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ABSTRACT

Accurate atmospheric densities are required for accurate
orbit determination and prediction in Low-Earth orbits.
In this paper the accuracy of orbit determination using
densities estimated using a reduced-order density model
and two-line element (TLE) data is assessed. The as-
sessment is carried out by comparing orbit determina-
tion and prediction results obtained using different den-
sities. For this, Swarm A’s orbit is determined in Jan-
uary 2020 using TLE-estimated densities, NRLMSISE-
00 modelled densities and JB2008 modelled densities and
precise Swarm densities and the orbit fits are compared
against Swarm ephemeris. We find improved orbit de-
termination and estimated ballistic coefficient accuracy
using TLE-estimated density compared to NRLMSISE-
00 and JB2008 modeled densities. The orbit fits together
with predicted densities also showed improved orbit pre-
dictions.

Keywords: atmospheric density estimation; orbit deter-
mination; orbit prediction.

1. INTRODUCTION

Accurate knowledge of the orbits of all Earth-orbiting
objects is required to enable space traffic management
for safe and sustainable space operations. However, due
to the limited accuracy of dynamical models and orbital
tracking data, orbit estimates are often not sufficiently
accurate to avoid the problem of probability dilution in
satellite conjunction analysis [1]. Atmospheric drag is the
largest source of error in orbit determination and predic-
tion for low Earth orbits. Most of the uncertainty stems
from inaccurate knowledge of atmospheric density [17].
The uncertainties in the density are due to errors in both
the model and the input, such as space weather indices.
For orbit determination and short-term orbit prediction
(<2 days) errors due to model inaccuracy tend to dom-
inate. Whereas errors due to inputs become dominant
for longer orbit prediction when predicted space weather
data are used. Therefore, the accuracy of orbit determi-

nation can be improved by reducing the error of density
estimates. This can be achieved by calibrating density
models or by estimating thermospheric densities directly
using orbital tracking data. Such approaches can signif-
icantly reduce the bias and uncertainty of atmospheric
densities.

The Jacchia-Bowman-HASDM-2009 (JBH09) is the at-
mospheric density model operationally used by the US
Space Force Combined Space Operations Center for cat-
alogue maintenance and conjunction assessment. JBH09
uses tracking data of 80-90 objects and some high pre-
cision data to compute corrections to the JB2008 model
every 3 hours [20, 2]. It improves the accuracy of orbit
predictions up to 72 hours by 20-45%. Also, two-line
element (TLE) data, which is generated using tracking
data from the United States Space Surveillance Network,
has been used by various authors to estimate densities
[5, 24, 19, 7, 10]. Yurasov et al. [24, 25] showed im-
provements in ballistic coefficient estimates and re-entry
predictions using density corrections for the NRLMSISE-
00 model obtained using TLE data.

Recently, a new technique for density estimation and pre-
diction was developed by deriving and applying reduced-
order models (ROMs) for the thermospheric density [14,
16]. These ROMs have been used to accurately esti-
mate the global thermospheric density through data as-
similation of density and orbital data using Kalman filters
[15, 10, 11]. Density estimation was demonstrated by as-
similating accelerometer-derived density measurements
[15], TLE data [10] and radar and GPS tracking data
[11]. In particular, it was shown that density estimates
based on TLE data are more accurate than the JB2008
and NRLMSISE-00 models, when these densities were
compared against CHAMP, GRACE and SWARM pre-
cise densities. Moreover, the technique allows for uncer-
tainty quantification of the density estimates as well as
prediction of densities and their uncertainty [9].

In this paper, we assess the orbit determination accuracy
using TLE-estimated densities obtained with reduced-
order models. First, we estimate thermospheric densi-
ties using TLE data and quantify the error in the esti-
mated density by comparison against accurate density
data. Then the densities are used for orbit determina-
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tion and the accuracy of resulting orbit solution is com-
pared against orbit fits obtained by using empirical den-
sity models. In addition, because fitted ballistic coeffi-
cients can soak up errors in the atmospheric density, we
also compare the statistics of series of estimated ballis-
tic coefficients obtained using estimated and modelled
densities. Finally, the accuracy of orbit predictions is as-
sessed.

2. DENSITY MODELING AND ESTIMATION

In previous work, ROMs for the thermospheric mass
density have been developed to enable real-time estima-
tion and forecasting of the global thermospheric density
[14, 16, 15, 10, 11]. In this work we use a ROM based
on JB2008 density data that was developed in previous
work [10]. A brief overview of the reduced-order mod-
eling technique and model characteristics is provided be-
low. More information can be found in [10].

