
UNCERTAINTY PROPAGATION MEETING SPACE DEBRIS NEEDS

Jorge Bravo Aguado(1), Javier López Santiago(1), Alberto López Yela(1), Pablo Martı́nez Olmos(1), Joaquı́n Mı́guez
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ABSTRACT

The provision of quality space debris services largely re-
lies in the capacity to estimate the state vector of the
space debris objects and a suitable description of its un-
certainty. In recent years, emphasis has been placed on
the need to improve realism in characterizing uncertainty
to enhance the quality of space surveillance and tracking
(SST) services. The determination of the orbit of a de-
bris object, however, is a tracking problem with scarce
available measurements. For that reason, the propagation
of the uncertainty from one observation to the next one
is key to track the debris accurately enough. This work
addresses the analysis of uncertainty propagation meth-
ods for space debris orbit determination. An assortment
of approaches are detailed, defined and explored, to cover
an extensive variety of methodologies. Some of them are
studied in more detail and tuned to provide the proper
metrics of interest in two relevant space debris services:
reentry prediction and collision avoidance. A series of
pertinent study cases are analyzed for both applications
and, as a result recommendations are made to improve
the uncertainty characterization in SST-related problems.
A subset of the investigated methodologies has been im-
plemented and tested in a software prototype.

Keywords: Uncertainty propagation; uncertainty quan-
tification; reentry; collision avoidance.

1. INTRODUCTION

Space debris objects are routinely tracked to provide ser-
vices of re-entry and conjunction analysis, among others.
Estimation and prediction of the state of the space de-
bris is at the core of such space surveillance and tracking
operations. The performance of the estimation process
can be measured in terms of the correct characterization

of the state uncertainty, which is, in turn, necessary for
the proper operation of the space tracking system. When
tracking space objects, observations are not in abundance,
and, therefore, propagation of the uncertainty from the
epoch of the last observation update is key for efficient
tracking. A thorough review of the relevance of uncer-
tainty realism in SST-related problems has been recently
highlighted and presented by a Working Group on Co-
variance Realism [32]. In the last years, there has been a
considerable effort to improve uncertainty quantification
methods and enhance SST-services.

This paper explores various families of methods for un-
certainty propagation (UP) to meet the needs of state-of-
the-art debris tracking systems. The work has been car-
ried out in the framework of the ESA contract of the same
name and it has not been limited to the study of meth-
ods previously used in orbit determination problems. In-
deed, it broadens scope to explore UP schemes devised
for other tracking problems. The focus is placed on non-
linear methods, i.e., those in which the non-linearity of
the dynamics is explicitly taken into account. Nonlinear
UP techniques can be classified in three broad groups:

1) Probabilistic UP methods, that propagate the proba-
bility distribution of the state without regard to the
specifics of the dynamic equation. This category in-
cludes most available schemes: unscented transform
([24]) and cubature methods in general ([26, 4]), or
Gaussian mixture (GM) models ([37, 40, 14, 15]).

2) Dynamics-based UP methods, (essentially) includes
state transition tensors (STTs) ([31, 19]), differential
algebra (DA) propagators ([39, 7, 43]) and polyno-
mial chaos expansions ([22, 23]).

3) Hybrid UP methods, that aim at drawing from
the advantages of different schemes (probabilistic
or dynamics-based) by combining them, e.g., GM
models combined with STTs ([18]) or with a poly-
nomial chaos expansion ([41]).
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In addition, stochastic and deterministic dynamical mod-
els, including a stochastic description of the atmospheric
density, have been tested for assessing their influence on
the overall performance of the UP methods.

A series of study cases are selected to compare all the
methods, taking into account both their computational
cost and their accuracy (which is assessed by comparing
with “brute force” Monte Carlo propagation). From the
preliminary results obtained in the study, a selection of
suitable UP methods is made. They are then used in two
prominent applications: satellite collision risk assessment
and re-entry prediction. For these two problems, the map-
ping of uncertainties into the quantities of interest, i.e.,
collision probability or re-entry time and location uncer-
tainty, is also explored. Different techniques are proposed
and specific metrics are defined for their performance as-
sessment. A series of test cases are studied for both col-
lision avoidance and re-entry analysis. Selected methods
have been implemented in a software prototype.

The paper is organized as follows: Section 2 is a review of
the UP methods that have been studied in this work; Sec-
tion 3 describes how some of these methods can be used
in the context of reentry prediction and collision avoid-
ance services; Section 4 briefly describes the software
prototype; Section 5 illustrates some relevant results of
the analysis; finally, Section 6 is devoted to the conclu-
sions drawn from this work.

2. UNCERTAINTY PROPAGATION METHODS

For generality, the object motion is assumed to be gov-
erned by a stochastic differential equation of the form

dX = f(X, t)dt+ G(X, t)dW, (1)

where t is continuous time, X(t) is the state of the ob-
ject (a multivariate stochastic process), the drift func-
tion f(X, t) is deterministic, G(X, t) is a known ma-
trix that determines the power of the random perturbation
and W(t) is a multivariate standard Wiener process [30].
This formulation allows us to include in a seamless way
a stochastic model for drag and also covers the usual de-
terministic framework by simply taking G(X, t) = 0,
which reduces (1) to an ordinary differential equation
(ODE).

The numerical integration of an equation of the form
in (1) involves the discretisation of the continuous-time
variable t. Several schemes can be used for this purpose.
Most of them translate the continuous-time SDE (1) into
a discrete-time difference equation of the form

Xn = f(Xn−1,Un), (2)

where T is the integration step, Xn ≈ X(nT ), Un is a
zero-mean Gaussian random vector with covariance ma-
trix TGn−1G

>
n−1 and Gn−1 = G(Xn−1, (n − 1)T ).

For the simple Euler-Maruyama scheme,

f(Xn−1,Un) = f(Xn−1) + Un.

2.1. Monte Carlo methods

Given a prior probability density function (pdf) for the
state at discrete time n = 0, denoted p0(x0), eq.
(2) generates random sequences X0,X1, . . . ,Xn, . . .
For conciseness, let us represent the subsequence be-
tween discrete time instants k and m as Xk:m :=
{Xk,Xk+1, . . . ,Xm}. One can perform standard Monte
Carlo (MC) sampling for the dynamical system (2) for
n = 0, . . . ,m, which generates N independent and iden-
tically distributed (iid) subsequences {X(i)

0:m}Ni=1. Under
very mild assumptions on eq. (1), if X0 has a pdf p0(x0)
then the random vector Xm is distributed according to a
well-defined pdf pm(xm). It is often of interest to nu-
merically approximate moments of Xm. The standard
MC estimator, EN [φ(Xm)] = 1

N

∑N
i=1 φ(X

(i)
m ), where

φ(·) is an integrable test function, can be used for that
purpose, with a convergence rate of O(N−

1
2 ) [33].

The set of MC samples {X(i)
0:m}Ni=1 can also be used to

construct a kernel density estimator (KDE) of the pdf
pm(xm), for any integer m < ∞. The KDE is built
by taking the convolution of a kernel function κ : X 7→
[0,∞), where X is the state space, with the sequence
X

(1)
m , . . . ,X

(N)
m . To be specific, the KDE of pm(x) is

p̂Nm(x) :=
1

N

N∑
i=1

κ
(
x−X(i)

m

)
. (3)

The kernel is itself a centred pdf with finite second or-
der moments, i.e.,

∫
X ‖x‖

2κ(x)dx <∞. Classical KDE
convergence theory [35, 42] deals with the case where the
samples {X(i)

m }1≤i≤N are iid, with common pdf pm(x).
The typical figure of merit is the mean integrated square
error (MISE),

MISE(p̂Nm) = E
[∫
X

(
pm(x)− p̂Nm(x)

)2
dx

]
.

Using techniques based on the Taylor expansion of the
error, it can be shown that limN→∞MISE(p̂Nm) = 0,
but no convergence rates are available in general. The
MISE can be optimised with respect to (w.r.t.) the ker-
nel κ(x). When the samples are iid and drawn from the
actual pm(x), the minimum MISE is obtained using the
Epanechnikov kernel [35]. Stronger results, including
uniform convergence and the analysis of non-iid samples,
can be found in [10].

