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ABSTRACT 

This work outlines and assesses several methods for the 
detection of manoeuvres from radar data; as it is well-
known, radar ranging is a technique well-suited for Low 
Earth Orbit objects surveillance, providing precise 
enough ranging accuracy. The main starting assumption 
is that the manoeuvre is modelled in an impulsive way 
and that the object under analysis has an orbit known with 
a sufficient degree of precision. The manoeuvre detector 
is based on unscented Kalman filtering and reachability 
analysis of the relative state which correlates its 
prediction set with the next track from the radar. The 
methods are being implemented by making use of the 
space-dynamics library OREKIT and results are 
presented for simulated scenarios; they will be validated 
in the near future with real radar data from the Spanish 
Space Surveillance Tracking and Surveillance Radar 
(S3TSR), with manoeuvre information and ephemerides 
obtained from ESA and DLR to assess the results. 

1 INTRODUCTION 

In the field of Space Surveillance and Tracking (SST), 
accurate orbital determination and manoeuvre detection 
is of upmost importance to infer objects’ orbital 
information and their future behaviour, as well as to be 
able to carry out tasks such as prediction of potential 
conjunctions with operating satellites, taking avoidance 
orbital corrections, predicting re-entries, identifying 
fragmentations or updating orbital elements of known 
satellites, among others.  

Satellites performing unknown manoeuvres pose a 
challenge when trying to associate the new collected 
observations (obtained by laser, radar, or by any other 
means from the SST infrastructure) with the previously 
known reference orbits (which are stored in SST 
catalogues). Indeed, one of the main motivations of 
manoeuvre detection is that it can significantly reduce the 
number of uncorrelated targets detected by the SST 
sensors infrastructure. Most of these uncorrelated objects 
are just known satellites, which have performed 

unpublished manoeuvres (probably out of sight of the 
surveillance), in such a way that their new orbits do not 
match with the predictions. 

This work develops several methods for the detection of 
manoeuvres in Low Earth Orbit (LEO) from radar data, 
providing some preliminary numerical initial results 
obtained from simulations. The final aim is to have these 
algorithm integrated in the S3T Cataloguing System in 
order to provide routine automatic manoeuvre detection 
capabilities to the system in the future; thus, as a next 
step, validation of all the algorithms will be carried out 
with real tracks from S3TSR [1], the Spanish surveillance 
radar developed, installed and validated by Indra with the 
funding of the Spanish Government under the technical 
and contractual management of ESA on behalf of  Centro 
de Desarrollo Tecnológico e Industrial (CDTI). 
Manoeuvre information and ephemerides will be 
obtained from ESA/ESOC and DLR/GSOC to assess the 
results, for several scenarios. 

The structure of this paper is as follows. After this 
introduction, a literature review is performed for the two 
main families of methods that can be used to detect 
manoeuvres, namely: manoeuvre detection filters (based 
on orbit determination approaches) in Section 2 and 
reachability analysis-based methods (which compare 
reachable predicted sets with obtained measurements) in 
Section 3. The particular implementations selected for 
this work are presented in Sections 4 and 5, respectively, 
together with some preliminary results. Finally, in 
Section 6 numerical results for simulated orbits and radar 
data are presented. The paper is concluded in Section 7 
with some final remarks and future work. 

2 MANOEUVRE DETECTION FILTERS 

Manoeuvre detection filters (MDFs) employ orbit 
determination in the process of detecting if some 
manoeuvre has been performed; they are quite useful, 
since they are able to correlate new (post-manoeuvre) 
orbits with previous (pre-manoeuvre) known orbits, thus 
paving the way to perform orbit determination using 
quite fewer measures (as compared to a conventional 
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orbit determination problem). This fact is shown, for 
instance, in reference [2] where the author compares the 
accuracy and cost of orbit determination using a 
manoeuvre detection filter on known flying objects, 
versus a conventional (cold-started) orbit determination 
procedure. At its simplest, a manoeuvre detection 
algorithm relies on Statistical Orbit Determination (SOD) 
methods (see the reference [3] for a general overview).  
Very much has been written about the estimation and 
tracking of spacecraft using radar (or laser) measures, and 
classical methods like the Batch Least Squares (BLS) 
method, Extended Kalman Filter (EKF), and the 
Unscented Kalman Filter (UKF)—or even non-gaussian 
techniques like the Particle Filter—are well known in the 
literature.  