2.1. Reduced-order modeling

The main idea of reduced-order modeling is to reduce the
dimensionality of the state space while retaining maxi-
mum information. In our case, the full state space con-
sists of the neutral mass density values on a dense uni-
form grid in latitude, local solar time and altitude with
dimensions 20 by 24 by 36 (in total 17280 points). The
goal is to develop an efficient and accurate model for the
evolution of the density over time. First, to reduce the
dimension of the state space we employed Proper Or-
thogonal Decomposition (POD). Second, we derived a
linear dynamic model that accounts for the effect of space
weather by applying Dynamic Mode Decomposition with
control (DMDc).

2.1.1. Proper orthogonal decomposition

Order reduction using POD is achieved by projecting the
high-dimensional system onto a set of a small number of
basis functions or spatial modes. These spatial modes are
computed such that the dominant characteristics of the
system are captured by the first r modes. Consider the
variation x̃ of the neutral mass density x with respect to
the mean value x̄:

x̃(s, t) = x(s, t)− x̄(s) (1)

where s is the spatial grid. A significant fraction of the
variance x̃ can be captured by the first r principal spatial
modes:

x̃(s, t) ≈
r∑

i=1

ci(t)Φi(s) (2)

where Φi are the spatial modes and ci are the correspond-
ing time-dependent coefficients. The spatial modes Φ are

computed using a SVD of the snapshot matrix X that
contains x̃ for different times:

X = [x̃1 x̃2 · · · x̃m] = UΣV> (3)

where m is the number of snapshots. The spatial modes
Φ are given by the left singular vectors (the columns of
U). The state reduction is achieved using a similarity
transform:

z = U−1r x̃ = U>r x̃ (4)

where Ur is a matrix with the first r POD modes and z
is our reduced-order state that contains the corresponding
time-dependent coefficients. Projecting z back to the full
space gives approximately x̃ that allows us to compute
the density:

x(s, t) ≈ Ur(s) z(t) + x̄(s) (5)

More details on POD can be found in [14].

2.1.2. Dynamic Mode Decomposition with control

The atmospheric density depends strongly on the space
weather conditions. Therefore, to predict the future den-
sity, we look for a function that takes the current state zk
and space weather inputs uk and returns the future state:

zk+1 = f(zk,uk) (6)

where zk is the reduced-state at epoch k: zk = U>r x̃k.

Dynamic Mode Decomposition with control (DMDc) en-
ables us to derive a linear dynamical system that consid-
ers exogenous inputs:

zk+1 = Azk + Buk (7)

The dynamic matrix A and input matrix B can be esti-
mated from output data, or snapshots, zk, rearranged into
time-shifted data matrices. Let Z1 and Z2 be the time-
shifted matrix of snapshots such that:

Z1 = [z1 z2 · · · zm−1] (8)
Z2 = [z2 z3 · · · zm] (9)
Υ = [u1 u2 · · · um−1] (10)

where m is the number of snapshots and Υ contains the
inputs corresponding to Z1. Since Z2 is the time evo-
lution of Z1, they are related through Eq. (7) such that:

Z2 = AZ1 + BΥ (11)

Given Z1 and Z2, we can estimate matrices A and B
in least-squares sense and obtain a linear reduced-order
model (Eq. 7) that corresponds to the fixed timestep T
used for the snapshots. For estimation we require contin-
uous information about the density and therefore need a
continuous dynamical model:

ż = Acz + Bcu (12)



where Ac and Bc are the continuous-time dynamic and
input matrices, respectively. The continuous-time matri-
ces are obtained by converting the discrete-time matrices
using the following relation [6]:[

Ac Bc

0 0

]
= log

([
A B
0 I

])
/T (13)

where T is the sample time, i.e. the snapshot resolution.
Now using Eqs. (4) and (5) we can map between the full
and reduced space and Eq. (12) allows us to predict the
density.

2.2. Density estimation

The neutral mass density is estimated through the assim-
ilation of TLE data in the ROM model. This is achieved
by simultaneously estimating the ROM state z and the or-
bit and ballistic coefficient (BC) of objects using an un-
scented Kalman filter (UKF). Orbital states derived from
TLE data are used as measurement data.

For estimation, the objects’ orbits are expressed in mod-
ified equinoctial elements (MEE) (p, f, g, h, k, L). The
full state x that is estimated contains the orbital states and
BCs for each object and the reduced-order density state
z:

x =
[
p1, f1, g1, h1, k1, L1, BC1, ... , BCn, z>

]>
(14)

where the superscripts 1 and n refer to the different ob-
jects. The measurement data y for estimation are orbital
states derived from the TLE data of the objects. These
TLE orbital states are also expressed in MEE.

