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ABSTRACT

The ever-increasing amount of uncontrolled space
objects, known as space debris, poses a risk to
space activities due to possible collisions with op-
erational spacecraft. An accurate prediction of
their orbit is needed to prevent damages to infras-
tructure in orbit and on the ground. In the frame
of the Spanish Space Surveillance and Tracking
(SST) (S3T) activities, the S3TOC (Spanish Oper-
ational Centre for SST) is investigating new tech-
niques and methods that are expected to improve
current procedures to determine and predict the
orbit.

Several estimation techniques have been devel-
oped over the years, aiming to accurately deter-
mine the orbit of space objects from observations.
Such techniques can be classified depending on
the propagation method they implement. In a
numerical propagation, the equations of motion
are numerically integrated, leading to accurate
results but long computational time. In contrast,
analytical methods integrate the equations of mo-
tion analytically using approximated closed-form
solutions for the orbital motion to speed up the
process. This is, however, not always possible and
limits the accuracy. Consequently, semi-analytical
(SA) methods can be considered. SA propagation
methods combine analytical methods and numer-
ical integration techniques, trying to get the best
mix of accuracy and efficiency. To this aim, short-
periodic motion is filtered out and larger time
steps can therefore be used for the integration of
the equations of motion.

We present a first operative tool for the orbit de-

termination (OD) of space objects that exploits dif-
ferential algebra (DA) techniques to implement a
least squares (LS) method compatible with both
numerical and SA propagators. In the above-
mentioned context, DA allows us to obtain a poly-
nomial representation of the residuals function
on which efficient optimization techniques can be
run to determine the optimum. Additionally, DA
removes the need to both integrate the varia-
tional equations for the state transition matrix and
to linearise the measurement functions thus en-
abling the use of arbitrary dynamics and observa-
tion types. The effort of this work is mainly fo-
cused on the coupling of the resulting Differen-
tial Algebra based Least Squares (DALS) solver
with the SA propagator SADA. The resulting al-
gorithm (sDALS) benefits from the high efficiency
of both the DALS solver and the SADA propaga-
tor, while partially sacrificing orbit accuracy. The
accuracy and efficiency of sDALS are assessed
against a high-fidelity version of the same tool,
aDALS, that exploits the numerical AIDA (Accu-
rate Integrator for Debris Analysis) propagator.
Both versions are compared against conventional
OD techniques. The comparison is done in terms
of OD result accuracy and computational cost, and
a detailed analysis on the sensitivity of the tool un-
der operative conditions (object parameters avail-
ability and OD first guess accuracy) is offered.
The whole analysis is performed with real optical
observations for objects in GEO and HEO regimes.
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1. INTRODUCTION

Orbit determination (OD) can be referred to as
the process of estimating the position and veloc-
ity of a resident space object (RSO) from track-
ing measurements [8, 21, 28]. The process re-
quires both the capability of accurately predict-
ing an orbit given an initial condition and apply-
ing an estimation algorithm. The propagation of
an RSO consists in solving a set of three second-
order or six first-order differential equations, so
as to determine the position and velocity of an
orbiter at a given final time, ¢y , from its initial
conditions at epoch t; [25]. As these equations
are not directly integrable, there are three well-
established techniques aimed at providing a so-
lution to the problem, namely General Perturba-
tion (GP) theories, Special Perturbation (SP) the-
ories, and Semi-Analytical (SA) techniques. Each
of these methods can be characterized in terms
of the formulation of the equations of motion, the
integration method used to obtain the solution
to these equations and the selected perturbation
technique. GP theories apply perturbation meth-
ods to the determination of an approximate an-
alytical solution [1, 3, 5, 11, 13, 20]. Such so-
lution, which is given as an explicit function of
time and some physical parameters, allows for a
fast determination of the coordinates at ¢;. Nev-
ertheless, the analytical solution is usually a low-
order approximation in which only the most rel-
evant forces are considered. SP theories, in con-
trast, perform a numerical integration of the equa-
tions of motion [12, 19]. They have the advan-
tage of allowing for the consideration of any ef-
fect into the model, but they require small integra-
tion steps. SA theories offer a trade-off between
the speed of analytical methods and the accuracy
of SP by computing the orbital state as the sum
of two different parts: one has very slow dynam-
ics while the other corresponds to fast variations.
The slowly-varying part includes secular and long-
period terms and can be numerically integrated
with very long steps. The exact formulas for the
slowly-varying part (the mean element equations
of motion or averaged equations) and for the fast-
varying part (the short-periodic motion) are de-
rived from assumed asymptotic expansions for the
mean element equations of motion and the short-
periodic motion, respectively. The short-period
terms are represented as Fourier series. Compu-
tation is fast because numerical integration can
be carried out with long steps, and the short-
period terms are closed-form evaluations. Fur-
thermore, high accuracy is obtained because the
mean-element rate and short-period term compu-
tations can be performed for a wide range of per-
turbation types.

Once defined the propagation method, an esti-
mation technique is required. Estimation algo-
rithms can be divided into three categories: Initial
Orbit Determination (IOD), Batch Least-Squares
(BLSQ) differential correction and Sequential Fil-
ters (SFs). IOD estimates the orbit using the in-
formation from a few observations. The method
is intended to provide the initial guess of an RSO
orbit. A detailed description of several IOD meth-
ods can be found in [8] and [28]. BLSQ and SF
need more observations than IOD. BLSQ takes all
available observations over an arc and determines
the best fit orbit at the epoch for a given system
model, while SF processes sequentially the obser-
vations.

This paper presents a differential algebra-based
least squares solved to perform accurate OD of
resident space objects considering both numeri-
cal or SA propagators. The work is organized as
follows. Section 2 offers an overview of the prop-
agators. The differential algebra least squares
(DALS) tool is then described in Section 3. Finally,
the performance of the software is described in
Section 5, where the results of its application on
data collected while observing GEO and GTO ob-
jects are presented.

