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ABSTRACT

Space Debris Surveillance and Tracking has become a ne-
cessity to ensure the safety of current and future space
missions. In this work we present techniques for auto-
matic Detection and Identification of Space Resident Ob-
jects (SRO) using Machine Learning models in the frame
of Space Surveillance and Tracking (SST). A test facility
was built in order to generate representative images for
training the algorithms. We also present a description of
the experimental setup used for the generation of training
and validation images, the selected test cases, the used al-
gorithms and the performance achieved. It is found that
Machine Learning, including Deep Learning algorithms
have the potential to be used for identification and classi-
fication tasks in space.

Keywords: Orbiting objects, Detection, Identification,
Machine Learning, Deep Learning, Computer Vision.

1. INTRODUCTION

The ability of Machine Learning (ML), including Deep
Learning (DL) methods to identify and classify satellites
(and therefore distinguish them from non-satellite objects
or anomalous behaving man-made objects) based on sky
observations and catalogue information has been demon-
strated in several studies, as in [1, 2, 3]. Recently, there
has been a growing interest in the possibility of imple-
menting a space-based surveillance and tracking system
for monitoring objects directly in space [4]. Of special
interest is the possibility of creating an observation net-
work based on different commercial missions that have
sensors available in space. Such systems should be able
to extract as much insight as possible from low resolution
images taken under very varying illumination conditions,
and hence there is a motivation to develop techniques that
can make this processing in space using the existing (or
soon to be available) computing capacity. One candidate
technique that promises to greatly improve the perfor-
mance of these algorithms is the characterisation of the

satellite image using ML, and specifically DL techniques,
in low-resolution images (as it happens when satellites
are observed from a very far distance).

LMO was awarded a grant from the UKSA to develop
techniques for Identification and Classification based on
low-resolution satellite images taken in space. As part
of the project, LMO in collaboration with the Computer
Vision, Imaging, and Machine Intelligence (CVI2) re-
search group at the SnT, University of Luxembourg, im-
plemented several object detection and classification al-
gorithms based on ML, including DL techniques, trained,
and validated these models using experimental data gen-
erated using cameras in a representative setup. Technical
inputs for the camera’s implementation was provided by
MDA-UK together with support in the implementation of
the experimental test setup.

The goal of this work is to explore the feasibility of ML
as well as DL approaches through off-the-shelf models
to identify and classify satellites and space debris. To
this end, an experimental setup has been built to generate
a dataset of images covering a range of spacecrafts and
space debris.

The following sections of this paper cover: algorithm se-
lection in Section 2, experimental setup in Section 3, ex-
perimental images dataset in Section 4, synthetic images
dataset in Section 5, algorithms and evaluations in Sec-
tion 6, and finally results and discussion in Section 7.

2. ALGORITHM SELECTION

In order to develop a robust Space Surveillance and
Tracking (SST) system capable of detecting anomalous
behaviour of Space Resident Objects (SRO) and raising
warnings to operators, a selection of three algorithms has
been performed. Note that the proposed algorithms can
be combined or used independently.

1. Satellite Identification & Classification algorithm
with two core functionalities. Firstly, the algorithm
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Figure 1. Schematic of the experimental setup used.

should be able to differentiate between satellites
and non-satellites. In other words, the algorithm
should be able to perform binary classification on
whether the orbiting object is a satellite or not. Sec-
ondly, based on a predefined catalogue, the algo-
rithm should be capable of classifying the specific
model of the satellite being targeted. This means
that the algorithm should label the satellite with one
out of a total of N satellite classes defined in the
catalogue. This task is also known as multi-class
classification.

2. Satellite Stability Diagnosis algorithm. By estimat-
ing several attitude-related metrics, such as tumbling
rate, pose variation, pointing of solar panels and
more, an assessment on the stability of the satel-
lite can be performed by means of comparison with
historical data. In this sense, a change in pose or
a change in rotation rate that significantly differs
from historical data can point to a malfunction of
the satellite. This scenario would be followed by the
raise of a warning to the operators in order to take
any required actions.