Starting from an initial guess x0, the density estimation
process is as follows, see Figure 1. The state xi−1|i−1 and
corresponding covariance Pi−1|i−1 are propagated using
the orbital dynamics F (see next section) and ROM model
(see Eq. (12)) to the next measurement epoch i through
an unscented transform. Then the state and covariance
are updated using the measurements yi and correspond-
ing measurement noise Ri to obtain a new state estimate
xi|i and covariance Pi|i. Figure 1 shows a diagram of the
estimation process, where u are the space weather inputs
and Q is the process noise. The prediction and update of
the state covariance P are not shown for readability. More
information about the approach can be found in [10].

By estimating x over a period of time, we obtain a history
of global thermospheric density estimates in the form of a
time series of reduced-order density states z. These den-
sity estimates can be used for orbit determination. For ex-
ample, in the future, using the tracking data of a selected
set of objects the global density can be estimated. Those
densities can be used to perform orbit determination for
all tracked objects in LEO for cataloguing and space traf-
fic management. The density estimation and catalogu-
ing processes can run in parallel to obtain densities and
maintain the catalogue as soon as new measurements are
collected.

2.3. Density prediction

Once we have obtained a density estimate, we can use the
dynamic ROM to predict future densities by propagat-
ing the estimated reduced-order density state z forward
in time using Eq. (12). From the predicted z, local atmo-
spheric densities can be computed by converting z to the
full space using Eq. (5) and interpolating the density grid.
In this work, we use ROM-predicted densities to perform
orbit prediction. Here, we assume that the future space
weather proxies u needed for prediction are known, such
that errors in the density prediction are due to errors in
the initial density state and ROM model but not due to
space weather prediction inaccuracies.

3. ORBIT DETERMINATION ASSESSMENT

To assess the accuracy of orbit determination using TLE-
estimated densities, we compare orbit determination
(OD) results obtained using TLE-estimated, empirically-
modelled and precise densities. For this, we determine
the orbit of ESA’s Swarm A satellite in January 2020
when it was flying at an altitude of 430 km. To clearly ob-
serve the effect of density on the OD result, we minimize
orbit fit errors due to other sources as much as possible by
using a high-accuracy force model and highly-accurate
measurement data, namely Swarm ephemeris data.

Force model The applied force model includes:

• Geopotential acceleration computed using the
EGM2008 model, up to degree and order 70 for the
harmonics;

• Cannonball solar radiation pressure with cylindrical
shadow model and cannonball model;

• Third body perturbations by Sun and Moon;

• Atmospheric drag considering a rotating atmosphere
for computing the velocity relative to the atmo-
sphere and constant ballistic coefficient.

A cannonball drag and solar radiation pressure model are
assumed, because these are practical models for orbit de-
termination of objects with unknown properties or atti-
tude, such as space debris. Solid Earth and ocean tides,
Earth albedo and radiation, relativistic effects, wind in
the upper thermosphere and changes in attitude or drag
coefficient are not considered.

Measurement data As measurement data we use Swarm
precise dynamic position ephemeris that have an uncer-
tainty of 10 cm in 3D position [21]. We have one position
measurement every 30 seconds.

Due to the use of a highly accurate force model and mea-
surements, the main source of error in the OD solution
is expected to be due to inaccurate atmospheric densities.



Figure 1: Flowchart of density estimation via TLE data assimilation. The orbital states (pi, f i, gi, hi, ki, Li) and BCs
(BCi) of the objects and the reduced-order density state z are estimated simultaneously using orbital states from TLE
data. The orbital dynamics and the ROM are used for prediction. An unscented Kalman filter is applied for estimation.

To verify this, we perform OD using precise densities de-
rived from Swarm GPS data [23], see next section.

Orbit determination The OD is performed by estimating
the state, ballistic coefficient (BC = CdA/m) and SRP
coefficient (coefficient (SRPC = CrA/m) using batch
least-squares estimation. We use a fit span of five days
and the OD solution epoch is in the middle of the OD
window.

Accuracy assessment The accuracy of the OD results is
assessed by analysing the root-mean-square (RMS) posi-
tion residuals with respect to the measurement data (i.e.
Swarm ephemeris) in radial, transverse and normal direc-
tions. In addition, the estimated BCs are examined and
compared against the BC estimated using precise density
data and the theoretical BC value. In addition, starting
from the resulting orbit fits, we predict orbits two days
into future to assess the orbit prediction accuracy.

