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ABSTRACT

The number of resident space objects re-entering the at-
mosphere is expected to rise with increased space activ-
ity over recent years and future projections. Predicting
the probable survival and impact location of the medium
to large sized re-entering objects becomes important as
they can cause on ground casualties and damage to prop-
erty. Uncertainties associated with the re-entry makes
necessary an expensive probabilistic approach. To date,
object-oriented analysis is the dominant tool used for
atmospheric re-entry modeling and simulation, where
aerothermodynamic coefficients are used to determine
the risk a re-entering object poses to the ground through
the use of analytical formulations. Close form solutions
are limited to convex objects in the free molecular and
continuum flow regime and stagnation point estimates.
In the transition regime (75-150 km), a combination of
bridging and shape functions are used for the different
primitive objects. In this work; we leverage the power of
deep learning to develop next-generation models for the
aerothermodynamic modeling (drag coefficient and full
body heating distributions) in the transition flow regime
for both convex and concave primitive shapes (sphere,
cube, and cylinder). The increasing LEO population puts
more stress on NASA’s recommended probability and
makes this a timely contribution.

Keywords: Re-entry; Aerothermodynamics; Space De-
bris; Deep Learning.

1. INTRODUCTION

Rapidly growing technological demands is an important
driver of a very quickly expanding interest from both
public and private sources in the satellite market. With
tens of thousands of satellite launches planned in the next
decade combined with the existing volume of manmade
objects and debris already in space, the area in Low Earth
Orbit (LEO) is expected to become considerably more
crowded. As these objects are launched and eventually
re-enter Earth’s atmosphere, they are expected to not ex-
ceed a NASA-established 1:10,000 probability of sur-

vival upon re-entry. Atmospheric re-entry analysis is a
critical component to mission planning in order to ensure
that the end of a spacecraft’s mission is properly planned.
Specifically, it is of upmost importance to ensure that any
re-entering spacecraft or debris do not pose any threat to
civilians, buildings, or populated areas on the ground. As
the volume of spacecraft and other space assets in the
Low-Earth Orbit (LEO) environment increases, it is ex-
pected that space will be considerably more crowded in
the next decade and beyond. Per requirements and rec-
ommendations outlined by NASA’s Orbital Debris Pro-
gram Office (ODPO) to mitigate further pollution of the
space environment, satellites are recommended to re-
enter Earth’s atmosphere within 25 years of the end of
its life. Upon re-entry, spacecraft must not pose a greater
than 1:10,000 risk of striking any significant objects or
causing any civilian casualties on the ground [1].

Figure 1. Monte Carlo analysis and the concept behind
an object-oriented tool [3]. fpa = flight-path angle

To date, the predominant analysis tools for re-entry as-
sessment are object-oriented codes such as NASA’s OR-
SAT, CNES’ DEBRISK, and ESA’s SARA. These tools
assume a trajectory in which a spacecraft will fragment
into multiple shape primitives at a certain altitude, and the
following risk analysis is performed on these simple ob-
jects. Conversely, spacecraft-oriented tools such as ESA’s
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Figure 2. Flow Directions for Shape Primitives

SCARAB, simulate the entire spacecraft until demise to
determine its risk. Both types of tools determine drag
and heating coefficients for risk assessment through the
use of semi-empirical and analytical formulations. For
finite nose radius objects such as a sphere, closed form
solutions exist for stagnation point heating. The oppo-
site is true for nonconvex shapes such cubes, cylinders,
and other objects with sharp edges. For these geometries,
some sort of estimation is achieved with the use of shape
factors or bridging functions. These models are quickly
evaluated, but have compounding uncertainties with in-
creased evaluations that are not well-defined. Significant
efforts have led to noteworthy improvements in our abil-
ity to modeling heating distributions; however a lot re-
mains to be achieved, especially for non-convex objects
such as cubes and cylinders [2].