2.2. The Fokker-Plank equation

The Fokker-Planck equation (FPE) [25] is a partial dif-
ferential equation (PDE) that describes the dynamics of a
family of pdf’s {p(x, t)}t≥0 where, for a given t, p(x, t)
is the pdf of the (random) state X(t) conditional on the
initial condition X(0). Typically, this approach is dis-
carded as computationally prohibitive for practical prob-
lems [36] because the cost of the implementation grows



exponentially with the state dimension (although some
tractable schemes have been proposed recently for low-
dimensional problems [36]). In addition, the FPE is de-
rived under regularity assumptions that do not hold in
general, e.g., when the drag is random (other than a
Wiener process).

2.3. Gaussian UP methods

Prediction and Kalman filtering methods based on the un-
scented transform (UT) [24] have become popular since
the late 90s. Given a Gaussian pdf, the UT provides
an efficient procedure to propagate both the mean and
the covariance matrix (which fully characterize the Gaus-
sian pdf) through a nonlinear function using determinis-
tic samples. The result is an approximation of the actual
covariance accurate to the second order. Algorithms that
rely on the UT can be computationally fast, however, they
are only useful when the target pdf can be well approx-
imated by a Gaussian (which is not the case in orbital
UP, see, e.g., Fig. 2 in [27]). UT can be combined with
Kalman-like update steps if additional observations are
available. This combination yields a so-called unscented
Kalman filter (UKF) [29].

Other UP methods based on deterministic sampling and
integration can be designed using cubature theory [26,
12]. The term “cubature” refers to a class of methods
that generalize classical quadrature schemes to multidi-
mensional settings. The use of cubature methods for UQ
and filtering was originally proposed in [28] and it gained
attention in the engineering community after the publica-
tion of [5]. In the framework of UP, cubature schemes
are very similar to techniques based on the UT. The key
feature of cubature schemes is that they are designed to
be exact for a certain class of nonlinear transformations,
while the UT always yields approximations. In this work,
two spherical-radial cubature rules have been utilized to
design UP algorithms. The third-degree spherical-radial
rule (SRC3D) uses the same number of reference points
as the UT transform, and has similar accuracy (but it
has been reported as numerically more stable), while the
fifth-degree spherical-radial rule (SRC5D) uses a larger
number of reference points and attains a superior accu-
racy. Details on the derivation of both methods can be
found in [21].

A major drawback of UT- and cubature-based UP meth-
ods is that the covariance matrix of the state variables
increases quickly and, as a consequence, such methods
significantly overestimate the uncertainty of the predic-
tions after a few days. This limitation is a consequence
of the nonlinearity in the propagation of the state: after
a moderate interval of time (ranging from a few hours to
a few days, depending on the initial uncertainty) the pdf
of the state becomes non-Gaussian and the mean vector
and covariance matrix do not yield sufficient information
to characterize it.

2.4. Polynomial approximations of the state vector

A family of UP methods rely on the construction of poly-
nomial approximations of the state variables with the ini-
tial condition as an argument. In other words, given an
initial condition x0, these schemes yield an approxima-
tion of the state at time t of the form xt ' ψt(x0), where
ψt(·) is a suitable polynomial.

In this category, one can find techniques based on the
Taylor differential algebra and state transition tensors,
consisting in the propagation of polynomials. They just
differ in the way of obtaining such polynomials. The
third method is based on the polynomial chaos expansion,
which consists in an interpolation pf the solution state
with orthogonal polynomials depending on the probabil-
ity distribution of the initial state.

Taylor differential algebra An algebra A over a field
is a vector space equipped with a bilinear product [17].
The derivative of the product of two functions f(·) and
g(·) can be seen as a bilinear product. Then, if we con-
sider the Taylor expansion of these functions, the coef-
ficients form an algebra with the bilinear product. The
key idea behind the use of Taylor differential algebra or
differential algebra for short (DA), for computation pur-
poses, is using this bilinear product to construct poly-
nomial approximations (truncated to a prescribed order)
of transformations which involve much heavier computa-
tions [7].

Consider, for example, an ordinary differential equation
(ODE)

dx(t) = f(x, t)dx, with x(0) = x0, (4)

where the solution can be written as a function of the
initial value, namely, x(t) = ϕ(x0, t). When we use a
numerical scheme to integrate the ODE above, we com-
pute an approximation of this function, hence we denote
xt ' ϕ̂(x0, t). The DA methodology provides the means
to construct a polynomial (Taylor) approximation around
a given point x0 in the state space, of the form

x̂(t) = ϕ̂(x′0, t) = ϕ̂(x0, t)+∇̂ϕ(x0, t)·(x′0−x0)+. . . ,
(5)

for any initial condition x′0 which lies within the con-
vergence region of x0. If the initial value is random,
x′0 = x0 + ∆x0, where ∆x0 is a random vector, the
expansion (5) becomes

x̂(t) = ϕ̂(x0+∆x0, t) = ϕ̂(x0, t)+∇̂ϕ(x0, t)·∆x0+. . . .
(6)

Hence, we can compute an approximation for the mo-
ments of x̂(t) simply computing the moments of the
right-hand side (rhs) of (6). Again, the accuracy of the
estimates depends on whether x′0 lies in the convergence
region of x0. As a consequence, the estimate x̂ can be ex-
pected to be more accurate when the covariance of ∆x0 is
narrow enough. Otherwise, more sophisticated schemes
based on the partition of the state space (domain-splitting
methods [43]) are needed.



The DA approximation can yield accurate estimates of
the solution x(t) simply evaluating a polynomial. Com-
puting the coefficients of the polynomial approximation
can be computationally demanding, though. The pro-
cess involves running the numerical scheme that gener-
ates ϕ̂(x0, t), where all computations are implemented
(approximated) using the bilinear product of the algebra.
Truncation of the resulting polynomials at each time step
is also needed to keep the degree of the approximation
at time t fixed. When t is very large or the polynomial
degree needed to attain good accuracy is high, the cost of
computing the necessary coefficients can be prohibitive.
In any case, numerical implementations of this method,
demand thorough optimization. Moreover, if stochastic
dynamics are considered (as in Eq. (1)), the random terms
that result from G(x, t)dW should be considered vari-
ables in the approximating polynomials. In that case, the
number of variables would increase at every time step and
become prohibitive even for short time spans..

State transition tensors The state transition tensor
method (STT) relies on obtaining the Taylor coefficients
of the solution of the propagation in a similar way as the
DA technique does. However, it differs in the way of
computing them. Instead of “translating” the operations
in the algorithm into the DA framework, the STT method
computes the coefficients by solving a system of ordinary
differential equations of first order in time [31]. In gen-
eral, these equations can not be solved analytically and
solutions must be approximated by numerical integration.
For that reason, the computational cost can be expected
to be greater than the cost of the DA approach.

Polynomial chaos expansion Polynomial chaos ex-
pansion (PCE) methods approximate the function
ϕ(x0, t) using a basis of orthogonal polynomials. The
most common families of orthogonal polynomials are re-
lated with common probability measures [3], including
the Legendre, Laguerre and Hermite polynomials. In
general, the computation of the coefficients of the ex-
pansion can not be done analytically. Instead, it requires
the numerical solution of an optimization problem or the
evaluation of an integral (typically by MC integration).

The PCE method, as described in the literature, is only
valid for the deterministic case, i.e., with G(x, t) = 0 in
Eq. (4). Like in the DA framework, the random terms
generated by G(x, t)dW otherwise would yield extra
variables in the interpolating polynomial. Compared to
DA, the main advantage of PCE is that the resulting poly-
nomial approximation is valid irrespective of the initial
condition x′0 = x0 + ∆x0 even if the perturbation ∆x0

is large. It is also easier to code and, in principle, compu-
tationally lighter.

2.5. Gaussian mixture models

Given a collection of pdf’s, p1(x), p2(x), · · · , pN (x),
all of them defined over the same probability space, the

weighted sum

p(x) =

N∑
i=1

wipi(x) (7)

is a finite mixture pdf if all the weights,wi, i = 1, · · · , N ,
are non-negative and

∑N
i=1 wi = 1 with wi ≥ 0. It

can be shown [20] that if p(x) above represents the ini-
tial pdf of the state x at time t0 in a dynamic system in
state-space form, a prediction step from time t0 to time
t0 + T does not affect the weights in the mixture, but
only the shape of the individual pdf’s. In other words,
UP amounts to propagating the uncertainty in each in-
dividual component. However, the latter still remains a
hard task when the system is non-linear or affected by
non-Gaussian noise.