4. DENSITY DATA

The TLE-estimated density used in this work were esti-
mated using the ROM-JB2008 model and TLE data of 20
objects in January 2020 (the perigee altitude of the 20 ob-
jects was between 300 and 523 km altitude). The objects
and settings used for estimation are described in detail in
[11]. To assess the accuracy of the TLE-estimated den-
sities, we compared them against precise densities along
Swarm A’s orbit derived from GPS data by Van den IJs-
sel et al. [23]. These precise Swarm A densities have a
(conservatively-estimated) relative uncertainty of 19% in
local density during low solar activity, while the orbit-
average densities have a much lower uncertainty.

Figure 2a shows the precise Swarm A orbit-averaged den-
sity and densities estimated using TLE data and accord-

Table 1: Accuracy of TLE-estimated and modelled densi-
ties along SWARM A’s orbit in January 2020. The num-
bers show the mean µ, standard deviation σ and root-
mean-square (RMS) of the error in orbit-averaged and
daily-average density as percentage of true densities [11].

Density Density error [%]
Orbit-average Daily-average

µ σ RMS µ σ RMS
NRLMSISE-00 80.5 24.1 84.0 79.8 21.8 82.6
JB2008 18.8 20.3 27.6 18.6 12.3 22.1
TLE-estimated 2.3 11.3 11.5 2.1 8.6 8.7

ing to the JB2008 [3] and NRLMSISE-00 [18] mod-
els, while Figure 2b and Table 1 show the error in es-
timated and modeled densities in January 2020. The
TLE-estimated densities are more accurate than the em-
pirically modelled densities as they have both a smaller
bias and smaller standard deviation. A constant bias in
the density can be compensated during OD by fitting the
BC. However, if the error is changing over time (see Fig-
ure 2b) then this is expected to affect the orbit fit accu-
racy.

5. RESULTS

5.1. Orbit determination accuracy

Using each type of density data, we performed 21 ODs
(each shifted by one day) between January 3 and 28,
2020. Figure 3 shows the average post-fit RMS position
residual (average of the 21 orbit fits) for each density data
type. As expected, using the precise Swarm density data
provides most accurate orbit fits. This suggests that the
higher errors in the orbit fits obtained using other den-
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Figure 2: Orbit-averaged density and error along
SWARM A’s orbit estimated using TLE data and accord-
ing to SWARM A data and JB2008 and NRLMSISE-00
models from January 3 to 28, 2020 [11].
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Figure 3: Average RMS position residual of orbit fits
w.r.t. Swarm-A ephemeris in radial, transverse and nor-
mal direction.

sity data are due to errors in the atmospheric density. The
fact that the post-fit residuals using precise density are not
zero can be contributed to neglecting perturbations (e.g.
solid Earth tides) and inaccurate force modelling (e.g. we
assumed a constant ballistic coefficient and did not con-
sider atmospheric winds, while local variations in the BC
and winds can be expected).

The orbit fits obtained using TLE-estimated density are
on average more accurate than those obtained using the
JB2008 and NRLMSISE-00 densities. Table 2 shows that
the improvement is mainly in the transverse (i.e. in-track)
direction, in which the RMS residual is on average about
30% lower compared to using empirically modeled den-
sities.

5.2. Estimated ballistic coefficient

The BC was estimated during OD to obtain accurate or-
bit fits. Figure 4 and Table 5 show that the BC estimated
using the TLE-estimated density are close to the BC esti-
mated using precise density data. In addition, the vari-
ation in the estimated BC values obtained using TLE-
estimated density is smaller than the BC variation when
using JB2008 or NRLMSISE-00 densities (the true BC
is expected to be near-constant as shown by the BCs es-
timated using precise density data). Comparing the es-
timated BCs (Figure 4) and daily-averaged density error
(Figure 5) shows that the variation in the BC is opposite
but proportional to the density error. This indicates that
the estimated BCs compensate for the error in the atmo-
spheric density.

These results show that one can obtain improved BC es-
timates using TLE-estimated densities. This is particu-
larly important when one has limited tracking data for
an object. Using accurate density data one can obtain an
accurate estimate for the BC with a limited number of



Table 2: Accuracy of orbit determination and prediction.

Density Post-fit RMS residual [m] 1-day prediction error [m] 2-day prediction error [m]
Radial Transverse Normal Radial Transverse Normal Radial Transverse Normal

NRLMSISE-00 2.5 19.9 7.0 5.3 170.9 13.6 6.7 367.2 16.7
JB2008 2.3 19.3 6.3 4.8 150.0 13.8 6.2 336.0 17.1
TLE-estimated 2.2 12.9 6.0 5.1 104.4 13.1 6.7 261.7 16.4
Precise density 1.6 5.1 5.6 3.8 23.7 12.3 4.9 44.9 15.3

Table 3: Average estimated ballistic coefficients and per-
centage variation in estimated BCs.