High-fidelity modeling tools such as Direct Simulation
Monte-Carlo (DSMC) codes can provide numerical esti-
mates for heating and drag distributions over shape prim-
itives given certain flow conditions. The main drawback
to these tools is computational expense (where analytical
formulations excel): The computational resources needed
to numerically solve particle motion and surface inter-
actions scales exponentially with increasing atmospheric
density.

Re-entry flow is typically classified into one of three flow
regimes: Continuum, transition, and free molecular. The
bounds of each flow regime are characterized by a spe-
cific Knudsen Number, which defines the kinetic distance
between gas particles compared to some characteristic
length. In free molecular flow, the Knudsen Number is
sufficiently high such that intermolecular collisions are

improbable. In this flow regime, where heating is not
much of a concern, it is possible to use high-fidelity tech-
niques such as DSMC with full-scale spacecraft geome-
tries without much computational expense. While transi-
tion flow generally corresponds to a denser accumulation
of gas particles, DSMC is still valid here, albeit requiring
more computational resources. However, in the contin-
uum flow regime, intermolecular collisions are constantly
happening due to the density of particles in any flow field.
For this reason, DSMC starts to become impractical due
to the sheer amount of computational resources required.
At altitudes where flow can be classified in the continuum
regime, heating is at its highest and the use of CFD is re-
quired. For intensive cases such as those relating to the
flows in the ionosphere (Approximately 90km), simula-
tion times vary from a few days to a few weeks, making
uncertainty quantification and establishing a probabilistic
casualty risk area in a practical timeframe highly unlikely.

However, a tradeoff can be reached through deep learn-
ing techniques. Given a set sample size of heat flux
distributions, a deep learning architecture, such as a
fully-connected or convolutional neural network, can be
trained to produce full-detail solutions given a set of in-
puts such as atmospheric state and object attitude. This
enables accurate emulation of the numerical solutions for
given a set of flow conditions that can be produced almost
instantly. With this robust framework, re-entry compu-
tations can be completed quickly while maintaining the
same fidelity as numerical methods, thereby making pos-
sible probabilistic analyses through large number of en-
semble runs.
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Figure 3. Distribution of DSMC Training (left) and Validation (right) Cases

2. METHODOLOGY

2.1. Direct Simulation Monte Carlo (DSMC)

DSMC is a numerical technique that is commonly used
to model rarefied gas flows for finite Knudsen Numbers.
Developed by G. Bird, the technique uses a stochastic
simulation to probabilistically solve the Boltzmann Equa-
tion and model particle motion and interactions within a
given simulation domain. The particles in the simulation
are representative of a group of “real” particles (most of-
ten defined as a ratio of real-to-simulated particles), and
their motions with respective intermolecular, surface, and
boundary reactions are modeled as a function of time.
Flow properties such as temperature, density, and veloc-
ity are sampled from the particle state on a macroscopic
scale over a set amount of timesteps [4].

The DSMC package used in this study is the
Stochastic PArallel Rarefied-gas Time-accurate Analyzer
(SPARTA), an open source DSMC code developed by
Sandia National Laboratories. SPARTA benefits from be-
ing highly adaptable and efficient, with options to add on
to existing features within the code with the efficiency of
C++. While it is designed to be able to be used in ei-
ther traditional desktop computers or parallel computing
environments, the handling of parallel communication is
generally more efficient. The modular design of the pack-
age as well as ease of use makes SPARTA [5] a popular
choice that is akin to NASA’s internal DSMC software,
DAC [6].

2.2. Geometries and 3D Meshing

The subject of this study is three shape primitives: A
sphere, cube, and cylinder, for which to different flow
cases exist: One with the flow facing the circular face,

and the other with the flow facing the rounded face.
Since Knudsen Number is a ratio of the distance between
molecules in the flow and the characteristic length of the
object, the characteristic length of each shape except the
cube is one for the sake of simplicity. For this study,
the cube has a characteristic length of two. The Knud-
sen Number for the cube was then scaled appropriately to
make direct comparison to each shape appropriate.