Adaptive Gaussian mixtures Let x0 denote the state
at time t0 and assume that every component of the mix-
ture, N in (7) is kept fixed or can be updated over time.
An example of a fixed GM approximation can be found
in [20]. Adaptive methods, which increase the number N
of components over time to keep the mixture approxima-
tion accurate over time have gained attention in recent
years and we have investigated two of them in detail,
namely, the AEGIS (adaptive entropy-based Gaussian-
mixture information synthesis) [14] and DoNG (direc-
tion of non-Gaussianity) [16] algorithms. AEGIS re-
lies on an information-theoretic criterion (the differen-
tial entropy of the nonlinearly-transformed state vector)
to decide whether a given transformation introduces “too
much nonlinearity” when applied to each Gaussian com-
ponent of the mixture. In that case, the original Gaussian
component is split into three new Gaussian pdf’s with
narrower covariance matrices. Hence, the AEGIS algo-
rithm works in two steps: detection of nonlinearity and,
if appropriate, splitting of the corresponding Gaussian.

The DoNG [16] method follows a similar scheme, but
it relies on a different criterion for splitting the Gaus-
sian terms of the mixture. Specifically, it introduces a
metric of non-Gaussianity that quantifies how much a
random vector departs from its original Gaussian distri-
bution when going through a nonlinear transformation.
In the DoNG algorithm, the non-Gaussianity along each
principal axis (eigenvectors of the covariance matrix) of
the original random vector variable is computed, and the
splitting direction is then given by the linear combina-
tion of the different axes weighted by their corresponding
non-Gaussianity metric. The specific metric suggested in
[16] is the skewness of the transformed random variable.
Since the pdf of the latter cannot be computed analyti-
cally, the skewness (third order central moment) which
we have computed using a 5th degree cubature scheme.
Both DoNG and AEGIS use the “3-component splitting
library” in [14] for splitting the components that have
been diagnosed as non-Gaussian.

Kernel density estimators We may use the KDE
scheme of Section 2.1 to construct a GM approximation
with a fixed number of components in a straightforward



way. Let pt(xt) denote the pdf of the state at time t. At
time t = 0, we construct a KDE of the initial distribu-
tion by independently sampling m

(i)
0 from the initial pdf

p0(x0), i = 1, . . . , N . Then, we define

pN0 (x0) :=
1

N

N∑
i=1

Ki
h,0(x0),

where the kernel Ki
h,0(x) = N (x|m(i)

0 , hC0) is the

Gaussian pdf with mean m
(i)
0 and covariance matrix

hC0, and h > 0 is a bandwidth parameter. Typically,
C0 is the initial covariance matrix of x0, while h is a pa-
rameter to be tuned. The pdf of xt is then approximated
by propagating forward in time each kernelK(i)

h,0. For this
purpose, we have used a 3rd-degree cubature method, but
other techniques can be suitable as well.

This KDE UP scheme is simple and flexible enough to
represent non-Gaussian distributions. Its main drawback
is that the approximation of the tails of the distribution
of the target pdf at time t, pt(xt), is often poor as t
increases. Also, the performance depends considerably
on the choice of the bandwidth h, which is not easy
to adjust in general. We recommend the simple rule
h ∝ N−

1
2(2d+1) , where d is the dimension of xt, obtained

in [10]. The proportionality constant for h can typically
be chosen in the interval

(
1
4 , 1
)
.

3. SPACE DEBRIS SERVICES

The provision of meaningful space-debris-related ser-
vices is based on furnishing relevant information to the
stakeholders in concise terms, easy to interpret and con-
sistent with the current and historic operation. The
Draft Recommendations for Space Data System Stan-
dards of the Consultative Committee for Space Data Sys-
tems (CCSDS) is a reference for defining the quantities of
interest. In particular, the Re-entry Data Message (Red
Book) [8] and Conjunction Data Message (Blue Book)
[34] are of use, because each space-debris service has
its own set of relevant parameters, and they can be ob-
tained from the stochastic description of the state vec-
tors. Therefore, collision avoidance and re-entry deserve
a separate analysis which is gathered hereafter.

3.1. Reentry prediction

The Red Book [8] recommends the use of the RDM KVN
data format to define a probable atmospheric reentry. The
keywords listed in Table 3-3 of that document can be
directly derived from the probability distribution of the
reentry time, hereafter denoted Tr, which is character-
ized as a real and positive random variable. We discuss
three methods to approximate the pdf of Tr subject to the
uncertainty in the state of the decaying object.

Standard Monte Carlo In the standard MC method,
N iid sample trajectories (also termed particles) are gen-
erated, with the form

x
(i)
t =

[
r
(i)
t

v
(i)
t

]
, i = 1, ..., N,

where r
(i)
t is the position vector and v

(i)
t is the velocity

vector. Assuming a Cartesian coordinate framework with
origin at the centre of the Earth, the altitude over the Earth
surface for the i-th particle is h(i)t := ‖r(i)t ‖−RE , where
RE is the Earth radius.

Let γ be a threshold altitude. A reentry occurs for the i-th
particle at time t0 when h(i)t0 < γ. After a reentry event,
the particle is discarded (not propagated anymore), the
re-entry time is recorded as T (i)

r = t0 and we keep propa-
gating the remaining sample trajectories. The simulation
finishes when all particles have crossed the threshold γ.
At that moment, we have a collection of re-entry times
{T (i)

r }Ni=1 that we can use to: 1) generate a histogram,
an approximate pdf or an approximate cdf of the reentry
time; 2) estimate the mean and mode of the reentry time;
3) estimate the variance, standard deviation or other dis-
persion parameters of the reentry time; 4) compute a time
window (an interval where the reentry time is contained
with some prescribed high probability); 5) compute prob-
abilities of reentry for specific time intervals; etc.

In particular, µ(ds) = 1
N

∑N
i=1 δT (i)

r
(ds), where δT (ds)

denotes the Dirac delta measure located at T , is a random
probability measure that approximates the actual proba-
bility law of the reentry time. Moreover, at any given
time t, the surviving particles yield an empirical approx-
imation of the probability distribution of the state of the
object conditional on Tr > t, i.e., conditional on the ob-
ject not to have decayed yet.

Gaussian methods: UT and cubature Gaussian UP
methods can yield a Gaussian approximation for the
probability distribution of xt at any time t of interest, i.e.,
we endow xt with a normal pdf, p(xt) ≈ N (xt|mt,Ct)
where mt is a mean vector and Ct is a covariance ma-
trix. Detecting a re-entry from a Gaussian distribution
is not straightforward. Starting from N (xt|mt,Ct), one
may use the UT or a cubature method to approximate the
mean (h̄t) and variance (σ2

h) of the altitude over the sur-
face, ht = ‖rt‖ − RE , which is itself random. Then, for
a threshold altitude γ, the Chebyshev inequality [13]

P(|ht − h̄t| > |γ − h̄t|) <
σ2
h

|γ − h̄t|2
(8)

provides an upper bound for the probability of a reentry
at time t. However, this bound is often loose and does
not provide a good estimate of the reentry time. An al-
ternative is to approximate the probability distribution of
the altitude ht as a Gamma distribution with mean h̄t and
variance σ2

h,t, denoted Ga(ht|h̄t, σ2
h,t) and then approxi-



mate the probability of reentry at time t as

P(ht < γ) '
∫ γ

0

Ga(ht|h̄t, σ2
h,t)dht, (9)

which can be computed efficiently with most software
packages.

However, these approaches are not practical because they
accumulate the error in the approximation of Ct with the
error in the approximation of σ2

h,t. As a consequence,
the estimate of σ2

h,t degenerates after a few days. This
phenomenon is illustrated in Fig. 1 (left), which shows
the evolution of the mean and standard deviation of the
altitude of a decaying satellite (GOCE) as computed from
N (xt|mt,Ct). After a few days, the Earth’s surface is
within a single standard deviation of the mean altitude.