The problem with traditional methods arises when the 
target performs unknown manoeuvres in-between the 
measurements windows, in such a way that the 
propagators in which the estimation methods are based 
become too inaccurate (since they do not take into 
account the manoeuvres) because they have become 
“overconfident” due to their covariance becoming too 
small (a filter exhibiting such behaviour is known as a 
“smug” filter). Thus, a manoeuvring scenario may lead to 
severe outliers and convergence problems in 
conventional filtering techniques, but there exist methods 
to handle these issues and enhance the robustness of these 
classical algorithms, to avoid divergence problems. For 
instance, some possible techniques are covariance 
inflation or fading memory, among others. Additionally, 
using the filter residuals, a decision logic can be put in 
place to estimate when a manoeuvre has been performed, 
in such a way that the filter can be restarted to catch the 
new post-manoeuvre conditions. 

Although the use of these conventional filters is well 
extended in the literature, recent years have seen the 
rising of a promising filtering technique for tracking 
problems known as Multiple Model filters. This scheme 
(which was in fact originally proposed in 1960) is 
particularly well suited for problems with highly 
unstructured uncertainty and is based on a family of 
elemental filters which can be designed to model 
different aspects of the system behaviour, together with a 
probabilistic mixing logic to select the best estimation 
combining all the outputs of the elemental filters. 
Manoeuvring target tracking faces two interrelated main 
challenges: target motion-mode uncertainty and 
nonlinearity. Multiple-model (MM) methods have been 
generally considered the mainstream approach to 
manoeuvring target tracking under motion-mode 
uncertainty (a good survey about this technique can be 
found in [4]). The term MMAE (Multiple Model 
Adaptive Estimation) encapsulates any formulation that 
considers a multiple model framework consisting of 
either static models, adaptive models, or both. A MMAE 
framework allows various models to adapt certain 

parameters in different ways to account for updates in 
noise, residuals, or dynamics. There are numerous ways 
to implement MMAE techniques based on the estimation 
problem of interest. The approach is general enough to 
encompass the use of one or several families of filters 
combined with continuous, discrete or hybrid dynamics 
(with several possible models) and combine the outputs 
of multiple models to improve the overall estimate. Of 
specific interest for manoeuvring spacecraft estimation 
are MMAE implementations that solve for additional 
states, adapt noise parameters, and combine the outputs 
of all models at each time step. 

2.1 State of the art on manoeuvre detection 
filters 

Next, a representative sample of MDFs from the 
literature are analysed with particular focus on the quality 
and quantity of measurements considered by the authors 
in experiments or simulations.  

Fixed interval smoother for manoeuvre 
reconstruction 

First presented in [5], this algorithm gives a simple 
approach that uses the orbit determination filters and 
smoothers directly to provide the estimate of an 
impulsive manoeuvre. The procedure consists of a 
sequential filter used to move forward across the 
manoeuvre and a fixed interval smoother to move 
backwards across the manoeuvre. The sequential filter 
serves to process all the tracking data prior to the 
manoeuvre to provide an optimal pre-manoeuvre state 
estimate and covariance. The sequential filter then 
continues across the manoeuvre, adding the uncertainty 
in the manoeuvre to the velocity sub-matrix of the 
covariance. Radar data is processed after the time of the 
manoeuvre until the uncertainty in the state estimate 
returns to a normal non-manoeuvre condition. At that 
time, the filter state and covariance are used to initialize 
the fixed interval smoother, and the smoothing process is 
run backwards until a time prior to the manoeuvre.  

The smoother serves to map information provided by the 
post-manoeuvre tracking data backwards and provides a 
smoothed estimate of the post-manoeuvre state. The 
smoothing process continues across the time of the 
manoeuvre to yield a smoothed estimate of the pre-
manoeuvre state. The difference between the pre-
manoeuvre and post-manoeuvre smoothed states may 
now be extracted as the estimate of the manoeuvre. The 
pre-manoeuvre and post-manoeuvre smoothed 
covariance matrices are used to compute the uncertainty 
associated with the estimate of the manoeuvre. It is 
noteworthy that no additional states are added to the 
estimation process and that this solution can be done in 
the process of normal orbit analysis.  