Part of ensuring that accurate flow phenomena is captured
for each geometry in DSMC is ensuring that the 3D ob-
ject created for the simulation is properly meshed. For all
of computational fluid dynamics, proper object meshing
is imperative to capture important features of interest dur-
ing the simulation. As such, unstructured meshing, where
mesh elements are not indexed and placed systematically
is generally better for CFD/DSMC simulations [7]. With
unstructured meshes, the elements are usually triangular
as compared to quadrilaterals for structured meshes as the
detail of element placing is usually more flexible with tri-
angular elements.

For structured meshes, problems can occur at the ver-
tices of each element, causing skewed or inaccurate re-
sults. For unstructured meshes, greater control of mesh
sizing can be employed, allowing for a better mesh de-
fined by the user. However, there is a trade-off that must
be reached: The amount of mesh elements must be suf-
ficiently high that the geometry and any important fea-
tures are accurately captured, but must not be so de-
tailed that it over-complicates the deep neural network.
Since each mesh element is an independent output of the
neural network, increasing the amount of mesh elements
would exponentially increase the amount connections be-
tween nodes, which would eventually make the model in-
tractable. Furthermore, it is important to note that once
an object mesh is created, the mesh cannot change as this
would require the deep learning model to be retrained. To
extend the concept to shape primitives of different sizes,
a mesh scaling technique can be adopted as preliminary



4

demonstrated in the results section.

2.3. Simulation Database

As mentioned above, the ultimate goal of deep learning
is to produce a model that generalizes well given a set of
input-output pairs (training pairs). To this end, the data
provided to the deep learning model for training must be
wholly representative of the phenomena at hand. In this
case of atmospheric re-entry, this data must reflect a di-
verse set of atmospheric flow conditions corresponding
to their respective heating distributions. More specifi-
cally, the dataset should span both the transition and free-
molecular regimes (where DSMC is valid), and covers
typical re-entry speeds and freestream conditions seen in
the altitudes corresponding to transition and free molec-
ular flow. For this study, the three flow conditions cho-
sen to characterize the flow were the Knudsen Number,
freestream temperature, and re-entry velocity. To deter-
mine suitable values for the Knudsen Number, a range
of altitudes that spans both transition and free molecular
regimes is determined. The altitude range is dependent
on the atmospheric conditions and the size of the object:

Alt ∈ {85, 120} km

It is within this altitude range that density and temper-
ature can extracted from NASA’s MSIS-E-90 model to
determine the mean free path of the molecules in the at-
mosphere, and subsequently, the Knudsen Number at a
given altitude:

λ =
RT√

2πd2NAP
(1)

Kn =
λ

L
(2)

The range of Knudsen Number, temperature, and velocity
determined for the flow condition dataset are as follows:

Kn ∈ {0.01, 1}
T ∈ {200, 2000} K

V ∈ {2, 4} km/s

With these ranges, specific flow cases were generated
via Latin hypercube sampling, which aims to statistically
generate a perfectly-random sample given a number of
dimensions and the minimum and maximum values that
each dimension can take. This ensures that each case has
practically identical weighting to one another and that no
flow cases are favored in training [8]. For both the sphere
and the cube, the same randomly generated flow condi-
tions were used to initialize 100 DSMC simulations for
each training case and 25 simulations for each validation
case.