The estimation of the altitude can be significantly im-
proved if we compute a Gaussian approximation di-
rectly on the space of ht. Let x0 be distributed as
N (x0|m0,C0). We can compute σ-points xi0 and
weights wi, i = 1, ..., 2d + 1 (where d = 6 is the
space dimension), and propagate them to time t using
the dynamical equation, denoted as xit = φt(x

i
0), for

i = 1, ..., 2d + 1. We can project the time t σ-points
to the space of altitudes as hit = ‖rit‖ − RE , where rit
is the position corresponding to the σ-point xit. Then the
expected value and the standard deviation of the altitude
can be approximately computed as

h̄t =

2d+1∑
i=1

wihit and σt,h =

√√√√2d+1∑
i=1

(hit − h̄t)2,

respectively. Both h̄t and σt can be efficiently computed
and remain numerically stable for many days in a stable
orbital trajectory, which allows to compute approximate
probabilities of the form of Eqs. (8) or (9) more accu-
rately.

However, when the object is decaying the standard devi-
ation σt increases sharply and prevents any useful com-
putation of re-entry probabilities. This is illustrated in
Figure 1. The plot in the middle shows the mean altitude
of GOCE (black) ±2σt,h (red-coloured). The estimate of
the altitude remains tight while h̄t remains large. How-
ever, as the altitude decreases, the standard deviation σt,h
increases sharply (right-hand plot). Even if ht falls well
below a generous threshold of γ = 150 km, since σh,t
becomes large, P(ht < γ) does not approach 1.

Actually, the UP algorithm breaks down as the object de-
cays. This is because the sigma points spread out quickly
and some of them land into regions of the state space
where the dynamical equation stops yielding meaningful
results (e.g., positions close to the Earth’s surface). The
sharp increase of σt is just a consequence of this more
general issue.

Hybrid Monte Carlo At time t, the KDE method de-
scribed in Section 2.5 yields an approximation of the pdf

of the state vector, denoted p(xt), of the form

p(xt) ≈
1

n

n∑
i=1

N (xt|m(i)
t ,C

(i)
t ). (10)

It has been tested that the KDE remains stable for a longer
time than a Gaussian approximation. This suggests a
combination of the KDE and MC methods into the fol-
lowing hybrid scheme:

1. Run a KDE method for UP. At time instants tk,
k = 1, 2, 3, ... (e.g., every hour or every two hours)
use the approximation (10) and the Chebyshev in-
equality to obtain an upper bound for the probability
of reentry. Denote this bound as U(tk).

2. Let π∗ << 1 be a small positive threshold (e.g.,
5 × 10−4). If U(tk) < π∗ then go back to step 1
and keep running the KDE approximation.

3. Otherwise, if U(tk) ≥ π∗ then draw N iid samples
x
(i)
t , i = 1, ..., N , from the KDE in (10) and use

them to run a standard MC procedure to estimate
the law of the reentry time Tr.

Similar hybrid methods can be implemented using UT
or cubature schemes for the UP stage instead of the
KDE. However, these algorithms have been found use-
ful mainly for short-term reentry predictions (less than 3
days, as a rule of thumb). While Gaussian UP is com-
putationally fast, one can expect the transition to the MC
phase to occur earlier than with KDE.

3.2. Collision avoidance

The key metric for assessing conjunction is the time of
closest approach (TCA) and the miss distance (MD), both
of them obligatory information in the Conjunction Data
Message [34]. These quantities correspond to the aver-
aged motion of spacecraft and debris. Additionally, a
metric related to collision risk (or collision probability)
can also be provided [2]. This latter value is usually
compared against an accepted collision probability level
(ACPL) to decide whether a collision avoidance manoeu-
vre should be carried out. Nevertheless, the way in which
the statistical information should be used by satellite op-
erators is a subject of current controversy [6]. The way
in which collision probability is defined depends on the
nature of the encounter between spacecraft and debris.
In case of a “short term” encounter, in which the rela-
tive velocity between the objects is high enough, the con-
junction is usually considered instantaneous and the col-
lision risk is defined as an instantaneous metric [9]. On
the other hand, in case of a “long term” encounter, target
and chaser are close to each other during a non-negligible
length of time. Thus, relative dynamics and uncertainty
evolution cannot be ignored [9]. The former corresponds
to the typical situation in LEO and permits great simplifi-
cations in the calculations. The latter is the usual case in
GEO orbit, or in formation flying configurations.
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Figure 1. Left: Evolution of the mean altitude h̄t (blue) of GOCE and the mean altitude minus one standard deviation
h̄t − σh,t (black) over time when N (xt|mt,Ct) is computed via a spherical-radial cubature rule of 5th degree. Middle:
Evolution of h̄t (black) of GOCE and h̄t ± σh,t (red) over time when using a direct UT scheme (results with cubature are
similar). Right: Zoom into the last three days of propagation. All: The starting day is October 21, 2013 @ 00:00:00.
Altitude is in km, with 0 indicating the Earth’s surface.

Monte Carlo analysis MC has been used in previous
works as the benchmark to establish the reference prob-
ability of collision, taken as truth [23]. MC involves,
mainly, UP without performing any geometrical com-
putation or transformation other than checking that the
distances between particles simulating each object are
higher than a certain threshold. In [22], a detailed method
on how to proceed to compute the collision probability
using an MC approach is described. For completeness,
the details of the approach implemented in this work are
gathered below.

Let us assume that the initial conditions for the state of
the two potentially colliding objects is given by Gaussian
pdf’s,

xA0 ∼ N (µA0 ,C
A
0 ) , xB0 ∼ N (µB0 ,C

B
0 ) ,

where superscripts A and B stand for the first and second
object, respectively, µ is the mean and C is the covari-
ance. The two objects are subject to the same dynamics.
Let us generate a set of N independent pairs of trajecto-
ries,

zi0:T =

{[
xA,i0

xB,i0

]
,

[
xA,i1

xB,i1

]
, ...,

[
xA,iT

xB,iT

]}
, i = 1, ..., N.

The statistics of interest in this experiment are: the time
of collision and probability of collision (assuming that a
collision occurs when the distance between the objects is
less than a threshold η), the TCA and the MD. They can
be defined using the function

T iη :=

{
min

{
0 ≤ t ≤ T : d(xA,it ,xB,it ) < η

}
, or

∞, if d(xA,it ,xB,it ) > η ∀t

where d(xA,it ,xB,it ) is the Euclidean distance between
the objects A and B at time t. The time of collision is
a random variable denoted Tη . Its law can be approxi-
mated by the discrete probability distribution

PN (Tη ≤ K) =
1

N

N∑
i=1

u[K − Tη],

where u[k] is the unit-step function (u[k] = 1 for k ≥ 0
or u[k] = 0 otherwise). Assume that we intend to an-
alyze the collision probability in an interval [0, T ]. The
function PNc,η(t) = PN (Tη ≤ t) is an estimator of
Pc,η(t) = PN (Tη ≤ t), the probability of a collision
ocurring up to time t ≤ T . The final collision prob-
ability Pc,η = P(Tη ≤ T ) is similarly estimated as
PNc,η := PNc,η(T ).

Let TA denote the TCA. For the i-th MC trajectory we
obtain the estimate

T iA =

{
T iη, if T iη <∞, or
arg min

0≤t≤T
d(xA,it ,xB,it ), if T iη =∞.

The probability of the TCA occurring up to time t can be
estimated from the empirical distribution PN (TA < t) =

1
N

N∑
i=1

u[t − T iA], and the resulting MC estimator of TA

is TNA = 1
N

N∑
i=1

T iA. Finally, the MD estimate for the i-th

trajectory isDi
η = d(xA,i

T i
A

,xB,i
T i
A

)−η. The empirical prob-

ability distribution is PN (Dη < d0) = 1
N

N∑
i=1

u[d0−Di
η],

and the MC estimator of the MD is DN
η = 1

N

N∑
i=1

Di
η .

We remark that the treatment of different encounters for
the same propagation time span should be coupled. Sam-
ples that “collide” in the first encounter are not included
in the population for the following encounters. In an op-
erational context, however, the analysis can be performed
for individual encounters under certain simplifying as-
sumptions.