2. PROPAGATORS

Sections 2.1 and 2.2 describe the numerical and
SA propagators used by the DALS solver. Re-
gardless of the selected propagator, the state es-
timates and uncertainty propagation process is
performed with a Differential Algebra (DA) im-
plementation of the 8'*-order variable-stepsize
Runge-Kutta integrator (RK78) by [27], with an
8t"_order solution for propagation and 7*"-order
solution used for the stepsize control. A detailed
description of the DA tools and implementation
can instead be found in [7].

2.1. Numerical propagator AIDA

The Accurate Integrator for Debris Analysis
(AIDA) is the numerical propagator used by the
tool, tailored for space debris analysis within a
DA framework [23]. The perturbations included
in AIDA are the geopotential acceleration, atmo-
spheric drag, solar radiation pressure (SRP), and
third body gravity.

The acceleration due to the Earth’s gravity poten-
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where g, is the Earth’s gravitational parameter,
Rg is the Earth’s radius, C,,,, and S,,,,, the normal-
ized geopotential coefficients, P,,, the normalized
associated Legendre functions, r is the object dis-
tance from the centre of the Earth, and ¢ and A are
the geocentric latitude and longitude. Two possi-
ble gravitational models can be selected, i.e. the
EGM96 and the EGM2008[24].

The perturbing acceleration due to the atmo-
spheric drag is modelled as
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Qirag = _§CDE'0U",UT = —§Bfact0rpv,,,v,,. (2)

where Cp is the drag coefficient, A is the object
cross-sectional area, m the object mass, whereas
v, is the object relative velocity with respect
to the Earth atmosphere, and p is the atmo-
spheric density at the object’s position. The atmo-
spheric density is computed using the Naval Re-
search Laboratory’s Mass Spectrometer and Inco-
herent Scatter Radar of year 2000 (NRLMSISE-
00) model [26]. The model requires as inputs the
solar and geomagnetic activity, geodetic altitude
and latitude, longitude, year, day, and time of day
in UT. AIDA allows for the definition of two differ-
ent atmospheric models, namely with non rotating
and rotating atmosphere.

The AIDA propagator allows the user to include
Sun and Moon third body perturbations. The per-
turbing acceleration on the orbiting object is mod-

elled as
S Tard
QA3rd = [l3rd (3 — 3) (3)
s Tsra
where
S = Tgra — Tobj 4)

is the relative position of the third body with re-
spect to the object. The position of the third body
is computed using NASA’s SPICE' toolkit. Three
different scenarios can be considered: no pertur-
bation, Moon-only perturbation or Moon and Sun
perturbations.

Assuming that the detected object can be treated
as a sphere, the SRP is modelled as
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where c is the speed of light, Lg the solar luminos-
ity, € the body reflectivity, whereas v is the shadow
function. The tool allows the user to consider both
Sun and Moon shadow, using either a cylindrical
or biconical model.

2.2. SADA

The Semi-Analytical Propagation with Differential
Algebra (SADA) propagator used in the DALS tool
is a DA reformulation of HEOSAT, a SA propagator
developed by [18] to study the long-term evolu-
tion of objects in Highly Elliptical Orbit (HEO) [9].
The perturbation model, which is propagated in
time in the True of Date reference system, takes
into account the gravitational effects due to zonal
terms and lunisolar perturbations, SRP and at-
mospheric drag. The gravitational terms are ex-
pressed in Hamiltonian form to obtain the mean
elements equations of motion using Deprit’s per-
turbation algorithm [4] based on Lie transforma-
tions. The equations of motion due to SRP and
drag perturbations are averaged over the mean
anomaly via Gauss equations. The averaging tech-
niques applied for developing HEOSAT are de-
scribed in detail by [18].

The zonal-term Hamiltonians are simplified by re-
moving parallactic terms (via elimination of the
parallax, see [6] and [17]) and short-periodic
terms are eliminated by Delaunay normalization.
This is carried out up to second order of the sec-
ond zonal harmonic .J, and to first order for J3-J1¢.
Mean element rates due to atmospheric drag are
computed by numerically averaging Gauss equa-
tions over the mean anomaly assuming a spheri-
cal object and a rotating atmosphere. The atmo-
spheric density is taken from the Harris-Priester
atmospheric density model [10].

The disturbing potentials of the Sun and Moon
(point-mass approximation) are expanded using
Legendre series to obtain the Hamiltonians for av-
eraging out the short-periodic terms [16]. Second
and sixth-order Legendre polynomials are taken
for the Sun and Moon potentials, respectively.

For averaging the equations of motion due to SRP,
a spherical object and constant solar flux along
the orbit (i.e. no shadow) are assumed. Kozai’s
analytical expressions for perturbations due to
SRP [14] are then used to analytically average
Gauss equations over the mean anomaly.

The averaged equations of motion due to tesseral
resonance are obtained by averaging the tesseral
Hamiltonian terms over the mean anomaly in the
rotating frame to preserve the resonant terms



[15]. For this, Kaula’s expansion of the geopoten-
tial in orbital elements is used. In the current ver-
sion of the code, only the 1:1 and 2:1 tesseral res-
onances, relevant for 24-hour and 12-hour orbits,
respectively, are considered. Then, at each inte-
gration step, the SADA propagator computes the
resonance period of each resonance, and the per-
turbation is considered only if this period is larger
than 5 days (i.e. if the rate of change of the reso-
nant angle is smaller than 2n/5days) [22].

3. DALS

The DALS software allows the user to estimate the
state and associated covariance matrix of a tran-
siting object detected by a radar or optical sensor
starting from a set of measurements and an apri-
ori estimate of the state of the object at a desired
time epoch. The estimation is done with a least
squares process formulated in the DA framework.
The outputs of the program are an orbit param-
eter message (OPM) file, which contains the ob-
tained state estimate, the associated covariance
matrix and, if required, an estimate of two object
parameters, namely the “Bfactor” parameter and
the SRP coefficient, and two text files with mea-
surement residuals. The process is performed in
seven steps, illustrated hereafter.