2.4. Gaussian Process Regression Modeling

The aim of GPR is to create a distribution of poten-
tial functions that fit the given dataset according to a
Gaussian Normal Distribution. Then, the function that
has the highest likelihood of fitting the data (maximum
likelihood estimation) is chosen as the representative
model [9]. For python, the scikit-learn library offers a
premade gaussian process regressor with modular func-
tions to include different kernels and noise estimation
tools which can automatically output standard deviation
bounds, which is useful for uncertainty quantification
[10]. Here, the inherently non-parametric approach only
requires the definition of a kernel function. For this study,
the Matern covariance function (kernel) is used as it gen-
erally provides a better approximation of nonlinear func-
tions with the appropriate definition of the smoothness
parameter, ν [11]. The matern kernel is defined as

k(xi, xj) =
1

Γ(ν)2ν−1
(

√
2ν

l
d(xi, xj)

ν

Kν(

√
2ν

l
d(xi, xj))

(3)

Where ν = 1.5, indicating a once-differentiable function.

2.5. Deep Learning

Deep Learning has become a very popular tool for ap-
proximating input-output relationships for highly com-
plex systems. Deep Learning primarily makes use of dif-
ferent neural network architectures to learn and predict
input-output relationships. Ultimately, the goal of any
supervised learning problem is to train on a set of given
inputs and outputs, and formulate a functional relation-
ship that generalizes well enough so that given a new set
of inputs, the model is able to generate an accurate pre-
diction. In this study, a fully-connected neural network is
used to model a full heating distribution over the primi-
tive surface.

A key challenge for deep learning is the identification of
the optimal set of network architecture and hyperparame-
ters due to the large amount of controllable parameters in
a neural network. A solution to this is based in Neural Ar-
chitecture Search (NAS) and Hyperparameters optimiza-
tion algorithms. In recent years, various NAS libraries
(AutoKeras [13], Keras Tuner [13], AutoML [12], etc.)
have been developed that provide a easy-to-use tool for
identifying the optimal set of hyperparameters for a given
dataset. In this study, we use Keras Turner. In Tables 1,
2, 3, 4, the architectures obtained from Keras Tuner are
presented.
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Figure 4. Drag Coefficient Results for Each Shape

3. DATA PROCESSING

There are many search algorithms used for NAS libraries,
but a popular one (also used for this study) is Bayesian
Optimization. This algorithm is popular compared to oth-
ers because it takes a more elegant approach to converg-
ing on the best deep learning model parameters. Specif-
ically, Bayesian Optimization leverages results from pre-
vious search trials to determine better parameters (prior
information) for future trials. With enough trials speci-
fied, the algorithm will eventually converge on the best
parameters for the problem at hand [15]. This generally
will make more efficient use of time as other methods
(random or grid search) are more ”brute force” methods
that do not account for past trials, making convergence in
a practical amount of trials less likely.

To improve neural network performance, input and out-
put normalization is imperative for increased learning
and faster convergence. For the input data, the data was
min/max normalized, defined as:

z =
x−min(X)

max(X)−min(X)
(4)

For the output data, the values were standard normalized,
which is defined as:

z =
x− µ
σ

(5)

4. RESULTS

4.1. Drag Coefficient

First, the results of the Drag Coefficient predictions from
the Gaussian Process Regression Model is shown in Fig-
ure 4. As expected, the training data performs extremely
well with very low uncertainty bounds. However, much
of the same can be said for the validation data as well.
Here, a good replication of DSMC data is seen for all
shapes as the mean error for each primitive is under 1%.
The uncertainty bounds are larger compared to the train-
ing data due to the location of the validation inputs within
the input space compared to the training inputs. Cases
where predictions have higher uncertainty bounds gener-
ally correspond to input values that lie close to one of the
training inputs, where as predictions with low uncertain-
ties indicate that the inputs for that specific case lie very
close or directly coincide with one of the training inputs.
Nonetheless, Gaussian Process Regression Modeling of-
fers a good prediction tool for drag coefficients in re-entry
flow. A table summarizing the performance of the GPR
is shown in Table 5
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Table 1. Sphere Model Parameters