UT and KDE methods The theoretical basis and use
of the UT and KDE methods for UP have been explained
in Section 2. In the context of conjunction analysis, both
methods are used for obtaining an estimate of the TCA
and the MD (as a computationally less-demanding alter-
native to the MC estimators TNA and DN

η ).



Let us define the TCA and MD in terms of the Gaussian
pdf’s generated by the UT scheme. In particular, we as-
sume that

xAt ∼ N (µAt ,C
A
t ) , xBt ∼ N (µBt ,C

B
t )

and the time of collision, for a threshold distance η, is

TUT
η :=

{
min

{
0 ≤ t ≤ T : d(µAt ,µ

B
t ) < η

}
, or

∞, if d(µAt ,µ
B
t ) > η for all t.

Accordingly, the time of closest approach is defined as

TUT
A =

{
TUT
η if TUT

η <∞, or
arg min

0≤t≤T
d(µAt ,µ

B
t )

and the corresponding MD isDUT
η = d(µA

TUT
A
,µB

TUT
A

)−η.
A similar method can be applied to obtain estimates of the
TCA and MD from the KDEs of the two objects, instead
of the Gaussian densities generated by the UT method.

Once TUT
A and DUT

η (as well as µA
TUT
A

, µB
TUT
A

, CA
TUT
A

and

CB
TUT
A

) are identified, the collision probability is com-
puted using: a) the B-plane method, where the mean
state and covariance matrix are projected and the colli-
sion probability is computed as in a deterministic case;
or b) Patera’s integral method. For the latter, an addi-
tional threshold distance is defined in order to establish
the starting and finishing instants of time for the compu-
tation of the collision probability. For the former, two
approaches are considered: 1a) the covariance matrix is
obtained from the σ-points before projecting it onto the
B-plane and 1b) the σ-points are projected onto the B-
plane and the planar covariance matrix is computed from
the projections.

4. SOFTWARE PROTOTYPE

A software prototype has been developed including the
most promising algorithms for UP and the different
space debris services. The propagation libraries imple-
mented are the ones from NAPEOS, where new modules
have been added to implement the stochastic propagation
methods. The prototype is structured in four different
chains or workflows:

• Uncertainty Propagation of an object based on its
initial state and covariance

• Re-entry prediction of an object based on its initial
state and covariance and the altitude threshold γ.

• Collision risk computation of two objects based on
their initial states and covariances

• Atmospheric uncertainty computations based on
space weather data

The propagation of the state can be performed both inte-
grating an SDE or an ODE. Thus, the stochastic effects
can be analyzed and results compared with the determin-
istic case. The following methods are available using
both SDE and ODE integration for each of the three main
chains:

• Uncertainty propagation: MC, UT, spherical-radial
cubature of 3rd degree (SRC3D), spherical-radial
cubature of the 5th degree (SRC5D), KDE, linear
propagation (for ODE only) and AEGIS (for ODE
only).

• Re-entry prediction: MC and hybrid KDE-MC.

• Collision risk computation: MC and UT.

The atmosphere uncertainty has also been researched
within this project. It can been characterized using dif-
ferent models (Gaussian distribution, Gamma distribu-
tion, constant coefficient of variation, and time and space
correlated distributions). All these models (except the
constant coefficient of variation) are based on the atmo-
spheric density standard deviation as a function of alti-
tude and solar activity. This input can be computed prior
to the propagation by executing the atmospheric uncer-
tainty chain of the software using space weather recorded
data.

Most of the execution-dependent information is passed to
the software through clearly defined file-based interfaces.
Furthermore, the software has been designed to comply
with standard interfaces (CCSDS OPM, OEM and OMM
or CCSDS CDM and RDM) whenever possible. The con-
figuration of each execution can be modified manually on
a configuration file or, alternatively, it can be done via a
HMI.

Apart from the propagation of an initial state and co-
variance using different algorithms, the software is de-
signed to provide post-processing outputs of the variables
of interest depending on the selected execution chain, be-
ing the most relevant ones: 1) UP (final state and co-
variance, covariance ellipsoid and pdf of all propagated
variables), 2) re-entry prediction ( time of re-entry pdf
and re-entry window, re-entry ground-track, re-entry lat-
itude/longitude pdf ), and 3) collision risk (TCA and MD
with their corresponding variances, B-plane uncertainty
and the same outputs as in the uncertainty propagation
chain for both objects).

5. RESULTS

5.1. Re-entry prediction

The scenarios that have been chosen for re-entry analy-
sis are the decay of GOCE, because of the availability of
an extended data set,and the decay of Iridium 60, using



TLE data, for the application of particle filtering in the
estimation of the drag term.

The hybrid technique that combines a stage of KDE-
based UP with an MC simulation stage for the counting
of reentries has been applied to the study of the decay of
GOCE. The KDE scheme uses M = 50 random sam-
ples, m(i)

0 , i = 1, ..., 50, at time t = 0, to approximate
the initial pdf as a mixture of Gaussians. The kernel used
for the approximation is Gaussian, with the i-th com-
ponent centered at m(i)

0 and covariance C
(i)
0 = hiC0,

where the sample-specific bandwidth factor αi is com-
puted following one of the schemes suggested in [38],
namely, hi = 10 × M−

1
d p0(m

(i)
0 )−

1
d , with d = 6,

the dimension of the Cartesian frame, and p0(x0) =
N (x0|m0,C0) the Gaussian distribution of the state at
time t = 0. The resulting KDE at time t = 0 is
p̂M0 (x0) = 1

M

∑M
i=1N (x0|m(i)

0 ,C
(i)
0 ).

The pdf p̂M0 (x0) is propagated over time using the
SCR3D rule to update the Gaussian components. Every 3
hours, the algorithm uses the Chebyshev inequality to ob-
tain an upper bound for the probability of reentry, denoted
U(t′) if computed at time t′. If U(t′) > π∗ = 8× 10−4,
then the algorithm generates N = 4, 000 iid samples
from the KDE p̂Mt′ (xt′) and uses standard MC to predict
the reentry.

We have applied this method to track the decay of GOCE
with three setups:

• Deterministic dynamics and deterministic atmo-
spheric density (NRLMSISE00 model).

• Stochastic dynamics and stochastic atmospheric
density: the state dynamics are governed by the SDE
(1), where G(X, t)dW = σwdW and the constant
scale parameter is set as σw = 10−8, which ac-
counts for the order of magnitude of the truncation
in the differential equation. The atmospheric den-
sity is modelled as a Gamma random variable with
mean given by the NRLMSISE00 model and stan-
dard deviation depending on the altitude and solar
activity.

We declare a reentry when the altitude of the satellite is
predicted to fall below a threshold γ = 150 km. Note
that crossing this threshold does not imply an immediate
decay.

Figure 2 shows the histograms and cumulative distribu-
tion functions (cdf’s) of the reentry time Tr for a single
simulation with deterministic dynamics and deterministic
atmospheric density (the two panels on the left) and the
same graphs, histograms and cdf’s, when the dynamics
and the atmospheric density are stochastic (two panels on
the right). The approximate distributions of the Tr ob-
tained with the hybrid KDE-MC method have a slightly
broader support than the reference MC, implying that the
uncertainty is (slightly) overestimated. Similar results are

obtained for the deterministic and stochastic cases, al-
though a larger uncertainty (longer tails) can be observed
in the latter scenario.

A summary of performance metrics for the experiments
in Figure 2 is provided in Table 1. In general, the es-
timated distribution of the reentry time using the hybrid
method has longer tails compared to standard MC. This
affects the calculation of the reentry window. We suggest
that windows containing > 0.99 probability of reentry
should be adopted, as shown in Table 1.

mean(Tr) Std(Tr) Reentry window
Hybrid KDE 18.795 0.351 (17.636; 20.238)

(deterministic model)
Monte Carlo 18.832 0.175 (18.026; 19.636)

(deterministic model)
Hybrid KDE 18.861 0.681 (17.187; 21.992)

(stochastic model)
Monte Carlo 18.832 0.215 (17.841; 19.884)

(stochastic model)

Table 1. Performance metrics for the hybrid KDE-MC
method versus the N = 106 MC reference method. Tr is
the reentry time in days. For the MC method, the reentry
window contains the whole support of Tr. For the hybrid
KDE-MC method, Tr lies within the re-entry window with
probability > 0.99.