1. Inputs elaboration The DALS toolbox re-
quires three different inputs:

¢ A JSON input file, summarizing all the vari-
ables and data required by the process;

* A set of Tracking Data Message (TDM) files,
which contain all epochs and measurements
collected by the set of sensors considered;

* A .txt file including the epoch, the available a
priori state estimate for the observed object
and, if any, the associated state covariance
matrix, the “Bfactor” coefficient and the SRP
coefficient (“SRPC”).

An example of JSON input file is offered in the ap-
pendix.

2. Observer kernel generation Once defined
the DALS variables, the program generates the re-
quired SPICE kernels for all the involved ground
stations of all the considered sensors. Optical
and monostatic radar sensors require a single ker-
nel per sensor. Two different kernels per sensor

are instead generated in case of bistatic radars.
For each ground station, the starting point of the
kernel generation process is represented by the
geodetic latitude, longitude and altitude provided
by the user in the JSON input file. Then, according
to the Earth model defined, these coordinates are
either maintained in the WGS84 reference frame
or converted in the ITRF93 system. A so-called
“definitions file” is then generated, and used as
input for the SPICE pinpoint 2 utility. The func-
tion generates a binary file, providing the position
of the ground station in any reference frame, and
the associated frame kernel, which defines the
topocentric reference system associated with the
observer.

3. TDM reading Starting from the data written
in the JSON input file, the program then stores all
the available observation epochs and associated
sensor measurements. The parsing of all TDM
files is done on the basis of the sensor specifica-
tions, i.e. the sensor type and the availability of
the single measurements.

4. State estimates reading Once defined the
set of available measurements, the program con-
siders the state estimates file defined in the JSON
input file and retrieves the apriori state esti-
mate x4.:, and the associated time epoch t44¢4-
Then, depending on their availability, the program
stores the apriori covariance matrix Cy,;, and the
Bfactor and SRPC estimates. While the availabil-
ity of the covariance is not essential for the pro-
cess, a first guess for the two parameters is re-
quired, thus they are arbitrarily set to 1e-3 in case
no estimate is provided. This value is later refined
during the DALS process.

5. State estimates propagation The available
state estimate is then propagated to the estima-
tion epoch t.s; defined by the user in the JSON in-
put file, thus obtaining the apriori state estimate
Test,apr- 1f test coincides with t4444, NO propaga-
tion is required. Otherwise, two different scenar-
ios are possible. If no apriori covariance is avail-
able, then x4, is propagated from tg.¢q tO tcss,
thus obtaining x.. qp-. Otherwise, a DA state vec-
tor of arbitrary domain is built on x 444, i.€.

[wdata] = Xdata T ox (6)

The DA vector is then propagated to t.s; using
a DA-based RK78 propagator, and the expansion
of the state vector at t.s:, [®est], is thus obtained.

2https://naif jpl.nasa.gov/pub/naif/utilities/PC_Linux_64bit/pinpoint.ug



This DA map is then used to compute the deriva-
tives of the final state with respect to the initial
conditions, i.e. the high order expansion of the
state transition matrix

a[xest}i
86:cj

[®];; = (7)
with¢,57 =1,...,6. By extracting the constant part
of this matrix, the state transition matrix is ob-
tained, and it used to propagate the covariance
matrix from tg,tq tO test

Cest,apr = q)Cfdu,ta‘I’T (8)

The state vector x g qp- is instead obtained by ex-
tracting the constant part of [@.s].

6. DA guess initialization Once computed
Test,apr, @ first guess for the DALS solver is gen-
erated. Once again, the process changes accord-
ing to the availability of Ccs¢, qpr-. If the covariance
matrix is available, this matrix is used to infer the
search interval of the DALS, and thus initialize the
DA state vector. Starting from Ccg qpr, the first
step consists in computing the eigenvalues and
eigenvectors of the matrix, namely A and V. At
this point, a DA state error vector is built in the
eigenspace as

€] = kv/Nox; 9)
with s = 1,...,6 and k an amplification factor de-

fined in the JSON input file. The vector is then
rotated in the ECI reference frame

[€] = V] (10)
and used to initialize a DA state at ¢.,, that is
[mest] = Lest,apr + [E] (11)

In case no covariance is available the DA state
vector is directly initialized in the ECIJ2000 refer-
ence frame by setting an arbitrary scaling factor
for each single DA variable, that is

[xest}i = (xest,ap'r')i + kposé-ri (12)
with:=1,...,3 and
[xest]i = (xest,apr)i + kveléxi (13)

withi =4,...,6. The two coefficients k,,; and ky¢;
define the dimension of the search space around
the current estimate, and are set in the JSON in-
put file.

The user can decide to estimate also the Bfactor
or the SRPC parameter or both. This is done by
setting to "true" the corresponding flags in the

JSON input file, or if no a priori estimate for one
parameter is available. By defining with 8 an ar-
bitrary parameter, the initialization is done by se-
lecting a scaling factor equal to ten percent of the
value of the parameter; i.e.

(8] = B+ 0.186x; (14)

with k equal to 7 or 8, depending on how many
parameters must be initialized (1 or 2) and which
parameter is considered.

At the end of the initialization process, an aug-
mented DA state vector [x¢,,] is built. This vector
coincides with [x.s:] in case neither Bfactor nor
SRPC need no be estimated, otherwise [xZ,] can
be

[2%.,] = {[zest], [Bfactor]} (15)

est

[wgst] = {[westL [SRPC}} (16)

- [x2.,] = {[xest], [Bfactor], [SRPC]} (17)

The length of the augmented state vector defines
the number of required DA variables and is here
defined as npy4.