Layer # # of Nodes Activation Function
1 928 elu
2 372 elu

Table 2. Cube Model Parameters

Layer # # of Nodes Activation Function
1 236 tanh
2 344 sigmoid

Table 3. Cylinder Ram Face Model Parameters

Layer # # of Nodes Activation Function
1 302 relu
2 302 softmax
3 112 elu

Table 4. Cylinder Side Face Model Parameters

Layer # # of Nodes Activation Function
1 552 softsign
2 128 elu
3 122 sigmoid

4.2. Heating Distributions

For the full heating distributions, much of the same can be
seen as compared to the drag coefficient. For all shapes,
the deep learning models offer a good replication for of
DSMC data in both training and validation data, shown
in Figure 5. For the sphere and the cube specfically,
there is very little over- or underfitting to speak of, as
most of the deep learning predictions coinciding nearly
perfectly with the DSMC data. With the cylinder cases,
the side face validation indicates there is some overpre-
diction at higher heating values which is due to a bias to
lower Knudsen Number cases. However, the training data
shows a good replication of DSMC results. For the ram
face, there seems to be a less tight fit around the 45 de-
gree line than in previous cases. However, the model still
performs well nonetheless.

The visualizations for the lowest and highest heating
cases predicted by deep learning is shown in Figure 6.
For the sphere, closed form solutions for the whole dis-
tribution is modeled as a function of the stagnation point
heat flux. Furthermore, it is assumed that regardless of
flow regime, the distribution would be identically mapped
across the entire object. However, this is seen to not
be true. It is evident that for lower values of heat flux,
the highest heating is much more distributed to the face
exposed to the flow. For the lowest Knudsen Number

Table 5. Drag Coefficient Errors (%)

Shape Training Validation
Sphere 0.75% 0.001%
Cube 0.19% 0.002%
Cyl. Side Face 0.26% 0.002%
Cyl. Ram Face 0.39% 0.002%

case, the heating is much more concentrated in the center,
which indicates that as Knudsen Number increases, the
stagnation point heat flux increases exponentially com-
pared to the remainder of the distribution. For the cube
and cylinder, the most important feature to be captured
that has largely been impossible to model as of date is
the areas of higher heating around edges and corners due
to flow expansion around these edges. For these three
shapes, the deep learning model is able to capture this
phenomena quite well. Similarly to the sphere, the model
is able to predict more distributed values of high heating
at the higher Knudsen Number cases and more concen-
trated points of heat flux at lower Knudsen Numbers.

4.3. Scaling Demonstration

As previously stated, once the object is meshed, the dis-
tribution of mesh elements must not change. To allow
the model to make valid predictions for objects of dif-
ferent characteristic lengths, the mesh can be scaled as
long as the input Knudsen Number is scaled appropri-
ately as well. Shown in Figure 7 is a demonstration of
this ability, where the characteristic length is halved from
its original value to one. The deep learning model, like
the original cube validation cases, is still able to detect
the areas of concentrated heating due to flow expansion.
For the overall distribution, the model is able to replicate
the DSMC data reasonably well. At lower, non-critical
points of heating, there is slight over-prediction. Con-
versely, at higher values, there is slight underprediction,
but the model still produces reasonable results.

5. CONCLUSIONS

The feasibility of using deep learning to replicating full,
high-fidelity heating distributions and drag coefficients
on shape primitives in re-entry flow has been demon-
strated. Using Gaussian Process Regression Modeling,
drag coefficient is accurately modeled, with a mean er-
ror across all shape primitives of under 1%. For the full
heating distribution, fully-connected neural networks are
able to detect features such as concentrated values of high
heating at the edges and corners for non-convex objects
such as a cube and cylinder.For all shapes, there is a very
good replication of DSMC data, thus demonstrating the
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Figure 5. Heating Results for Each Shape



8



9

Figure 6. Heating Visualizations for Each Shape
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Figure 7. Scaling Results

ability of deep learning to replicate high-fidelity data in
a fraction of a second. To extend the concept to shape
primitives of all sizes, a scaling demonstration is shown.
Here, the models provided are still able to make high-
fidelity predictions despite not originally training on an
object of that size.