As drawback of this method (which may be considered a 
“naïve” method proposed early in the history of MDFs), 
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it is assumed that one can quickly obtain a good state 
estimate after manoeuvre has passed. However, this 
might not be the case because of filter convergence 
problems. Nevertheless, it has the advantage of being 
flexible enough to use with any single or multiple orbit 
determination filter. In addition, the authors provide real 
examples which do not differ much from the scenario 
considered in this work (LEO satellites and radar data). 

Variable structure estimators 

This approach is proposed in reference [6], where a 
manoeuvre detection metric is used to design an estimator 
with an additional manoeuvre observer module, the so-
called “variable structure estimator.” In this scheme an 
EKF is used together with a manoeuvre observer (which 
is in turn triggered when the manoeuvre detection metric 
reaches a certain threshold). Then, the manoeuvre 
observer estimates the manoeuvre acceleration, and sends 
that information to the EKF, which takes into account the 
estimated acceleration to improve the orbit propagation 
in its algorithm. Note that this approach can be easily 
adapted to a BLS- or UKF-type of filter. The “manoeuvre 
observer” is based on a simple first-order observer, which 
produces an estimation of the acceleration to be fed back 
to the EKF. The approach is attractive because of its 
simplicity; however, the main disadvantage of the 
proposed MDF is that it assumes that numerous radar 
measurements are available so that manoeuvres are 
always observed. Since, in the scenarios considered in 
this work, there are long time gaps in-between 
measurements (typically, 12 or more hours), one would 
need to discretize the trajectory at many times (candidates 
to be the time of application of the manoeuvre). 

Joint kinematic/dynamic filters 

This approach is proposed in [7] and consists of two 
filters (EKF, UKF, or other types) running in parallel. 
The first filter is a traditional orbit determination Kalman 
filter. The second filter is a kinematic filter and utilizes 
some representative random processes (with design 
parameters) to describe the orbital motion. While the 
detailed motion is not captured at all, the changes caused 
by orbital manoeuvres can be captured by those flexible 
random processes. 

Note that the dynamic model is used as the main, primary 
filter, since it produces much more detailed orbit 
predictions, whereas the kinematic model helps to detect 
manoeuvres. The manoeuvre detection scheme is based 
on changes of the estimated semi-major axis from the 
kinematic model. In addition, the dynamic model filter 
can help to detect manoeuvres based on residuals’ 
behaviour (similar to the metric proposed in [6]). 

The approach becomes more complex due to the 
necessity of tuning an efficient kinematic model for the 
scenarios. In addition, while the reference does not 
assume continuous measurements, the simulations 

included therein consider three radars for a satellite in a 
Medium Earth Orbit. Thus, it is unclear if this approach 
can be adapted to the scenarios considered in this work, 
with long time gaps in-between measurements. However, 
the idea of using a purely statistical model (always as part 
of a batch of filters) may have some merits to be explored 
in the future. 

Filter-through and manoeuvre reconstruction 

This approach, extracted from [8] and [9], is based on a 
procedure to estimate a post-manoeuvre orbit. The results 
presented therein show that a filter-through Interacting 
Multiple Model orbit determination filter (EKF or UKF) 
can converge on a post-manoeuvre orbit with similar 
performance to Initial Orbit Determination approaches, 
based on multiple filters running with different levels of 
covariance inflation. Note that this filter-through would 
only kick-in if a manoeuvre has been detected, with 
detection based on residual analysis following along the 
lines of [6]. Once the post-manoeuvre orbit is known 
with a certain degree of accuracy, to reconstruct a single 
manoeuvre, the most general approach is to propagate the 
pre-manoeuvre orbit forward in time and the post-
manoeuvre orbit backwards in time. Next, determine the 
time when the orbits intersect, touch, or come closest 
together (minimum separation distance). This instance is 
the time of the manoeuvre, and the difference of the 
velocity vectors is an approximation of the impulsive 
manoeuvre ∆". In addition, with some knowledge of the 
post- and pre-manoeuvre orbits, it is possible to simplify 
the procedure (e.g., if the orbits are coplanar or there is a 
plane change).  

3 REACHABILITY ANALYSIS 

In this section the idea of Reachable Sets (RS) and their 
analysis (Reachability Analysis, RA) is introduced, as 
well as their relationship with control and estimation of 
systems. This background material constitutes the 
foundational framework for Section 5. 