3. Material Identification algorithm. A grouping of
satellite colour signatures, i.e., the ratio of Red (R),
Green (G) and Blue (B) components, can be used
with unsupervised learning techniques and/or classi-
fiers to identify the satellite being imaged and derive
further information. It can be said that such algo-
rithms would be relying on the material composition
of the satellites.

This work centers its attention into an exploration of Ma-
chine Learning (ML) approaches in order to develop al-
gorithm number 1, this is, Satellite Identification & Clas-
sification. To this end, an exploration process from simple
to complex methods is followed in order to test and un-
derstand how different Machine Learning classification

models perform. The final outcomes of this exploration
process is an in-depth analysis on why one model is bet-
ter than another. The explored methods can be catego-
rized into two main groups: (1) classical ML algorithms
and (2) Deep Learning (DL) algorithms based on Deep
Neural Networks architectures. A brief summary of the
selected approaches is presented here.

• Support Vector Machine (SVM) [5]: uses raw pixel
information in the form of a flattened image array
for both binary and multi-class classification.

• Multinomial Softmax Regression (MSR) [6]: uses
raw pixel information in the form of a flattened im-
age array for multi-class classification by means of
regression optimization.

• Principal Component Analysis (PCA) [7]: performs
dimensionality reduction of the flattened image (not
including colour signature maps), down to 10 fea-
tures, which are further used for classification.

• Cubic Feature Vectors: uses a specific set of features
based on PCA to further classify the satellite.

• Deep Neural Networks (ResNet) [8]: a specialized
Deep Neural Network (DNN) architecture, which is
a state of art very deep Convolutional Neural Net-
work (CNN), is used to extract class-related features
that are further used to classify the satellite.

SVM, MSR, PCA and Cubic Feature Vectors belong to
the first category, i.e., classical ML algorithms. Mean-
while, the latter approach, ResNet, belongs to the second
category of DL. It is common to confuse the two main
categories previously presented due to the fact that DL
algorithms are regarded as a sub-category of ML algo-
rithms. For this reason, it is worth noting that the first
category (Classical ML algorithms) specifically refers to



Figure 2. Final implementation of the mock-up stand con-
nected to the 6-degrees of freedom robotic arm.

approaches that are based on fitting and optimization pro-
cesses without the use of Neural Network architectures.
A detailed description of each one of these classification
approaches is offered in Section 6.

3. EXPERIMENTAL SETUP

To validate the proof-of-concept and verify by test the
initial performances of the selected algorithms, an exper-
imental setup was designed and implemented in collab-
oration with MDA-UK with inputs from CVI2 related to
image datasets for training. The experimental setup de-
sign (shown in Figure 1) was implemented in a mid-range
underground tunnel that allowed for testing at different
ranges in order to get images at different resolutions and
under varying illumination conditions. 8 different ranges
starting from 35m distance and down to approximately
2m distance were used for the images. Different tar-
gets were designed and built representing mock-ups of
different known satellite buses (Calypso, Cloudsat and
Jason-3) as well as debris objects (separation ring and
fairing-like objects), sized such as to achieve the desired
small pixel resolution, and using different combinations
of known materials. Combining the cameras with the
tunnel range this allowed to simulate images of medium
sized objects at different distances in the order of 50 km.
These mock-ups were installed on a 6-degrees of free-
dom robotic arm provided by MDA-UK to control their
orientations. The whole setup was covered on light ab-
sorbing material to minimize undesirable light sources,
and the mock-ups had heaters installed to simulate dif-
ferent thermal configurations. An incoherent, collimated,
power-regulated light source was used to simulate light-
ing with an intensity similar to that produced by the sun
in space (in the visible range). The final implementation
is shown in Figure 2 and Figure 3.

Figure 3. Final implementation of the camera setup with
visible and infrared cameras.