Figure 3 shows the normalized run-times for the hybrid
KDE-MC method and the MC reference simulation. Note
the difference of three orders of magnitude.

Particle filtering for drag estimation The ballistic co-
efficient and the atmospheric density determine the drag
and they are, therefore, key to the accuracy of reentry
predictions. Hereafter, we illustrate the application of a
particle filtering algorithm with 2 time scales (PF2S) [11]
to estimate the probability distribution of the ballistic co-
efficient (B) using TLE data.

For this experiment, we consider the problem of predict-
ing the reentry of Iridium 60. We assume an altitude
threshold γ = 120 km and work with a sequence of
12 TLEs that start on March 9, 2019, at 14:15:51 and
finish on March 12, 2019, at 22:23:27, to estimate the
probability distribution of the ballistic coefficient B. The
PF2S propagates the state samples (particles) using a 4th-
order Runge-Kutta (RK4) integrator of the underlying
SDE, while the ballistic coefficient is assumed to follow
a random walk driven by Gaussian noise with variance
σ2 = 4× 10−8, i.e.,

Bk = Bk−1 + uk, (11)

where uk is a sequence of iid Gaussian random variables
with common distribution N (uk|0, σ2). The time scale
of k in Eq. (11) is assumed much larger than the step size
of the RK4 integrator. In practice, for the simulation we
generate initial particlesB(i)

0 , i = 1, ..., N , at time 0 from
a uniform distribution on the interval [−0.05, 1] and then
we generate a new sample Bk from Bk−1 at the time of
the k-th available TLE (i.e., we sample new coefficients
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Figure 2. Re-entry times distribution for the hybrid KDE-MC method and the GOCE satellite scenario. Comparison
with an N = 106-sample MC scheme for reference. Left: histograms and cumulative distribution functions (cdf’s)
of the re-entry time Tr with the two methods when the dynamical equation is deterministic, including the atmospheric
density (nominal NRLMSISE00 values). The vertical lines indicate the mean (green) and the mode (brown) for the hybrid
KDE-MC algorithm. Right: histograms and cdf’s for the two methods when the dynamical equation is an SDE and the
atmospheric density is random (Gamma distribution centred around the NRLMSISE00 output, and altitude-dependent
variance). We observe a larger spread of the distributions due to the additional uncertainty.
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Figure 3. Comparison of normalized run-times for the
hybrid KDE-MC method and the N = 106-sample MC
used as reference. The two colors in the bar on the right
indicate the run-times associated to the KDE stage (bot-
tom) and MC stage (top) of the hybrid algorithm. The first
stage typically propagates the initial distribution over 15-
16 days.

right after processing each observation). Each sample
B

(i)
k is linked to a sequence of state particles x(i)

t , i.e., we
propagate the Cartesian coordinates x(i)

t , i ∈ {1, ..., N},
using, precisely, the ballistic coefficient B(i)

k . Each time
a TLE is available, we compute new weights for the par-
ticles {x(i)

t , B
(i)
k }Ni=1. We extract the altitude from the

state information the k-th TLE, say hk, and assume a
Gaussian conditional pdf,

p(hk|x(i)
t ) = N (hk|‖r(i)t ‖ −RE , σ2

h),

where σ2
h = 4. This pdf enables the computation of the

particle weights. After updating the weights with the TLE
altitude, we resample to reset the weights, propagate the
coefficient particles B(i)

k using Eq. (11), and regenerate
the state particles by generating a new set samples with
mean the position indicated by the TLE and the initial
covariance matrix.

Twelve TLEs are processed in this way, the last of them
from March 12, 2019, at 22:23:27. After that, each state
particle x

(i)
t (i = 1, ..., N ) is propagated forward over

time with its own coefficientB(i) that is kept fixed for the
rest of the simulation. Re-entry events, with a threshold
γ = 120 km are counted to obtain an empirical distribu-

tion of Tr in the usual way.

The first plot in Figure 4 displays the histogram, and es-
timated posterior pdf, of the ballistic coefficient B ob-
tained after processing the 12 TLEs, between March 9 at
14:15:51 and finish on March 12 at 22:23:27, using the
PF2S algorithm. The dashed vertical line indicates the
conventional estimate of B = 0.0081 computed from the
B? data in TLE of March 12 at 22:23:27. The probability
distribution generated by the PF2S (withN = 2, 000 par-
ticles) given the available data leaves this value on the left
tail. The posterior mean value is

∑N
i=1B

(i) = 0.0102

and its standard deviation is stdN (B) = 8.19× 10−4.

The second plot in Figure 4 shows the empirical prob-
ability distribution of altitudes predicted by the PF2S
algorithm with N = 2, 000 particles for March 12 at
22:23:27, right before processing a TLE. The vertical line
indicates the actual altitude computed from the TLE at
that time, which is close to the mean of the predictive dis-
tribution. The third plot in the same Figure 4 shows the
predicted distribution of altitudes computed using stan-
dard MC (withN = 2, 000 samples as well) starting from
the information (state and ballistic coefficient) in the im-
mediately previous TLE (March 12 at 19:19:46). We see
that the histogram is offset and the actual altitude lies on
the left tail.

Finally, the third plot in Figure 4 displays the histogram
and estimated pdf for the time of reentry Tr of Iridium
60. The vertical dashed line indicates the time of the last
available TLE (March 18, 2019, at 02:21:40) which pro-
vides an altitude of 123.98 km (our threshold is 120 km).
The mean re-entry time is T̄r = 9.511 days (after March
9 at 14:15), the standard deviation is σ(Tr) = 0.482 days
and the reentry window is (8.439; 11.009) (with proba-
bility > 0.99). Standard MC using N = 2, 000 sam-
ples and initial information from the TLE on March 12
at 22:23:27 yields the reentry window (10.320; 11.448)
with probability > 0.99, which is clearly offset to the
right.
Short-term prediction, 24-hour time frame In order
to explore the limits of the hybrid approaches, we have



Figure 4. First plot: posterior pdf for the ballistic coefficient B computed by the PF2S algorithm with N = 2, 000
particles using 12 consecutive TLEs over 2 days. The vertical red line indicates the ballistic coefficient that would be
conventionally estimated from the last processed TLE. Second plot: predictive pdf for the altitude of Iridium 60 on March
12 at 22:23:27 computed by the PF2S algorithm with N = 2, 000 particles. The vertical red line indicates the actual
altitude as extracted from the TLE corresponding to that exact time. Third plot: predictive pdf for the altitude of Iridium
60 on March 12 at 22:23:27 computed by a standard MC method that starts running at the immediately previous TLE
(March 12 at 19:19:46). Fourth plot: Histogram of re-entry times for Iridium 60 obtained using the PF2S algorithm with
N = 2, 000 particles.

repeated the computer experiment allowing a larger num-
ber of TLEs for the PF2S algorithm to estimate the bal-
listic coefficient B and then run prediction algorithms for
Tr over a short time frame of a few hours. To be spe-
cific, we have used a sequence of 38 TLEs for Iridium
60, starting on March 9, 2019, at 14:15 h and extend-
ing up to March 17, 2020, at 21:35. The PF2S scheme
with N = 2, 000 particles yields an estimate of the bal-
listic coefficient B̂N = 0.0098, which is then used to pre-
dict the re-entry time Tr using MC, the hybrid KDE-MC
scheme and a hybrid SRC3D-MC method. The number
of components and the number of samples per compo-
nent in the MC stage of the hybrid KDE-MC algorithm
are M = 40 and Nkde = 50, respectively. The number
of samples in the MC stage of the hybrid SRC3D-MC
method isNsrc = 2, 000. Therefore, the three algorithms
use the same number of independent trajectories for es-
timating Tr, namely N = MNkde = Nsrc = 2, 000.

Figure 5. Left: histogram and estimate of the pdf of the
re-entry time Tr for Iridium 60 using the MC method.
Right: Histogram and estimate of the pdf of the re-
entry time Tr for Iridium 60 using the hybrid SRC3D-
MC method. In both cases, the prediction is carried out
from March 15, 2019, at 12:42. The ballistic coefficient
is estimated using a PF2S algorithm with 2,000 particles
that uses 38 TLEs as data (first one on March 9, 2019,
at 14:15; last one on March 17, 2019, at 21:35 h). The
altitude threshold to declare a re-entry is 120 kms over
the Earth’s surface.