Citing [10], “the concept of reachability is central to 
Space Situational Awareness (SSA),” which underscores 
the interest of this concept for the present work. 
Reachability Analysis deals with the study and 
applications of Reachable Sets, which are defined as 
follows: given a system that evolves from an initial 
condition (or set of initial conditions), and possibly has 
some control inputs, the reachable set is the set of states 
at which the system can arrive (i.e., the states that can be 
reached) at a given time. 

To more formally define a RS, start by considering a 
dynamical system, which is assumed to be defined with 
a differential equation   #̇ = &((, #, *). In the equation, # 
is the state (for instance, position and velocity) of 
dimension , (6 in our case), ( the time, and * a possible 
control input (which might represent a manoeuvre) for 
some sufficiently regular function	& (in orbital 
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mechanics, & might be Kepler’s equation, Gauss’ 
variational equations, the relative dynamics equation or 
any other differential equation used for orbit 
propagation). Traditionally, one solves such a differential 
equation with an initial condition #! = #((!) given at 
time (!  and a certain control input *((), thus obtaining a 
trajectory #(() valid for ( ≥ (!. Based on these solutions 
one can define the state trajectories flow, #(() =
/","!(#!, *) which includes all the dependencies of the 
solutions. 

A Reachable Set (RS) is defined as follows. Consider an 
initial set (instead of a point) of initial conditions at (!, 
and denote it by Ω!. Consider the set of all possible 
actuations 1. Then, the RS from Ω! at time (, denoted as 
Ω((), is defined (assuming there are no collisions or 
singularities for the flow) as 

Ω(() = {# ∈ ℝ$: # = /","!(#!, *), #! ∈ Ω!, * ∈ 1} (1) 

Such description is very convenient to characterize the 
state evolution over time starting from uncertain initial 
conditions or unknown control inputs, or to analyse what 
states can be (or not be) reachable with a particular 
control law. The technique has been used, for instance, in 
the context of rendezvous of spacecraft [11]. The idea has 
many applications. For instance, one of the main 
applications of RA is in the area of safety for trajectories 
of vehicles (which could be aircraft or spacecraft); if there 
is a dangerous zone (for instance, where collisions could 
happen), one way to ensure safety is to enforce that the 
RS is always away from the dangerous zone. 

Even in the linear case, the dependence on the control set 
U can make the computation of these sets quite difficult, 
with ellipsoids being a classical choice for 
representations, see e.g. [12]. 

If the dynamics are non-linear (as is the case in orbital 
mechanics), a state transition matrix is not available, and 
therefore the computation of reachable sets becomes 
challenging and highly intensive in computational terms 
[12], as a very large number of state propagations are 
required. One of the preferred representations of RS is 
based on zonotopes [13], which is a region spanned from 
the linear combinations of a set of 8 vectors, namely 
∑ :% 	;&<<<⃗ 	
'
( , but limiting the coefficients :% between 0 and 

1. However, the approach taken in this document is more 
aligned with the uses of RA in the context stochastic 
control theory (see for instance [14]); if one considers that 
the differential equation is to be interpreted in a stochastic 
sense, with initial conditions given not deterministically 
but rather as a certain initial probability distribution, then 
one can consider as the initial set Ω!	 a confidence region 
of the initial probability distribution (which means that 
most initial conditions are contained in Ω! with 
probability >—the degree of confidence of the region—) 
then the RS, Ω((), will also correspond to a confidence 
region. 

Computing reachability sets in the nonlinear case is 
extremely challenging, since, in principle, with six states 
(three pertaining to position and three to velocity) that 
may have some degree of uncertainty, one would require 
to propagate the boundary of a six-dimensional closed 
manifold, as well as the probability distribution function 
inside of it. Thus, in this project a particle-based 
approach is applied (very much in the spirit of the 
Montecarlo method), in which one samples the initial 
confidence region Ω!, (following the probability 
distribution of the initial conditions), to obtain 
approximations of the sets Ω(t) and the evolved 
distribution function. Since a large number of particles 
(trajectories) need to be propagated, two main ideas help 
to reduce the computational burden. 