6. FUTURE WORK

Future studies to further advance the development pre-
sented in this paper include:

• Implement attitude variations for tumbling objects
• Implement pixelator from Computer Graphics for

Space Debris [16]
• Uncertainty Quantification for predictions
• Eventually extend concept to hollow shape primi-

tives

7. ACKNOWLEDGEMENTS

This research was made possible by NASA West
Virginia Space Grant Consortium, NASA Agreement

#80NSSC20M0055. The authors would like to acknowl-
edge the use of the High Performance Computing Re-
sources Thorny Flat at West Virginia University housed
at the Pittsburgh Supercomputing Center.

REFERENCES

1. NASA, (2019). Process for Limiting Orbital Debris
2. Piyush M. Mehta, Edmondo Minisci, Massimiliano

Vasile, Andrew Walker and Melrose Brown, “Sensitiv-
ity Analysis towards Probabilistic Re-Entry Modeling
of Spacecraft and Space Debris,” AIAA Modeling and
Simulation Technologies Conference, Aviation 2015,
Dallas, Texas, June 22-26, 2015.

3. Cristina Parigini, Irene Pontijas Fuentes, Rodrigo
Haya Ramos, and Stefania Cornara, “Debris tool and
its use in mission analysis activities,” in 8th ESA sym-
posium on aerothermodynamics of space vehicles, Lis-
bon, Portugal, March 2015.

4. Alexander F., Garcia A., (1997). The Direct Sim-
ulation Monte Carlo Method Computers in Physics,
11(588)

5. S. J. Plimpton, S. G. Moore, et.al., (2019) Direct Sim-
ulation Monte Carlo on petaflop supercomputers and
beyond Physics of Fluids, 31(086101)



11

6. “DSMC Code Simulates Rarefied
Gas Dynamic Environments.” NASA,
www.nasa.gov/centers/johnson/techtransfer/technology/
MSC-23445-1-dsmc-dac.html.

7. Tu, J., Liu,C., et.al., (2013) Practical Guidelines for
CFD Simulation and Analysis Computational Fluid
Dynamics

8. Helton, J., Davis, F., (2002). Latin Hypercube Sam-
pling and the Propagation of Uncertainty in Analyses
of Complex Systems.

9. Sit, Hilarie. “Quick Start to Gaussian Process Re-
gression - Towards Data Science.” Medium, 12 June
2020, towardsdatascience.com/quick-start-to-gaussian-
process-regression-36d838810319.

10. “Gaussian Processes — Scikit-Learn 0.24.1
Documentation.” Scikit-Learn.Org, scikit-
learn.org/stable/modules/gaussianprocess.html.
Accessed 7 Aug. 2020.

11. “Matern kernel — Scikit-Learn 0.24.1
Documentation.” Scikit-Learn.Org, scikit-
learn.org/stable/modules/generated/sklearn. gaus-
sianprocess.kernels.Matern.html. Accessed 7 Aug.
2020.

12. “AutoML.Org.” AutoML, www.automl.org. Ac-
cessed 8 Mar. 2021.

13. “AutoKeras.” AutoKeras, autokeras.com. Accessed 8
Mar. 2021.

14. “Keras Tuner.” Keras Tuner, keras-
team.github.io/keras-tuner/documentation/. Accessed 7
Dec. 2020.

15. “Tuners - Keras Tuner.” Keras Tuner, keras-
team.github.io/keras-tuner/documentation/tuners. Ac-
cessed 7 Dec. 2020.

16. Piyush M. Mehta, Gonzalo Blanco-Arnao, Da-
vide Bonetti, Edmondo Minisci, Massimiliano Vasile,
“Computer Graphics for Space Debris”, 6th Interna-
tional Conference on Astrodynamics Tools and Tech-
niques, Darmstadt, Germany, March 14-17, 2016.


