonstrated  which  is  currently  deployed  in  the  APPARILLO
(“Autonomous Passive Optical Staring Of LEO Flying Objects”) system. The system successfully demonstrated
its first campaign  between November 20th  to December 23th 2020 using the presented algorithms. During this
time, no false positive detections occurred during the operation period [4].  The presented image processing
robustly handles distractions in the images and allows streak detection even when lens flares or any kind of
clouds cause a strong background intensity variation. The determination of start and end points of the streaks is



well  controlled  by  the  iterative  processes.  Furthermore,  the  TDM  data  export  allows  interchanging  and
processing the data easily.
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