4. EXPERIMENTAL IMAGES DATASET

A set of 60.460 experimental images for training algo-
rithms in the Identification and Classification of objects
in space was generated in both the visible range and ther-
mal infrared range. This dataset contains 4 classes: three
types of satellites (Calypso, Cloudsat and Jason-3) and a
separate class debris. The dataset was generated using
varying illumination angles and a variety of orientations
within a limited range of ±30◦ rotation around each axis,
as well as 8 different ranges. The limiting factor for the
range of rotations was the robotic arm capacity to move
the satellite around a fixed point in the constrained space
available in the tunnel (height and width). The data has
the following labels: unique index, relative positions (x,
y and z) from the camera’s reference frame to the satellite
body reference frame, relative rotations (around x, y and
z) of the satellite body reference frame with respect to the
cameras reference frame, expressed as a result of consec-
utive rotations, a flag indicating if it is a satellite or a de-
bris object and a label indicating which satellite bus it is.
A set of 9.114 images for training algorithms in anomaly
detection based on satellite attitude was generated. This
dataset simulates historical observations of a target over
half a year including changes in the sun phase angle. This
dataset (collected in visual and thermal images) will al-
low for the development of Algorithms 2 and 3 in the
future. Examples of the resulting images are shown in
Figure 4 (close range and far range images).



Figure 4. Sample images captured with in the experimental laboratory setup. From left to right columns: Calipso,
CloudSat and Jason-3 spacecrafts. From top to bottom rows: close range and far range images.

5. SYNTHETIC IMAGES DATASET

In addition to the laboratory dataset generated through
the setup described in Section 3 and presented in Sec-
tion 4, a synthetic dataset has been generated. The syn-
thetic dataset has been developed thanks to the graphics
engine Unity in combination with 3D CAD models of the
same space objects presented in the laboratory dataset,
namely, Calipso, CloudSat and Jason-3 satellites as well
as 2 different debris objects (all of them regarded as be-
longing to the same class debris). The main advantages of
generating synthetic data are: (1) full control in the data
variability, meaning that all generation-related parame-
ters can be fully regulated on-demand such as lightning
conditions and earth on the background, (2) an unlim-
ited amount of data can be generated (until all data vari-
ability is covered) and (3) additional imagery techniques
can be added to the generation process such as blurring,
saturation variation, brightness variation and many more.
In relation to the latter advantage, our synthetic dataset
presents Gaussian blurring which intends to mimic the
noise introduced by the camera used during the genera-
tion of the laboratory dataset. One critical disadvantage
of solely relying on synthetic data is the effect known as
domain gap. A significant accuracy drop generally ap-
pears when a model is trained on purely synthetic data
and then evaluated on real data (thus the name). This
is a well-known and well-studied behaviour among the
learning-based academia, and thus several solutions tack-
ling this accuracy drop have been proposed. Since devel-
oping a domain gap solution for space data falls out of

the range of this work, we make use of one of the sim-
plest yet effective domain gap generic solutions, that is,
combining the synthetic data with the laboratory data in
hopes of adapting the trained model to the latter type of
data.

Due to the nature of the task, i.e., orbiting space objects
classification, a wide range of data variability appears in-
troduced by the object’s pose (position and orientation),
the lightning conditions and the earth on the background.
Following the conditions of the laboratory dataset, the
here generated dataset does not present earth on the back-
ground. Moreover, the dataset generated and used for
this work is a reduced version of the one presented in the
2021 SPARK challenge standing for SPAcecraft Recog-
nition leveraging Knowledge of Space Environment [9].
The dataset generated presents roughly 3.500 images for
each satellite class while the debris class presents a total
of 7.000 images. All the images have been generated in
colour (with RGB channels) and with a size of 224× 224
pixels. Several samples of the generated images can be
seen in Figure 5.