7. The DALS solver The DALS solver starts
from the DA first guess initialized in the pre-
vious step and iteratively changes its constant
part so that the value of the measurements
residual is minimized. The process is run
in the DA framework and makes use of the
find min box constrained function of the DLib
C++ optimization library. The function requires
a search and stop strategy, a function to mini-
mize and its gradient, a starting point and the
search domain. The DALS solver adopts the
DLib bfgs search strategy search strategy and
the objective delta_stop strategy with a tolerance
of le-16 as stopping criterion, whereas the DA
expansions of the residual and of its gradient
are used. The centre of the DA domain is used
as starting point, whereas the scaling strategy
adopted to build the DA variables allows the
solver to always use [—1,1]"P4 as search domain.
During the iteration process, the DALS solver
constantly controls the accuracy of the resulting
residual map. A dedicated performance index is
computed, and if it is lower than the £/¥% value
set in the JSON file, then the map is considered
accurate. In parallel, two possible different con-
vergence criteria can be considered: a check on
how much the residual changes and how far the
new point is with respect to the previous one, or
a check on the norm of the gradient function as
computed in the optimal solution. In the first case,
the threshold parameters are defined as /™ and
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elim and are defined in the JSON input file. In
lim

case the gradient is controlled, the ey, is the only
parameter to be defined in the JSON file.

The process starts by setting [x%]4) = [xl,],
6wy, -1y = 0 and k = 1, where the subscript (k)

refers to the iteration index. Then, the process
runs as follows

1. Propagate the available state estimate x.y
from t.;; to the set of observation instants
T={t1,...,tn}.

2. Compute, for each time instant, the required
set of measurements. The measurement esti-
mation process changes according to the sen-
sor considered. In case of optical sensors, the
steps are as follows

2.1. Compute the relative position object-
observer

[p(tr)] = [rr(ty)] — rras(te) (18)

where [rr(t)] is the DA expansion of the
object position vector at time t;, whereas
rrgs(tr) is the ground station position at
time t;. This position is computed using
a dedicated SPICE kernel generated by
the tool.

2.2. Compute the topocentric right ascension

(a(t4)] = atan2 G%S@ (19

where the subscripts “1” and “2” refer to
the components of the vector.

2.3 Compute the topocentric declination

o [o(tr)]s >

o) =ssin (E0) @0
The tool allows the user to include light-time
and stellar aberration (LTS) corrections. The
corrections are made with a DA-based ver-
sion of SPICE’s LTS correction routines. The
set of measurements provided by a radar sen-
sor is instead potentially larger. Both monos-
tatic and bistatic radars theoretically can pro-
vide azimuth and elevation of the object as
measured by the receiver, along with Doppler
shift and range (or better slant range) mea-
surements. Similarly to optical sensors, the
availability and accuracy of these measure-
ments are governed by the associated entries
in the JSON input file object. Starting from
the available set of DA state vectors {[z]},
the steps for computing, for a generic time
instant t;, the DA expansions of azimuth, ele-
vation, Doppler shift and slant range are the
following:

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

Compute the relative position object-
receiver

[Prx (t)] = [rr(ty)] — rrrx (te)  (21)
where rrrx(t;) is the receiver (RX) po-
sition at t.

Compute the rotation matrix Acciorx (tx)
from the ECIJ2000 to the RX topocentric
reference frame and rotate [prx (tx)]

[prx (tx)]™X =
Acciorx (tr)[Prx (tr)] (22)

Compute the azimuth of the object at the
RX

[Azrx (t))] =

B [prx ()5
atanz ([P ) @)

Compute the elevation of the object at
the RX

RX

[Elrx (ty)] = asin <m> (24)

Compute the slant range DA expansion
[SR(tr)]. If the radar is monostatic, then

[SR(te)] = 2ll[prx (t)]ll  (25)

If the radar is bistatic, then compute the
relative position object-transmitter

[prx (tr)] = [rr(ty)] — rrrx(ty)  (26)

where rrrx(t;) is the transmitter (TX)
position at ¢5. Then the slant range be-
comes

[SR(t)] =
[erx ()]l + [l ()] (27)
Compute the rotation matrix Aecizece (tk)

from the ECIJ2000 to the Earth-fixed ref-
erence frame

Compute the Doppler shift expansion
[DS(t)]. In case of monostatic radar

2f

- AeciQecef .
C

(ot 2251 e

||[pRX]H

[DS(tr)] = -

where f is the radar frequency and c is
the speed of light, whereas for a bistatic
radar

DS(1)] =~ Avcinces (v(t3))]

. [PRx] vV . [prx]
Morx T 220 ||[pTX1||> @9
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3. Compute the DA expansion of the residuals.

The residuals are computed by comparing es-
timated and real measurements and consid-
ering the possible availability of an apriori es-
timate for state and covariance. The residual
expansion can be essentially divided in two
parts

[7] = [Pmeas] + [Tapr] (30)

that is, a portion due to the measurement
difference and a portion due to a priori es-
timates. The computation of the first part de-
pends on the sensor type. For optical sen-
sors, the residual expansion computed at time
epoch t; can be expressed as

Faneas(ti)] = 22 ([ (t)] — @pear(tr))? +
5 (150t0)] — breat(t1))? 31)
05

where the subscript “real” refers to the real
available measurements, o, and os define the
accuracy of the sensor in measuring right as-
cension and declination and are set in the
JSON input file, whereas f,, and f5 govern the
availability of each type of measurement, and
can be either 0 or 1. In case of radar mea-
surements, the expression becomes

[rmeas(tk)] =
IA2 ([ Aonx (60)] = Azrx.rea () +
Az
Lo (Bl (1)) ~ Blyea (1) +
El
IS ((SR(1)] ~ SRyear(ti)? +
USR
fDS (IDS(t1)] = DSrear(ts))>  (32)
DS

where 0 4,, 0, 0sr and opg define the accu-
racy of the sensor in measuring azimuth, ele-
vation, slant range and Doppler shift and are
set in the JSON input file, whereas fa., fgi,
fsr and fpg govern the availability of each
type of measurement. The complete residual
expansion can be then expressed as

N
Tmeas Z Tmeas tk (33)
k=1

where, at each time instant ¢;, the optical or
radar expression for [rpcqs(tx)] are used de-
pending on the sensor used at time ¢;. The
computation of [r,,,] is instead insensitive to
the sensor type. By defining with .5 the es-
timation epoch of the DALS process, [Tcst] =

10.