Figure 5 shows the results (histogram and estimated pdf

of Tr) attained by the MC (left plot) and hybrid SRC3D-
MC (right plot) schemes, respectively. The units in the
horizontal axes are hours since March 17, 2020, at 21:35
(the time of the last TLE processed by the particle filter).
We observe that the two schemes yield similar results,
with a clear mode after 12 hours and a small variance.
Both methods also identify smaller modes at around 11
hours and 13 hours. The specific means and standard
deviations output by the two algorithms (plus the hybrid
KDE-MC method) are gathered in Table 2.

Method E[Tr] (h) std(Tr) (h)
Monte Carlo (MC) 11.95 0.27
Hybrid KDE-MC 11.94 0.26

Hybrid SRC3D-MC 11.98 0.27

Table 2. Performance of MC and hybrid methods in
short-term re-entry prediction

5.2. Collision avoidance

Six scenarios have been selected using information from
actual CDMs. Two of them correspond to short term en-
counters with different geometry and the other four to
long-term encounters. The geometries of the two short-
term encounters correspond to head-on and lateral en-
counters. For each of the six test cases, an MC scheme
is run and used as benchmark for comparison with other
methods. All the relevant statistical information can be
obtained from the MC analysis. Additionally, the colli-
sion probability is computed using UT and KDE for un-
certainty propagation jointly with B-plane-based meth-
ods and/or the integral Patera’s method. One low-velocity
case and one high-velocity encounter are discussed in
more detail below.

Low-velocity encounter A close encounter between
two geostationay objects, Artemis and Insat 2B, is anal-
ysed. The initial date is August 26th, 2017, at 16:35:01
UTC. The reference TCA, provided by the CDM is
5.4024 days ahead. The ballistic coefficient is zero for



Minimum Mean Mode Std
MD (m) 20.4 3095.5 600 2287.9
TCA (s) 14.95 12.33 11.6 15.23

Table 3. Case 1. MC benchmark, N = 100, 000. TCA
with respect to the nominal time provided by CDM.

both objects, because no atmospheric drag acceleration
is considered. The initial covariance matrices for both
objects have maximum values in the order of 106 m for
position and 10−2 m/s for velocity.

Monte Carlo benchmark An MC algorithm has been
run starting from the initial states and covariances and
using N = 105 samples. Results for the distributions of
MD and TCA are shown in Figure 6. Mean, mode and
standard deviation of the distributions can be seen in Ta-
ble 3. In addition, the TCA for the minimum achieved
distance is displayed in the first column of Table 3. Ac-
cordingly, the collision probability for objects with a
combined radius of less than 20 m is less than 10−5.
Assessing smaller collision probabilities leads to an in-
creasing number of samples. The TCA is close to the one
predicted by the CDM, with a distance of less than one
standard deviation from the mean and the mode. In turn,
the MD distribution has a standard deviation larger than
2 km with a non-normal behaviour (expected due to the
distance definition).

Figure 6. Case 1. Distribution of MD and TCA.

UT and KDE propagation The first step in the process
is the identification of the TCA (and corresponding MD).
In Figure 7, the evolution of the MD between the objects
in time is shown. Additionally, the process noise related
to the truncation error (σw) has been used as a parame-
ter to assess the influence of its variation in the predicted
TCA. The shape of the evolution of the distance is simi-
lar in all cases, with a small dispersion in TCA but rele-
vant differences in the computed MD. The KDE, in turn,
predicts larger MDs for the same noise level (σw) with a
small dispersion in TCA.

Tables 4 and 5 show numerical values for UT and KDE
propagation of MD, TCA and corresponding collision
probabilities. As it can be seen, for UT, the TCA varies
between -10 and 10 seconds, whereas the MD changes in
a factor of 20. Collision probabilities are small, as it cor-
responds to the MD obtained, and for all cases the order
of magnitude is 10−8. KDE values of the MD are in the

Figure 7. Case 1. UT and KDE propagation

order of km, with a deviation of TCA of 2.5 seconds with
respect the value provided by the CDM.

Det. Stoch. Stoch.
(σw = 0) (σw = 10−9)

MD (m) 387.6 275.3 535.6
TCA (s) 10.36 11.01 9.43
pc 7.83 ·10−8 7.44 ·10−8 7.28 ·10−8

pc (Patera’s) 9.91 ·10−8 7.65 ·10−8 4.21 ·10−8

Det. Stoch. Stoch.
(σw = 10−8) (σw = 10−7)

MD (m) 5441.0 3381.6
TCA (s) -10.15 9.86
pc 2.13 ·10−8 1.06 ·10−8

pc (Patera’s) 2.94 ·10−8 1.10 ·10−8

Table 4. Case 1. UT propagation. Reference TCA:
5.4024 days

Stoch. Stoch.
(σw = 0) (σw = 10−9)

MD (m) 3982.0 3429.8
TCA (s) 2.51 2.50

Table 5. Case 1. KDE propagation. Reference TCA:
5.4024 days.

High-velocity encounter The close encounter between
two LEO satellites, Rapid Eye 1 and CZ-CB, is exam-
ined. The initial date is October 6th, 2018, at 23:08:21
UTC. The reference TCA, provided by the CDM is
5.3132 days ahead. The ballistic coefficient is given
by the CDM, it is the same for both objects, namely
B = 0.01374057. The initial covariance matrices for
both objects have maximum values in the order of 102 m
for position and 10−4 m/s for velocity.

Monte Carlo benchmark An MC scheme has been
run starting from the initial states and covariances and
using N = 105 samples. Results for the distributions
of MD and TCA are shown in Fig. 8. Mean, mode and
standard deviation of the distributions can be seen in Ta-
ble 6. In addition, the TCA for the minimum achieved
distance is displayed in the first column of Table 6. The
number of MC samples that reach a distance less than
the chosen threshold (8 m) is 8, so the collision probabil-
ity is 8 · 10−5. The TCA presents a discrete behaviour
before the reference TCA, in accordance to the graph of
the previous paragraph. The mode corresponds with the
predicted TCA from CDM, whereas the standard devia-
tion is about 1 minute. In turn, the MD distribution has



Minimum Mean Mode Std
MD (m) 2.2 5877.1 519 4438.0
TCA (s) 32.10 43.70 -0.85 67.07

Table 6. Case 3. Benchmark Monte Carlo. N = 100000.
TCA with respect to the nominal time provided by CDM

a standard deviation of about 4.5 km with a notably non-
normal behaviour. The mode of the distribution is 520 m,
although a second mode is closer, 10 m.

Figure 8. Case 3. Distribution of MD and TCA.

UT and KDE propagation The first step in the process
is the identification of the TCA (and corresponding MD).
In Figure 9, the evolution in time of the mean distance
between the objects is shown. Additionally, the process
noise related to the truncation error (σw) has been used as
a parameter to assess the influence of its variation in the
predicted TCA. Predictions with σw < 10−8 are similar,
with σw < 10−8 the MD grows in a factor of about 4.

Figure 9. Case 3. UT and KDE propagation

Tables 7 and 8 show numerical values for UT and KDE
propagation of MD, TCA and corresponding collision
probabilities. As it can be seen, for UT, σw has a relevant
role, mainly in the MD. The shift in TCA is less relevant
(although small changes in TCA lead to important varia-
tions of MD). The three cases: σw = 0, σw = 10−9 and
deterministic UP give a similar location in time and dis-
tance of the closest approach. Nevertheless, the estimated
collision probability for the stochastic cases are closer to
the MC estimate, whereas the deterministic probability of
collision is significantly smaller. The reason for that lies
in the smaller uncertainty when no process noise is con-
sidered However, none of the methods is able to identify
the close approach that appears in the MC to lead to a
collision probability of 10−4. KDE values of the MD are
in the same range as their UT counterparts, and the devia-
tion of TCA is 20 seconds with respect the value provided
by the CDM, whereas the predicted TCA with UT is in
the 31-33 seconds range.