6. ALGORITHMS AND EVALUATIONS

Having generated the laboratory as well as the synthetic
datasets, all the proposed approaches for space objects
classification are optimized and evaluated. The classical
ML-based algorithms (SVM, MSR, PCA and Cubic Fea-
ture Vectors) have all been implemented by LMO and op-



Figure 5. Sample images from the generated synthetic dataset. From left to right columns: Calipso, CloudSat, Jason-3,
space debris (1) and space debris (2). From top to bottom rows: close range and long range.

timized using a greyscale version of long range-only lab-
oratory images. This has been done in order to be able to
train, validate and test datasets using the minimum com-
puting power possible. Additionally, the laboratory im-
ages have been cropped to a size of 50× 50 at the center
of the space object depicted in each image. This cropping
step mimics a detection stage that needs to be performed
when relying on purely ML-based solutions since these
are in general position-sensitive with respect to the pixels
in the image. Experimental exploration has shown that a
split of 10% training data and 90% test data is sufficient
and challenging enough for achieving high classification
results. This split has been performed at random based
on a fixed seed in order to ensure the same test set over
all classical ML-based approaches.

On the other hand, the DL-based approach, this is through
DNNs and more specifically through CNNs, has been im-
plemented by CVI2 within SnT (University of Luxem-
bourg). CNN models have two significant advantages
by nature with respect to classical ML-based approaches;
(1) such models are position-insensitive over the pixels
meaning that for classification purposes there is no need
for a prior detection step and (2) using synthetic data as
a complement to real data has been experimentally found
to enhance the final results. For these reasons, both syn-
thetic and laboratory datasets have been used on their full
resolution as well as on their RGB format. Despite these
great advantages, DL-based models are known to require
large amounts of data to be properly trained. Thus, a
split of 50% training data and 50% test data with a fixed
random seed is used throughout all the experiments with
CNNs.

Following subsections provide explanations on each one
of the explored classification models as well as on their
performances over their corresponding laboratory test
splits.

6.1. Support Vector Machines

Support Vector Machines can be used to perform binary
classification through fitting a hyperplane, which splits
the two classes of the training set, over the input space
Rd with d the number of dimensions of the input vector.
In our case we need to tackle a multi-class classification
problem. In order to handle this with SVM, a one-vs-
all (also known as one-vs-rest) classification strategy has
been followed. Since our dataset presents a total of 4 dif-
ferent classes, a total of 4 different binary SVM classifiers
are needed. The one-vs-all strategy works as follows:

1. For each class c in the dataset train an SVM binary
classifier considering class c as the positive class (la-
bel 1) and all the other classes as the negative class
(label 0). This training stage yields a total of 4 SVM
classifiers that are able to identify if an input con-
tains a specific space object or not.

2. During evaluation, the input flattened image is pro-
cessed by all 4 SVM classifiers and the overall win-
ner (based on the 4 yielded scores) decides the class
to be predicted.

The specific SVM model selected has been a Linear SVM
classification model with a regularization parameter C of
0.1. A total of 5 runs were performed in order to measure
the classification accuracy. The average classification ac-
curacy has been found to be 98.9%.

6.2. Multinomial Softmax Regression

For each input array x of dimension d, a Multinomial
Softmax Regression model computes the probability that
x belongs to the class c, for c = 0, ..., k − 1 (in our case
k = 4), using Eq. 1.



Figure 6. From left to right columns: original image, reconstruction from PCA with N = 10 and reconstruction from
PCA with N = 2. From top to bottom rows: Jason-3 sample and Calipso sample.

h(x) =
1∑k−1

c=0 e
θc·x/τ


eθ0·x/τ

eθ1·x/τ

...
eθk−1·x/τ

 . (1)

For each c, θc is an array of dimension d with the clas-
sifier parameters corresponding to the class c. Moreover,
in Eq. 1, · represents the dot product and τ is the tem-
perature parameter (a positive scalar) where small values
lead to less variance. In order to learn the parameters θc
the following loss function (or cost function) presented in
Eq. 2 is minimized.