11.

[](test) the estimate at test, Test,apr the apri-
ori estimate and C.s qpr the associated co-
variance, one obtains

- mest,a;m") Ce_qf ,apr
mest,apr) (34)

[rapr} = ( [mest}

([Test] —

While Zcq qpr is always available, the pres-
ence of the apriori covariance is not granted
and it is governed by a dedicated input flag:
if it is set to "true", then it means that the
state estimates file contains an apriori esti-
mate for the covariance, thus [rq,,] can be
computed, otherwise this step is skipped and
[r] = [rmeas]-

Compute the gradient of the residuals. The
operation is done in the DA framework, that
is

Il (k)
ooz

(Vr] k) = (35)

where dx € R"PA

. Run the minimization process using the

find min box constrained function. The func-
tion provides the optimal deviation dxy ,; ;.

Compute the value of the residual in the opti-
mal point

Popt, (k) = [ (k) (0%, (1)) (36)

Update the DA map of the state vector

o] )+
“Ix(0) (37)

[xa](kJrl) =
[ (1) (65 (1)) — [

Compute the new DA expansion of the resid-

uals
[rle+1) = 2] kg1)) (38)

. Estimate the residuals map accuracy

[ (k+1)(0) = Topt, (k)|
1+ Toptq,(k)

EDA,K) = (39)

If epa,ky < €%, continue, otherwise set k =
k + 1 and go back to step 1.

If the convergence criterion is set to "rela-
tive", compute residual and step relative vari-
ations

o) (©) ~ [P (0)]
n() + [r](x)(0)
Hawopt (k) 5wgpt k— 1)||
Esx, (40)
= T+ 02, oD



If e, (1) < ™ or g5y (1) < €5 stop, otherwise
set k = k+ 1 and go back to step 1. If instead
the convergence criterion is set to "gradient”,
then evaluate the new gradient map in the op-
timal point and compute its norm

evr, (k) = [V ks1)(0)]] (41)

If eg, (k) < €9 stop, otherwise set k =k + 1
and go back to step 1.

At the end of the process, a refined estimate of the
augmented state vector xf,; .., = [Tis ,pe](0) is
obtained. In addition, the availability of the resid-
ual map allows the solver to provide an estimate
of the covariance matrix associated with the esti-
mated state vector and object parameters, if any.
Let us define with [r] the residuals DA map asso-
ciated with the optimal solution of the DALS pro-
cess. By relying on differential algebra, one can
compute the DA expansion of the normal matrix
as

1 02[r]
Nl|jj=-—F—— 42
[ ] J 2 851‘18(513] ( )
where i,7 = 1,...,np4 The covariance matrix can
be then computed as
0
Ca _ [T}( ) N—l (43)

est,opt Nimeas — MDA
where n,,cqs iS the overall number of measure-
ments. The so-obtained matrix is an “augmented”
covariance matrix, that isitis a (npa4 X np4) ma-
trix and includes the contribution of both the esti-
mated state and object parameters, if any.

Once estimated the state and associated covari-
ance matrix, the results are organized in an OPM
file. The epoch of the estimate and the associ-
ated state vector are always included, and are ex-
pressed in the UTC time system and ECIJ2000 ref-
erence frame, respectively. The covariance matrix
can be included or not, depending on the flag set
in the JSON input file. If the Bfactor or the SRPC
parameters are estimated, they are included as
user defined parameters. In addition, the asso-
ciated standard deviations can be provided.

4. TRADE

TRADE is a tool developed by Deimos, which per-
forms offline OD with different algorithms. It im-
plements a Square Root Information Filter (SRIF)
[2], a BLSQ and a Bayes filter [29]. In this context,
we focused on the BLSQ to compare its results
against the DALS tool. TRADE supports optical
telescopes and monostatic radars. It is capable

of processing tracks from different sensors (and
of different types) simultaneously. It includes a
numerical propagator with a detailed set of per-
turbations: non-spheric Earth, third bodies, SRP,
atmoshpheric drag, albedo effect and solid tides.
These perturbations are toggleable. It allows de-
termining the orbital elements, the drag and SRP
coefficients, as well as the transponder delay at
the satellite (part of the time budget in the two-
way ranging measurements). Finally, either im-
pulsive or continuous manoeuvres can be included
in the dynamical model, as long as enough data
about them are available. Given epoch, duration
and direction of the manoeuvre, TRADE is able
to estimate its magnitude provided a good initial
guess is available: such a scenario is likely to hap-
pen when satellite operators want to obtain useful
information about the efficiency of planned ma-
noeuvres and performance of the engine.

TRADE computes the adjusted orbit at the epoch
of the first measurement in the batch or at an
user-defined epoch. It allows providing an ini-
tial estimation of the solution by means of Two-
Line Elements (TLE), by interpolating over a user-
provided Orbit Ephemeris Message (OEM) file or
by manually inserting the value. It also imple-
ments IOD algorithms for telescope and monos-
tatic radars, so it is possible to obtain solutions
without initial estimations (as long as the input
data allow a good IOD). As outputs, it provides
per-sensor plots of the estimated residuals, as
well as plots of the optical measurements in Right
Ascension/Declination and Azimuth/Elevation. It
also provides standard-compliant OEM orbits with
or without covariances, and it has the possibility
of computing pointing opportunities for the deter-
mined orbits and the configured sensors network.

5. RESULTS

This section illustrates the performance of the
DALS tool when analysing real measurements ob-
tained with optical sensors. Two different targets,
a GEO and a GTO object, were observed and anal-
ysed, and the performance of the software is here
compared against results obtained with TRADE.
The aim of the analyses is to assess the accuracy
of the DALS solver and check the validity of the
propagaton models according to the selected or-
bital regimes. The results are illustrated here-
after.
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Figure 1: DALS and TRADE residuals as a func-
tion on the time slot. Six different solvers are
shown: aDALS (blue lines), sDALS (green lines)
and TRADE, with an without estimation of SRPC
(dashed and solid lines, respectively). The term
“CF” indicates a converge failure.