Density Mean BC BC variation
[m2/kg] [%]

NRLMSISE-00 0.00453 41
JB2008 0.00675 32
TLE-estimated 0.00792 22
Precise density 0.00792 3.5

ODs, whereas using empirically modelled densities the
estimated BC may be strongly biased. As the density
bias may change over time, the biased BC can result in
inaccurate orbit predictions.

Finally, March et al. [13] estimated Swarm’s drag coeffi-
cient using high-fidelity geometry models and found aCd

of 3.2, assuming a reference area of 1 m2. Using a satel-
lite mass of approximately 400 kg, we then obtain a BC
of 0.008 m2/kg. This theoretical value is very close to the
average BC estimated using precise and TLE-estimated
densities, which give additional confidence that the BC
estimate is accurate1.

5.3. Orbit prediction accuracy

Starting from the orbit fits obtained using OD, we predict
the orbits two days into the future to assess the resulting
orbit prediction accuracy. We assume perfect knowledge
of the future space weather. This mean that orbit predic-
tion errors are due to errors in both the OD result and the
density models. In case of TLE-estimated density, we use
the ROM to predict the future density. Figure 6 shows the
error in daily-averaged density predicted using the ROM
model. The errors in the predicted density grow with time
but on average remain smaller than errors in the JB2008
densities for this period.

Figure 7 and Table 2 show the orbit prediction accuracy
using ROM-predicted, empirically-modelled and precise
Swarm densities starting from their respective orbit fits.
As expected, the orbit predictions after 1 and 2 days using

1It should be noted that the precise Swarm densities were computed
using the high-fidelity geometry models developed by March et al. [13],
so their values are not independent.
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precise densities are most accurate. The predictions start-
ing from the TLE-estimated densities are more accurate
than using empirically modelled densities. This shows
that densities estimated and predicted using a ROM can
improve both orbit determination and prediction.

6. DISCUSSION

The results obtained in the previous section show that by
using TLE-estimated densities, which are more accurate
than empirically modeled densities, one can improve or-
bit determination. In addition, the improved orbit fits re-
sulted in improved orbit prediction while the future densi-
ties were computed using the ROM density model. Such
improved orbit predictions are very valuable for conjunc-
tion assessment to obtain better probability of collision
estimates [12].

The results obtained here are for one object for one month
during solar minimum. More extensive analysis of the or-
bit determination and prediction accuracy will be carried
out over longer periods of time and during different solar
activity to obtain statistics of the OD improvement using
TLE-estimated densities, similar to the studies on error
reduction using HASDM [4, 20].

In this work we assumed perfect knowledge of the future
space weather, which is not the case in practice. In par-
ticular during space weather events, the predicted solar
and geomagnetic activity can be erroneous and these er-
rors can dominate the density model errors. The effect of
space weather forecasting errors on the orbit prediction
accuracy was studied by e.g. [8] and is part of future re-
search. Still, regardless of the accuracy of space weather
forecasts, improved orbit determination is beneficial for
orbit prediction accuracy.
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7. CONCLUSIONS

Atmospheric density models for computing drag forces
on satellites are a major source of inaccuracy in trajectory
predictions for low-perigee satellites. Using a reduced-
order density model and two-line element data we ob-
tained improved density estimates with respect to empir-
ical density models. These TLE-estimated densities were
used to perform orbit determination and the accuracy of
the resulting orbit fits and predictions were assessed.

For the assessment, the orbit of the Swarm A satellite
was estimated using an accurate force model and pre-
cise position data as measurements using TLE-esimated,
NRMSISE-00 and JB2008 and precise densities. The
accuracy of the orbit fits using TLE-esimated densities
were found to be more accurate then orbit solutions ob-
tained using NRMSISE-00 and JB2008 modeled densi-
ties. Moreover, the estimated BCs are more accurate and
show less variation over time compared to BCs estimated
using empirical densities. Finally, also orbit predictions
using densities predicted by the reduced-order density
model were on average more accurate. These findings
show that orbit determination and prediction can be im-
proved using densities estimated with TLE data.

The analysis in this work was carried out for one month
during low solar activity. This assessment will be ex-
tended in future work to analyse the performance during
different space weather conditions and for different or-
bits. In addition, by using more accurate tracking data,
such as radar or GPS tracking data, better density esti-
mates can be obtained to achieve even better OD and or-
bit prediction results [11]. Furthermore, the predictive
capability of the ROM can be improved, e.g. using non-
linear machine-learning techniques [22], to obtain more
accurate density forecasts.
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