L(X, θ) = − 1

n

[
n∑
i=1

k−1∑
c=0

1y(i)==c ln
eθc·X

(i)/τ∑k−1
j=0 e

θj ·X(i)/τ

]

+
λ

2

k−1∑
c=0

d−1∑
l=0

θ2cl, (2)

where n is the total number of samples of the training set,
k is the number of classes (4 in our case), d is the number

of dimensions of the input arrays (can also be seen as
the number of input features) which in our case is equal
to 50 × 50 = 2.500, 1 is the indicator function, X is
the training set, y is the list of ground-truth class labels,
and λ is the regularization parameter for the parameters θ.
This loss function has been minimized by the Stochastic
Gradient Descent (SGD) method as presented in Eq. 3.

θ ← θ − α∇θL(X, θ), (3)

where α is the learning step parameter,∇θ is the gradient
operator with respect to θ and← is the update function.
The final MSR model has been trained using α = 0.3,
λ = 1e− 4 and for a total of 150 iterations (epochs). The
trained model has achieved a classification test accuracy
of 98.4%.

6.3. Principal Component Analysis

The two previously described models take as input the
flattened greyscale cropped image. Taking this approach
means processing as many dimensions as features in the
input image. Moreover, due to the design of these ML-
based models, the number of parameters grows with the



Figure 7. Plot of the first 100 2-dimensional PCA rep-
resentations of the laboratory dataset. Note how class
number 2, corresponding to the space debris class, can
easily be separated from the rest of the classes (red sepa-
ration has been manually plotted to show this).

number of input features. In hopes of reducing the num-
ber of parameters needed as well as using more compact
and meaningful features PCA is used. After transforming
the input arrays through PCA the MSR model is retrained
and re-evaluated to see the performance impact.

PCA is an extremely popular technique among the data
processing community which performs dimensionality
reduction while encoding significant features. This
method finds orthogonal directions of maximal variation
in a dataset. Once these directions have been found then
the dataset can be projected onto a subset of these direc-
tions thus yielding a reduced representation. The sorted
directions, from higher to lower data variation, corre-
spond to the eigenvectors sorted by the eigenvalues of co-
variance matrix X̂X̂T , where X̂ is the zero-mean dataset
X and ·T is the matrix transpose operation. It should be
noted that the orthogonal directions are found over the
training set and then these are used over the test set. The
reason for this is that the test data should not influence
in any way the PCA process since it is considered to be
completely unseen data.

PCA lets the developer choose the number of dimen-
sions to be reduced by choosing how many dimensions
should be output have. This is done by selecting and pro-
jecting all the data to the top N most variant directions,
where N is a parameter to be fixed by the developer. We
have explored two different scenarios, N equal to 2 and
equal to 10. When N = 2 the yielded representations
can be depicted in a 2-dimensional scatter plot. Figure 7
presents these 2-dimensional PCA representations for the
first 100 images of the laboratory dataset. The retrained
MSR model using PCA with N = 2 yields a classifi-
cation accuracy of 68.8%. On the other hand, the re-
trained MSR model using PCA with N = 10 yields an
accuracy of 97.3%. This behaviour is to be expected
as with N = 2 only two features are being used to rep-

resent the space object in comparison with 10 features.
To better understand this difference in the amount of in-
formation compressed by PCA, a reconstruction process
is performed from the yielded representations. Figure 6
shows a comparison of two sample images, their corre-
sponding reconstructions from PCA withN = 10 as well
as their reconstructions from PCA with N = 2.

6.4. Cubic Feature Vectors

An extension to the PCA dimensionality reduction pro-
cess has been also explored by performing a cubic fea-
ture mapping. This mapping can be defined as a function
φ that maps an input feature vector x with d dimensions
into a new feature vector φ(x) such that, for any other
d-dimensional array x′, Eq. 4 holds.

φ(x)Tφ(x′) = (xTx′ + 1)3. (4)

Such cubic mapping represents the new input space of the
dot product defined in Eq. 4. This dot product is a spe-
cific case of a degree-3 polynomial kernel which can be
used in combination with PCA. Thus, combining PCA
with the here defined kernel, new cubic feature vectors
are generated. The main advantage of using a polyno-
mial kernel is that it enables a classification model, such
as Linear SVM or MSR, to perform non-linear classifica-
tion. Finally, an MSR model has been trained with these
cubic feature vectors yielding an outstanding classifica-
tion accuracy of 99.8 %.