5.1. The GEO regime

The first analysed object is a GEO object, object
SL-12 R/B(2), NORAD ID 22115. Optical mea-
surements coming from three different sensors
were collected during a time frame of around one
month and a half, from the beginning of May 2020
to the end of June 2020. The locations of the op-
tical sensors are shown in Tab. 1. The obtained
TDM files are organized in five different time slots
of increasing time length, and for each slot the
available TDM files are processed by both DALS
and TRADE to obtain an estimate of the state of
the transiting object at the epoch of the first avail-
able measurement. Details about the time slots
and the number of available TDMs per optical sen-
sor are given in Table 2. The first guess for the
orbital state of the object at the epoch of the first
available measurement is obtained by relying on
the latest available TLE. Starting from this value,
having no covariance matrix available, the DALS
software is run assuming four different configura-
tions: numerical (aDALS) or SA (sDALS) propaga-
tion, and, for each configuration, SRP coefficient
constant (9.5e-2) or estimated (“SRPC” pedex).
The Bfactor coefficient is not relevant here, given
the considered orbital regime. This section illus-
trates the results obtained by processing each slot
of TDMs separately.

A first evidence of the performance of the tool can
be obtained by looking at the trend of the residu-
als. Fig. 1 shows how the least-squares residuals
evolve with increasing observation windows con-
sidering six different solvers: aDALS (blue lines),
sDALS (green lines) and TRADE, with an with-
out estimation of SRPC (dashed and solid lines,
respectively). A logarithmic scale for the residu-

Table 1: Optical sensors location.

Name Latitude  Longitude Altitude
(deg) (deg) (m)
TFRM 42.052 N 0.729 E 1622
CENTU1 38.544 N -4.408 W 1120
PIGGY 42.052 N 0.729 E 1622
TRE 21.199 S 55.410 E 982

Table 2: Time slots (start and end date, 2020) and
number of available TDM per time slot for each
considered optical sensor.

Slot TFRM CENTU1 PIGGY TRE
S1: 08 May-13 May 6 0 0 0
S2: 08 May-22 May 11 6 0 0
S3: 08 May-30 May 15 7 0 0
S4: 08 May-08 June 23 10 1 0
S5: 08 May-22 June 29 10 7 0

als (y-axis) is used to help visualization, whereas
the x-axis simply reports the acronym of each sin-
gle time slot. The spacing is proportional to the
elapsed time since the first measurement.

A first consideration on the effectiveness of the
DA-based least squares solver can be made by
comparing the behaviour of TRADE’s and aDALS’s
residuals. Both methods, indeed, rely on numer-
ical propagators, so, assuming no major differ-
ences between the underlying orbital dynamics
exist, a comparison between their performance al-
lows us to assess the validity of the DA-based least
squares solver. The aDALS systematically has
lower residuals than TRADE, both in case of SRPC
estimated and fixed. The difference between the
two methods is significant when a shorter obser-
vation window is considered, while it progres-
sively reduces as the number of considered TDMs
and the covered time window increase. Specifi-
cally, while for the S1 case (see Tab. 2) aDALS’s
residuals are two orders of magnitude lower than
TRADE'’s, the difference between the residuals
collapses to a factor 1.5 when the whole set of
available TDMs is processed. In addition, the per-
formance of aDALS is less affected by the estima-
tion of SRPC, while TRADE shows high residuals
for the second time slot, and cannot reach conver-
gence in S3 (“CF”,convergence failure text box in
the plot).

Once assessed the quality of the DALS solver, the
comparison between aDALS and sDALS provides
a better picture of the impact of the selected or-
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Figure 2: Keplerian parameters as a function of the observation window: (a) semi-major axis; (b) eccen-
tricity; (c) inclination; (d) right ascension of the ascending node; (e) argument of perigee; (f) true anomaly
(object NORAD ID 22115). The term “CF” indicates a converge failure.

bital dynamics on the DALS results. sDALS seems
to provide good residuals up to 2-3 weeks of ob-
servations, whereas its performance drastically
decreases as the considered time frame increases.
This can be easily inferred by analysing the results
for slots S3, S4, and S5. While the difference be-
tween aDALS and sDALS residuals is just a fac-
tor three for a three-week observation window, it
rapidly grows to one and two orders of magnitude
when one month and one and a half months of
observations are processed, respectively. There-
fore, the application of the SADA propagator to
the GEO regime seems valid only for relatively
short time frames.

The knowledge of the observed object and the
availability of high accuracy ephemerides allows
us to make further considerations on the perfor-
mance of the three methods. Fig. 2 shows the

trend of the obtained state estimate expressed
in terms of Keplerian parameters, namely semi-
major axis (a), eccentricity (e), inclination (),
right ascension of the ascending node (f2) and
true anomaly (¢/). Each parameter is plotted as a
normalized difference with respect to a reference
value provided by the special perturbations (“SP”
pedex) catalogue. The legend for this plot is the
same used for Fig. 1, and it is shown in Fig. 2f.

The trend of the semi-major axis estimates and the
result obtained without estimating the SRP coeffi-
cient are presented in Fig. 2a, solid lines. The con-
siderations previously made for the residuals are
still valid. Both the aDALS and the sDALS meth-
ods can accurately estimate the value of a since
the very beginning, when the observations cover
less than one week. On the contrary, TRADE’s re-
sult is less accurate, with an error of around 50 m.



Table 3: Time slots (start and end date, 2020)
and number of available TDM per time slot for
each considered optical sensor (ohject NORAD ID
25503).