The use of differential algebra techniques such as Taylor 
expansion over an initial condition can be employed in 
order to obtain reachable sets from an initial condition set 
in a reasonable amount of time (see [15] or [16]). Notice 
that this in fact represents a higher-order approach than 
the classical propagation of covariances (linear 
approach), that rely on Jacobians and the assumption that 
Gaussian distributions keep being Gaussian (which is 
only true under linear transformations). This 
“Gaussianity” hypothesis quickly begins to fail since the 
nonlinearity of the propagation “distorts” the 
distribution, making it lose its shape [10]. Thus, 
better/more accurate results can be expected from this 
approach particularly if not many measurements are 
available and propagation times are not short, but rather 
of the order of hours, as it is in the case of this project. 

Nothing has been said so far about the presence of * in 
the differential equation. If it is set to zero, then the RS 
represents the possible future states of the system when 
no control is applied (in the context of the project, in the 
absence of manoeuvres); then it does not differ at all from 
basic stochastic differential equations theory (this is, 
propagation of uncertainties). Obviously, if there exists 
some control u then the results change. The reference 
[10] considers the problem of computing the maximal RS 
subject to control being equal or less than some given 
constraint and solves the problem for relative orbital 
mechanics (in the absence of perturbations) by applying 
optimal control, bounding the result by ellipsoids. 

In addition, one of the most interesting applications to 
SST of reachability analysis is the problem of object 
correlation. Oftentimes, new measurements of space 
objects that have manoeuvred need to be correlated with 
previously known orbits, however there might be several 
candidates and one needs to choose which one to 
associate with the new measurement. Looking at the 
literature, this problem has indeed received considerable 
attention in the last years. There are a number of metrics 
that can be used such as the Mahalanobis distance [17] 
and techniques that can help when several measurements 
are present, such as the use of attributables [18] (see also 
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[19]), but these do not explicitly take into account the 
possibility of manoeuvring objects, which however is 
critical since (citing [19]), small fuel expenditures at 
specific points in an orbit can produce outsized state 
discrepancies. This problem is tackled in [20] and [19] 
computing (by means of optimal control) the minimum 
possible manoeuvre that connects the previous orbit with 
the new measurements. In [21] this optimal control 
approach is compared with the use of historical data, 
which is found more accurate when available (at least for 
the GEO example considered in that paper) and if the 
manoeuvres are predictable. These ideas are used in this 
work to develop manoeuvre detectors. 

4 A MANOEUVRE DETECTION FILTER 
BASED ON UKF 

To decide which filter to develop for this work, it is 
important to take into account that the S3TSR [1] is the 
only source of measurement data for this project. This 
implies that objects will have long windows without 
observation in-between, from about half a day up to 3 
days, and then a batch of observations will become 
available. Therefore, designs relying on a large number 
of measurements and/or frequent measurements are not 
implementable. The scheme of [6] is adapted, with 
manoeuvre detection based on residue analysis. As 
for the choice of the filter type itself, the UKF seems to 
be the superior choice. 

Whereas EKFs have been widely used in the past for 
estimation purposes in nonlinear settings, when dealing 
with severe nonlinearities, its accuracy might be 
compromised, since the “Gaussianity” hypothesis in 
which the EKF is based might be quite far from reality. 
Trying to overcome this drawback, the UKF was 
developed, to provide good results even for nonlinear 
systems while preserving Gaussian models. The UKF is 
based on the “unscented transformation” first proposed 
by Julien and Uhlmann [23] and later improved by Wan 
and Van Der Merwe [24] to compute the first two 
moments of the probability density distribution of a 
random variable given by some transformation ?	 =
	ℎ(#), assuming that the mean and the covariance of the 
variable # are known. The idea behind the unscented 
transformation is that a set of points #% (called sigma-
points) can be found in the domain of #, in such a way 
that transformed sigma-points ?% 		= 	ℎ(#%) can be used 
to accurately approximate the exact mean and covariance 
of ? (by using a predefined set of weights). 

4.1 UKF algorithm 

Considering a system with , states, given by the 
following process and observation equations 

#̇ = &(#, (), (2) 

? = B(#, (), (3) 

and a set of weights to estimate the mean and the 
covariance (denoted by D)

*  and D+
* respectively, for E	 =

	1, … ,2, + 1), together with a tuning parameter H (see 
the reference [2] for a description of the weights and the 
tuning parameter values), the UKF algorithm is (see [2] 
for details on the different steps): 

1. Start from the previous estimate of the state and 
the covariance of its error (#I! and  JK!). 

2. Compute the sigma-points of the unscented 
transformation. 

3. Propagate all the sigma points using numerical 
integration. 

4. Compute the weighted mean and the covariance 
matrix of the transformed sigma-points. 

5. Read the next observation. 
6. Transform the sigma-points (using the 

observation equation) and calculate the 
predicted observation, the residuals, and the 
observation covariance. 