6.5. Deep Neural Networks

A series of trainings and evaluations have been performed
in order to shed light on the usage of CNN, a specialized
category of Neural Network architectures for image pro-
cessing, on the task of space objects classification. To
this end, an extremely popular and widely used off-the-
shelf CNN has been selected named ResNet [8]. Such
architecture has a track proven record over a vast range
of different computer vision tasks such as classification.
In our series of experiments we have trained and evalu-
ated different sizes of the ResNet architecture, in partic-
ular ResNet18, ResNet34 and ResNet50. Additionally,
different combinations of ranges from the camera to the
space object have been considered on the train and test
datasets. Regarding the synthetically generated dataset,
ResNet18 has been used to perform an exploration and
comparison when using such data as a complement to the
laboratory dataset. Note that the test sets are fully com-
posed by laboratory data, meaning that synthetic data is
only used during training. The approach followed to ex-
ploit the synthetic data is as follows:

1. First, a training step is performed over pure synthetic
data. A train/test split is also used over the synthetic



Table 1. Classification accuracy results for different CNN architectures under different training conditions.

CNN Architecture Training data Ranges trained - tested Train accuracy (%) Test accuracy (%)

ResNet18 Synthetic Mixed - Mixed 99.13 99.43

ResNet18 Synthetic + Lab Mixed - Mixed 99.85 99.96

ResNet18 Synthetic + Lab Long - Long 99.44 99.75

ResNet34 Lab Long - Mixed 99.60 86.20

ResNet34 Lab Mixed - Long 99.02 98.00

ResNet50 Lab Mixed - Mixed 99.80 99.50

ResNet50 Lab Long - Long 99.20 99.33

Figure 8. Integrated Gradients qualitative analysis. The
top row presents a spacecraft sample image (on the left)
with its corresponding pixel attributions (on the right).
The bottom row presents the same scenario for a space
debris image.

dataset in order to keep track of the best performing
iteration.

2. Once the CNN has been optimized with the syn-
thetic dataset it is used as the starting model for fur-
ther training. The second, and final, training stage
only involves laboratory data. In doing this, all the
information and knowledge learned during the syn-
thetic training stage is transferred.

Such technique is expected to enhance the final classifica-
tion results over the laboratory test set. Table 1 shows all
the results obtained from all the experiments performed
with the ResNet architecture. From the here obtained re-
sults several insights can be extracted. First of all, adding

synthetic data into the training process has been proven to
enhance the final classification results as expected. Sec-
ondly, it can be derived that the task of classifying 3
spacecrafts and a generic space debris class appears to
be well-behaved and fair to learn using CNN architec-
tures. Nonetheless, it is worth noting that the trained
models only show such high performance when the eval-
uated images are visually consistent with the images used
during training. As found on the obtained results with the
ResNet34 architecture, a model trained on long-range im-
ages only will drop its performance when evaluating over
mixed-ranges images, and vice versa. Lastly, ResNet50,
which corresponds to the biggest CNN architecture and
the one which should presumably outperform its smaller
versions, does not surpass ResNet18 when this one com-
bines synthetic data with laboratory data. This remark-
able finding shows how synthetic data can be extremely
beneficial for the development of such DL-based models.
Thus, it can be concluded that combining synthetic and
laboratory data for space imagery tasks appears to be a
greatly profitable technique.