Slot TFRM CENTU1 PIGGY TRE
S1: 21 Feb-27 Feb 5 5 5 2
S2: 21 Feb-19 Mar 7 8 6 2
S3: 21 Mar-29 Mar 4 1 6 0
S4: 21 Mar-10 Apr 10 2 9 0
S5: 13 May-27 May 8 3 0 0
S6: 13 May-19 June 9 3 1 0

As the number of collected TDMs and the covered
observation window increase, the difference be-
tween TRADE and aDALS progressively reduces,
whereas sDALS starts diverging, losing accuracy
after three weeks of observations. In case the es-
timation of the SRPC coefficient is included in the
least-squares process, the balance of power be-
tween the methods slightly changes. The most
accurate results with short observation windows
are now granted by TRADE, whereas aDALS is
initially relatively inaccurate. The difference be-
tween the two progressively reduces for increas-
ing observation windows, and aDALS eventually
outperforms TRADE when more than one month
of observations is considered. On the contrary,
the results granted by sDALS are initially reliable,
and match or even outperform aDALS’s till one
months of observations. When longer observation
windows are considered, sDALS loses its validity,
thus resulting into a divergent trend.

The trend observed for the eccentricity is sim-
ilar, with aDALS showing always the best per-
formance and TRADE progressively reducing the
gap as the number of processed TDMs increases.
Again, the performance of sDALS results accept-
able only for limited observation windows. The
results are different for the estimation of the or-
bital plane. Here an increase in the number of
processed TDMs leads TRADE to outperform both
DALS methods. The opposite trend can be instead
observed for the estimation of the in-plane posi-
tion of the object: in this case, aDALS is always
the best choice, regardless of the estimation ap-
proach for the SRPC.

Overall, if no estimation of the SRPC is included
and the longest time frame is considered, we can
see that aDALS provides the best estimates for a,
e, w and 9, whereas TRADE better estimates the
orientation of the orbital plane. Similar considera-
tions can be made in case of estimated SRPC, with
aDALS outperforming TRADE in 4 cases out of 6.
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-+--aDALS (o
SDALS o

Residual
r

S1 S2 S3 S4 S5 S6
Time window

Figure 3: DALS and TRADE residuals trend as a
function on the time slot considered (object NO-
RAD ID 25503).

5.2. The GTO regime

The second object here presented is a GTO object,
MAQSAT/ARIANE 5 (NORAD ID 25503). The ob-
ject was observed several times by the four optical
sensors listed in Tab. 1, between the end of Febru-
ary and the mid of June 2020. In order to make
computations feasible, the overall bulk of TDMs
was divided in three groups, and two subslots per
group were considered. Details about the con-
sidered time frames and associated numbers of
TDMs per sensor are given in Tab. 2. Then, the
three solvers (aDALS, sDALS and TRADE) were
executed, and their performance compared. In
this case, given the higher impact of the SRPC
on the orbital motion, only the case of estimated
SRPC is considered. The trend of the obtained
residuals in shown in Fig. 3. As previously ex-
plained, unlike the previous case now TDMs are
divided into three groups, so moving from the left
to the right does not necessarily implies that the
number of processed TDMs increases. The follow-
ing plots refer to the time slots displayed in Tab. 3.

Similarly to the GEO case, TRADE is not always
capable of converging, and this typically occurs
when the number of processed TDMs is low (S1,
see Tab. 3). Moreover, aDALS almost systemati-
cally outperforms it in terms of obtained residu-
als. This occurs for slots S1, S3, S4, S5 and S6,
i.e. 5 slots out of 6. The biggest difference with
respect to the trend shown in Fig. 1 can be no-
ticed in the behaviour of sDALS. In 4 cases out
of 5 sDALS shows a lower residual than TRADE,
and in one case (S3, window 21 March-29 March)
it outperforms aDALS as well. This result is sig-
nificant because, while 3 of these 4 slots include
observations spread on less than 3 weeks, in one
case (S6) the TDMs cover more than one month
of observations, and here sDALS almost matches
aDALS and outperforms TRADE by more than a
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Figure 4: Keplerian parameters as a function of the observation window: (a) semi-major axis; (b) eccen-
tricity; (c) inclination; (d) right ascension of the ascending node; (e) argument of perigee; (f) true anomaly

(object NORAD ID 25503).

factor 2. If one recalls the results obtained with
the GEO object, the difference is quite evident.
In GTO regime the SA propagator better captures
the orbital motion of the system, and so it provides
more accurate results.

As explained before, a lower residual is an evi-
dence of the quality of the least squares solver
but it does not necessarily implies a more accu-
rate solution, as the underlying orbital dynamics
is not the same. A better illustration of the per-
formance of the three approaches in estimating
the GTO object state can be obtained by looking
at the relative errors in the orbital parameters,

as normalized with respect to the SP reference.
The results are shown in Fig. 4. The compari-
son between TRADE and aDALS shows that the
trend is now less uniform, while in the case of
the GEO object aDALS nearly always outmatched
TRADE. Regardless of the considered time win-
dow, TRADE almost always outperforms aDALS in
the estimation of the orbital inclination and argu-
ment of perigee. For the other orbital parameters
the trends are less evident, and none of the three
methods shows better performance than the oth-
ers.

Moreover, it is interesting to study the behaviour
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Figure 5: DALS computational time (object NO-
RAD ID 25503).

of sDALS. Divergent behaviours can no longer be
identified, and the performance of the SA tool can
be labelled as valuable in all the considered time
frames. In particular, it is worth mentioning the
good behaviour of the tool in the last time slot (S6,
13 May-19 June), where, despite a time frame of
more than one month, the method can grant very
accurate estimates that for some parameters re-
sult as the best ones (£2) or nearly the best ones
(¢). Overall, the application of a SA propagator
to the estimation of the state of a GTO orbiting
objects seems a valuable solution. These results
are actually not unexpected. As mentioned in Sec-
tion 2.2, the SADA propagator, indeed, is specifi-
cally tailored to the HEO regime, so the best per-
formance can be obtained for these objects. The
appeal of such a solution becomes evident if the
required computational time is inspected. Fig-
ure 5 shows a comparison between aDALS and
sDALS in terms of computational effort. As can
be seen, the sDALS method almost systematically
outperforms aDALS, with a gain that goes up to
a factor 7 in case of longer observation windows.
That is, in case of GTO objects, the sDALS allows
us to save computational time while still granting
the same level of accuracy.