Det. Stoch.
(σw = 0)

MD (m) 323.9 190.4
TCA (s) 32.45 31.12
pc 2.10 ·10−9 3.52 ·10−6

pc (Patera’s) 6.85 ·10−9

Stoch. Stoch.
(σw = 10−9) (σw = 10−8)

MD (m) 489.9 1627.5
TCA (s) 33.90 12.14
pc 7.25 ·10−6 –

Table 7. Case 3. UT propagation. Reference TCA:
5.313202 days.

Stoch. Stoch.
(σw = 0) (σw = 10−9)

MD (m) 261.6 615.4
TCA (s) 20.22 20.33

Table 8. Case 3. KDE propagation. Reference TCA:
5.313202 days.

5.3. Prototype results

Uncertainty propagation To illustrate the operation of
the UP chain of the prototype, we consider an object in
a geosynchronous transfer orbit (GTO). Its initial state
and covariance are derived from an orbit determination
process. Figure 10 (left) displays the 3σ covariance con-
tainment of two of the implemented algorithms, namely
the UT and the SRC5D rule, and how they compare to
the traditional linear UP. This indicates the percentage of
MC samples which are appropriately captured by the dis-
tribution provided by each of the algorithms by means of
its aggregated state vector and covariance. For a propa-
gation time of 3 days, the two considered algorithms still
agree with the theoretical containment of a Gaussian dis-
tribution with 3 degrees of freedom.

Additionally, Fig. 11 shows 1D-marginal pdf’s and 2D-
scatter plots of the position state variables after 3 days of
propagation for the same case described above. The plots
on the diagonal present a good agreement of the 1D distri-
bution of each of the coordinates, while the off-diagonal
plots indicate both that the σ-points of the SRC5D al-
gorithm populate well the domain explored by the MC
benchmark, and that subsequent covariance reconstruc-
tion produces an adequate representation of the MC dis-
tribution. The performance of these methods is expected
to degrade with longer propagation times as the resulting
MC benchmark no longer features a Gaussian distribu-
tion.

Re-entry predictions The ground-track of one exam-
ple of the re-entry prediction chain of the Prototype is
shown in Figure 10 (middle). The red line is the aver-
aged ground-track of the re-entry samples, green dots are
the samples at re-entry epoch and the purple line shows
the previous orbit of the object. All samples decay in be-
tween 8 and 9 days of propagation. There is a significant
variance in the along-track direction, as expected due to



Figure 10. Left: 3σ covariance containment comparison between UT, SRC5D and linear UP methods. Object in a GTO,
with deterministic dynamics and deterministic NRLMSISE00 atmosphere. Benchmark is a N = 4 · 103-sample MC.
Middle: Re-entry ground-track of an object using hybrid KDE algorithm. Right: MD pdf for a collision risk analysis with
UT and stochastic dynamics (10 independent runs).

Figure 11. Position 1D-marginal pdf’s and 2D-scatter
plots of the SRC5D method andN = 4×103-sample MC
benchmark. Object in a GTO, with deterministic dynam-
ics and deterministic NRLMSISE00 atmosphere. Includes
1, 2, 3σ Covariance ellipses.

the uncertainty in the drag force. One can also notice
that re-entered samples seem to be grouped in different
bands, due to the nature of the underlying hybrid algo-
rithm. When a given kernel satisfies the criteria for re-
entry detection, its aggregated state is sampled by means
of an MC scheme producing a family of green points.

Collision risk Figure 10 (right) is an example of the
post-processing collision risk analysis of the software for
the MD. In this case, a UT method with stochastic dy-
namics was applied, having a time to TCA from the be-
ginning of the propagation of 5 days approximately. A
probability of collision of 8.13 ·10−4 was obtained, com-
puted using the Akella-Alfriend algorithm [1].

6. SUMMARY AND DISCUSSION

Uncertainty propagation We have compared the
Monte Carlo (MC), Gaussian (UT and cubature),
polynomial-based (DA, PCE), GM-based (AEGIS and
DoNG) and KDE schemes for UP over three criteria:
performance (accuracy of the predictions), computational
cost of the algorithms and flexibility (whether the method
can be adapted to stochastic models).

MC, DA and PCE methods can be very accurate. PCE
and, especially, DA, can be computationally very costly,
they require sophisticated and careful programming and
are limited to deterministic models. In particular, they
do not admit a random drag or a proper SDE in (1) with
G(X, t) 6= 0. While MC is arguably the method with
the higher computational cost, it can attain asymptotically
optimal accuracy (and so we use it for benchmarking), it
is easy to code, straightforwad to parallelize (which re-
duces runtimes drastically) and can be applied to all kinds
of models, deterministic or stochastic.

Gaussian methods are relatively simple to code, they are
computationally light and can be used reliably with de-
terministic and stochastic models. They are, however, the
least accurate and errors can be very significant as the pdf
of the state departs from the initial Gaussian distribution
over time.

GM and KDE schemes are in an intermediate position
in terms of performance: they can approximate non-
Gaussian distributions (where UT and cubature methods
fail) but they are outperformed by MC, DA and PCE
schemes. AEGIS and DoNG are difficult to code and
tune (they depend on sensitive parameters) and they are
constrained to deterministic models, the same as DA and
PCE. The KDE scheme is easier to code and can be used
with deterministic or stochastic models, but suffers from
significant errors in the estimation of the distribution tails
and is sensitive to the choice of the bandwidth parameter.

Re-entry prediction UP propagation methods have
been applied to the problem of long-term reentry predic-
tion (8-30 days). The reentry of GOCE has been used as
the main scenario for testing. Overall, it has been found
that a robust and accurate estimate of the reentry time
usually demands the (possibly partial use) of MC meth-
ods. To be specific, it has been found that UP methods
combined with last-stage MC schemes for reentry pre-
diction present a good performance on accuracy and re-
liability. The uncertainty accumulated over several days
of UP typically makes the estimation of reentry times in-
accurate when using Gaussian or GM approximations di-
rectly. DA and PCE could eventually overcome this diffi-
culty but (i) their computational cost can be similar to MC
schemes (which are easier to implement and more robust)



and (ii) DA/PCE methods are only available for determin-
istic models at this time, which implies that uncertainties
in the drag and/or other acceleration terms have to be ig-
nored.

Two schemes have been implemented for the prototype:

• MC reentry prediction. This is the most accurate and
robust method, which fully exploits the dynamical
and uncertainty models. The computational cost is
high because it typically demands the simulation of
several thousands of independent trajectories. How-
ever, the run times can be brought down to the scale
of minutes by proper implementations on multicore
computers and, especially, massively parallel GPUs.

• Hybrid prediction. Various hybrid schemes have
been assessed and it has been found that the best
performance-to-complexity trade-off is attained by
using a KDE approximation of the target probabil-
ity distribution (with a fixed number of components)
for the initial UP stage. The KDE is easy to sam-
ple in order to switch to the MC stage. The reentry
windows that we have found for the GOCE exper-
iments are very similar to the windows obtained in
the same conditions when running Monte Carlo tra-
jectories from time t0. Typical simulations of the
KDE-MC method over 30 days, running Matlab on
a single core of a 2016 MacBook Pro laptop com-
puter (no parallelisation), take 60-70 minutes. Hy-
brid Gaussian-MC schemes can also be efficient for
short-term re-entry predictions, as shown by experi-
ments using TLE data for the decay of Iridium 60.

Collision risk We have tackled the analysis of conjunc-
tions over a time horizon of about 7 days. The challenge
for accurate estimation of low collision risks consists in
being able to characterize the tail of the distribution of the
minimum distance between the two objects. The accu-
mulated error after the propagation time span on the pdf
of the position of both objects, makes approximate meth-
ods not fully reliable. Gaussian approximations fail to
reproduce the shape of the probability distribution of the
positions, while KDE methods fail to estimate the tails
accurately. Based on our experiments, two methods were
selected for implementation in the prototype:

• MC collision probability computation is the most ro-
bust and accurate method. It has been used as bench-
mark. However, its computational cost is high, es-
pecially in scenarios where the risk to be assessed is
relatively low.

• UT and B-plane collision probability computation:
propagation methods based on Gaussian approxima-
tions combined with collision probability computa-
tion based on the B-plane provide a first and fast ap-
proximation to the collision risk. UT has been se-
lected for collision probability computation because
it balances speed and performance.
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