In addition to the here presented classification results,
a fast model interpretation assessment has also been
carried. The model interpretation analysis performed
has used the technique known as Integrated Gradients
[10]. Such interpretation technique assigns an impor-
tance score to each pixel of the input image based on its
impact on the final prediction. A qualitative interpretation
analysis has been done with two different models, one
trained on far range only and another trained on mixed
ranges. Figure 8 shows two samples with their corre-
sponding pixel attributions using the far range model. Vi-
sual inspection shows how the model generally focuses
on the main body of the spacecrafts while for space de-
bris their geometric shape is what is used for recognition.
Solar panels appear not to be highly relevant for clas-
sification except in the case of CloudSat in which their
solar panels have a different geometric shape. Further-
more, the model trained on long range was also tested
on a close range image of a Jason-3 spacecraft. Figure
9 presents this image along its pixel attributes and the
yielded classes probabilities. It can be noted how, in this
specific Jason-3 image, the model was not able to find
the same visual features to the ones with which it was



Figure 9. Cross-range Integrated Gradients qualitative analysis on a Jason-3 spacecraft image. From left to right: the
input image, its corresponding pixel attributions and the predicted probabilities.

Figure 10. Integrated Gradients qualitative analysis over
mixed ranges on a Jason-3 spacecraft. From top to bot-
tom rows: close range, mid range and close range im-
ages. From left to right columns: input image and its
corresponding pixel attributions.

Table 2. Summary of the best results achieved by each
methodology over far range only images.

Methodology Accuracy achieved (%)
SVM 98.9

MSR 98.40

PCA 97.3

Cubic Feature Vectors 99.8

Deep Neural Networks 99.3

trained. Also note how the focused attributes (green col-
ored pixels) are perceptibly more scattered than in previ-
ous cases as seen in 8. For these reasons, the model con-
fuses this Jason-3 spacecraft with a Calypso spacecraft as
seen in the predicted probabilities. To conclude, Figure
10 presents one far, one mid and one close range image of
a Jason-3 spacecraft using the mixed ranges model. Note
how in this case the attributed pixels are better distributed
over the body of the spacecraft in all ranges.

7. RESULTS AND DISCUSSION

All the best results, grouped by each methodology and
obtained on far range only images, are summarized in Ta-
ble 2. Classical Machine Learning-based methods have
proven to consistently achieve high accuracy, even when
using a split of 10%/90% between training and testing
samples. Despite their great performances, ML-based
methods, such as SVM and MSR, are position-sensitive
with respect to pixel values. This means that when trans-
lating a set of pixels to another position of the image then
the performance will greatly be affected by this. It is
worth noting that, when performing dimensionality re-
duction, through PCA for instance, pixel values are com-
bined into new features which can encode geometric in-
formation. It can be of interest, as future work, to evalu-
ate the training and testing outcomes when using mixed
ranges with ML-based algorithms. A solution to this



position-related drawback is to include a prior algorithm
that detects and localizes the object in the image. On
the other hand, Convolutional Neural Networks do not
present this limitation as they are, by design, position-
insensitive (due to the nature of the convolution opera-
tion). CNNs are the most robust option for the here stud-
ied application. The reason for this lies in the great vi-
sual processing capabilities that they have for extracting
distinctive visual features of the depicted space objects.
Moreover, CNNs are capable of handling a wide range
of visual conditions, if properly trained, such as lighting
variations and different distances to the object.

All algorithms have performed comfortably over the
dataset generated from the experimental setup. It is to
be noted that this dataset, even if representative of illu-
mination conditions in space, has some limitations: (1)
all space objects are imaged against a dark uniform back-
ground and (2) there is low variability on the data in terms
of size (range) and orientation. Despite this, these condi-
tions are likely to be representative of many surveillance
scenarios when satellites may be observed in orbits such
that the earth does not appear in the background, and at
the same time the nominal operation of the satellites usu-
ally imply that there is a limited set of orientations ex-
pected at a certain point in their orbit (e.g., slow slew rate
pointing to earth for most Earth Observation missions).
Based on this, it is concluded that these results are suc-
cessful as a first proof-of-concept demonstrating the po-
tential of ML and DL algorithms to perform recognition
and classification in space.

In hopes of further motivating the research commu-
nity towards exploring ML methods including DL for
space applications, CVI2 in collaboration with LMO has
organized and launched a challenge titled SPAcecraft
Recognition leveraging Knowledge of Space Environment
(SPARK) [9].
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