5.3. Sensitivity on IOD accuracy

The results previously illustrated were obtained
using TLEs to compute an initial guess. The lat-
est available TLE at the epoch of the first mea-
surement is generally quite accurate, and conver-
gence failures are therefore seldom encountered.
In order to assess the robustness of the algorithms
against the accuracy level of the state estimate
first guess, a sensitivity analysis is carried out.
Four different ranges of increasing errors in po-
sition and velocity are considered: (1 km, 1m/s),
(5 km, 5 m/s), (10 km, 10 m/s) and (100 km,
10 m/s). For each range, and for each position and
velocity component, 5 samples are drawn, and the
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Figure 6: Relative error on semi-major axis as a
function of the IOD velocity error for three differ-
ent SRPC values: (a) aDALS; (b) sDALS (ohject
NORAD ID 22115, slot S2).

corresponding error vectors in the radial-along
track-cross track reference frame built. These
vectors are then rotated in the ECI reference
frame and added to the nominal TLE state, thus
generating a perturbed initial guess. In addition,
for each generated perturbed state, three differ-
ent initial guesses for the SRPC (le-3, le-5 and
le-7) are assumed. The DALS process is then car-
ried out allowing the estimation of the SRPC. The
goal of the analysis is to check how the DALS per-
formance changes as a function of the initial er-
rors. A single object and a single time frame is as-
sumed: the GEO object 22115 and the time frame
S2 (08 May-22 May). The results are shown in
Fig. 6. The two plots display the relative error in
semi-major axis as a function of the error in veloc-
ity of the initial guess. Three different colours are
used for the three different initial values for the
SRPC. In addition, the convergence rate (CR) is
reported. Figure 6a shows the results for aDALS,
whereas the performance of sDALS is illustrated
in Fig. 6b. As the IOD estimate error increases, no
divergence trend can be noticed, for none of the
two methods. That is, both aDALS and sDALS are
robust enough and can converge to the correct so-
lution also when the initial errors in position and
velocity are of the order of hundred of meters and
tens of meters per second, respectively.



6. CONCLUSIONS

This paper introduced a differential-algebra based
least squares solver, referred to as DALS, for the
accurate estimation of the orbital state of RSOs.
Two different versions of the algorithm were pre-
sented, one relying on a numerical propagator
and a second one based on a SA propagation
model. The performance of the tool was assessed
against two different objects, a GEO and a GTO
object. The results show that the SA version
of the tool seems really promising for the GTO
regime. Here the algorithm can offer a good ac-
curacy level while granting significant savings in
the required computational burden. In contrast,
this approach is not optimized for GEO regime,
where the reduced computational cost is associ-
ated with a lower accuracy, especially for longer
observation windows. The presented results rep-
resent the first stage of our analysis, as they are
limited to two orbital regimes and optical sensors.
The tool, indeed, is capable of handling any sen-
sor configuration for a large variety of orbiting
objects. Future studies will be dedicated to the
analysis of the DALS performance when observing
LEO objects, with both radar and optical sensors.

APPENDIX A: JSON INPUT FILE

An example of JSON input file is shown below.

{
"DALS": {
"date_est": "29 MAR 2020 16:20:42.934672 (UTC)",
"flag_Bfactor_est":true,
"flag_SRPC_est":true,
"fun_tol":1le-5,
"map_tol":,0.001,
"max_iter":10,
"order":2,
"output": {
"flag_Cov":true,
"flag_KeplPar":true,
"name":"Sensor_results.opm",
"obj_ID":41223,
"obj_name": "unknown"
"path":"./Results/"
Vo
"step_tol":le-6,
"stop_crit":"relative"
Yo

"Dynamics":{
"AIDAparam":{
"flag_SRP":3,
"flag_drag":2,
"flag_thirdbody":2,

"path":"./data/gravmodels/"
}
H
"method":"AIDA",
"tolerance":le-11

Yo
"Earth":{

"Earth_model":"ITRF93",

"kernels":{
"TAU_assoc":"earth_assoc_IAU.tf",
"ITRF93":"earth_000101_200629_200407.bpc",
"ITRF93_assoc":"earth_assoc_itrf93.tf",
"path":"./data/kernels/",
"pck":"pck00010.tpc"

}

e
"0D": {

"flag_Bfactor_av":true,

"Covariance":{
"flag_Cov_av":true,
"sigma":5

i

"flag_SRPC_av":true,

"name":"Sensor_0OD.txt".

"path":"./0D/"

Yo

"Observer":{
"n_sensors":1,
"sensor_1":{
"participant_1":{
"altitude":1.622,
"latitude":42.0516,
"longitude":0.7293,
"name" : "TFRM"
"path":"./Observatory"
1,
"sensor_setup":{
"declination":{
"TDM_name" :"ANGLE_1",
"accuracy":0.3333333,
"availability":true
Vo
"right_ascension":{
"TDM_name" : "ANGLE_2",
"accuracy":0.3333333,
"availability":true
}
1,
"type":"optical",
"flag_LTS":true,

"n_TDM":1,

"TDM" : {
"TDM_1":"Sensorl.tdm",
"path":"./Measurements/"

}

¥
}

The file is organized in five portions.

The first

"gravmodel": {
"name": "egm2008",
"order":15,

portion ("DALS") includes all the variables re-
quired by the DALS solver, such as the estimation
date, flags for the estimations of the object pa-



rameters, and settings for the least squares pro-
cess. The second portion ("Dynamics") is dedi-
cated to the definition of the propagator (AIDA or
SADA) and associated flags for orbital perturba-
tions, whereas the third part ("Earth") is used to
declare the selected Earth model and associated
SPICE kernel names. The fourth slot ("OD") in-
cludes information on the IOD estimate, whereas
the last slot ("Observer") is used to define all
the involved sensors, their location and measure-
ments accuracy and the associated TDMs. In
the example, a single optical sensor with a single
TDM is used, but the software can handle what-
ever configuration: multiple TDMs, homogeneous
sensors, heterogeneous sensors (e.g. optical and
radar, both monostatic and bistatic).
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