7. Calculate the predicted cross-correlation 
covariance and the residuals. 

8. Compute the Kalman gain and update the 
estimate of the state. 

9. Return to step 1 and continue propagating. 

4.2 Manoeuvre detection 

Finally, the filter can be adapted to estimate the presence 
of manoeuvres. Thus, in the 7th step of the UKF’s 
algorithm, a manoeuvre prediction metric can be 
included, which reads: 

L% = M%
,N%

-(M% , (4) 

with M% being the residuals and N%-( the observation 
covariance. This term can be used to estimate model 
mismatches (due to manoeuvres), and then trigger other 
manoeuvre detection algorithms. 

4.3 Smoothing 

In the scenario considered in this work, measurements 
from the radar come in batches of 5-20 measurements 
with long intervals in-between them (hours). Any filter 
developed for this situation has to take this scenario into 
account. While the BLS approach is simultaneous in 
nature, the KF approaches (EKF/UKF) will process the 
measurements sequentially, in the order they were 
obtained. Thus, if a KF scheme is used, after the 
conclusion of the filtering algorithm, this is, after a batch 
of measurements has been processed, the output of the 
filter can be improved via a backwards smoother. This 
additional algorithm propagates the filter backwards in 
time, starting from the last measurement in a batch, up to 
the first one, modifying estimates accordingly (see [2] for 
details). It is well-known that smoothers provide 
considerable improvement for orbit determination. As 
future work longer smoothing intervals will be 
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considered (e.g., propagating backwards up to the 
previous radar batch).  

4.4 UKF Process and measurements 

As a first step, the UKF must be tuned to work correctly 
in the absence of manoeuvres. The UKF process is an 
orbit propagator implemented in OREKIT [25]. The radar 
measurements are range, range rate, azimuth and 
elevation. The radar accuracy on each measurement is as 
follows: Range: 7 m (1-P); Azimuth / Elevation: 0.3-0.5º 
(1-P); Range rate: 0.4 m/s (1-P). In terms of distance, for 
LEO (600 km range), the angular measurement error 
translates into a distance error of about 5.24 km. 
Consequently, radar angular accuracy is poor compared 
to range measurements. Thus, only range and range rate 
measurements are considered as the filter’s inputs. 

4.5 Process noise estimation 

The UKF algorithm requires the process noise covariance 
as an input. This quantifies mismatches with respect to 
the real process. Consequently, it is a key factor in the 
filter as it will balance the credibility of the process with 
respect to the measurements. In any case, the process 
covariance is unknown, as its exact knowledge would 
imply perfect modelling, and has to be tuned. Initial 
covariance needs also to be estimated to be as realistic as 
possible [26]. In [27], the state noise compensation 
technique described next is recommended as a good 
practice for navigation filters and has been adopted.  

Denote by LVLH a Local-Vertical, Local-Horizontal 
frame. Assuming LVLH velocity error as Gaussian white 
noise with covariance 

Q./.0 = R
S1 0 0
0 S2 0
0 0 S3

U , (5)  

then, the transformation to inertial coordinates can be 
made using the rotation matrix W4546  which transforms 
LVLH coordinates to the inertial frame 

Q = R./.0Q./.0R./.0
, . (6)  

Dividing the elapsed time between radar batches of 
measurements (tracks) in increments [(, where the 
inertial orientation of the LVLH frame is assumed 
constant, the full state inertial covariance grows during 
an interval \ as a second-order random walk model: 

S7 = ^
QΔ(8/3 QΔ(9/2
QΔ(9/2 QΔ(

a , (7)  

and then process noise covariance estimation is 

S = ∑ S7
'
7:( , for filter calls between tracks, 

S = 0;×;, for filter calls within a track. 

Within a track, where measurements are obtained every 

few seconds, the process mismatch is negligible.  

4.6 UKF preliminary testing results 

Numerical results are shown in order to justify the chosen 
implementation. The considered scenario is the LEO 
satellite Sentinel-1A (with orbital elements taken from 
public TLEs and assumed precise, propagated with 
second-order gravity harmonics and drag) between 
16:00:00 08/07/2015 – 16:00:00 12/07/2015. The radar 
measurements are obtained geometrically. The following 
results assume a model mismatch in drag, with c= =
2.2, N = 10	d^2 the real drag coefficient and exposed 
surface and c= = 2, N = 9.5 d^2 the assumed ones. The 
LVLH acceleration errors for (5) are  

S1 = 10->d9h-8, S2 = S3 = 5 · 10-(!d9h-8, 

where more noise has been assumed in the tangential 
direction. The discretization time period is taken as [( =
10 min. A comparison with a simulation assuming a null 
process covariance noise is shown in Figure 1 (red dots 
indicate the mismatch between measurements and the 
predicted state after the filter update). 

 

 

In the results, the initial covariance is assumed small and 

Figure 1. Position error without process noise (top) and 
estimating process noise (bottom).  



Leave footer empty – The Conference footer will be added to the first page of each paper. 
 

with a realistic shape (obtained from running the filter for 
a few days); using a diagonal shape resulted in a much 
poorer performance of the filter. 

For manoeuvre detection, the metric (4) was adapted as 

Ψ =
1
,
[l(?…l$?] R

n3,( ⋯ p919
⋮ ⋱ ⋮

p919 ⋯ n3,$
U

-(

s
l@
⋮
lA
t , (8) 

where the subindex refers to each radar block 
measurement of range and range-rate. As the detection 
method is based on finding significant discrepancies 
between the predicted orbit and the actual one, the 
residuals are computed prior to smoothing.  

A proof of concept is shown for the same scenario with a 
manoeuvre. The manoeuvre start is 00:34:58 11/07/2015 
and ends at 00:35:24 11/07/2015 with a constant 
acceleration of * = [0.31 · 10-9, −0.35 · 10-8, 0.37 ·
10-B]d/h9 in the LVLH frame.  

 

 
Figure 2. UKF position error with manoeuvre (top) and 
detection metrics comparison (bottom). 

In Figure 2, the UKF demonstrates its capability to 
recover the orbit after the manoeuvre is applied. 
Moreover, a comparison of other possible detection 

metrics is also shown. The other explored alternatives are 
to take the maximum L% of the track or the one associated 
to the first block of radar measurements L(.  

5 REACHABILITY-BASED MANOEUVRE 
DETECTION ALGORITHMS  

In this section, RA as outlined in Section 3 is applied to 
the specific problem of Manoeuvre Detection. Thus, the 
starting inputs are the precise orbit of the objects (pre-
manoeuvre) and the radar measurements and the outputs 
are the probability of a manoeuvre having happened.  

As a first step, the theory of attributables (see [18] and 
[19]) is introduced; it allows to “compress” several 
measurements into a single, higher-quality measurement, 
fitting a batch of measurements into a single polynomial 
expression whose order needs to be determined. 

Next, two algorithms are explained; the first is based on 
comparing the range-range rate attributable obtained 
from measurements with the one obtained from the initial 
uncertain orbit, by means of confidence regions and the 
Mahalanobis distance, which is a measure of the distance 
between a point P and a distribution (see [17]). 

The second algorithm is based on the use of optimal 
control theory. Following the ideas of [20] and [19] one 
can compute by means of stochastic optimal control a 
distribution of the Δ" that connects the uncertain orbit 
with the measurement. This distribution can then be used 
to obtain the likelihood of a manoeuvre having been 
performed. 

5.1 Attributables 

In order to condense the information of all measurements 
in each track the strategy of the attributables has been 
used [19]. A radar provides range, range-rate, elevation 
and azimuth, that, coupled with the chosen reference 
epoch, form the attributable 

w = {(, x, yz, {|, ẋ	}. (9) 

Fitting the information of the observables independently 
is one option, but it is possible to improve the uncertainty 
of the resulting virtual measurement if one incorporates 
the definition of range-rate into the modelling, so that it 
shares the parameters with the range: 

x(() = x! + x(( + x9
(9

2!
+⋯+ x$

($

,!
	 , (10) 

yz(() = yz! + yz(( + yz9
(9

2!
+⋯+ yz$

($

,!
	 , (11)	 

{|(() = {|! + {|(( + {|9
(9

2!
+⋯+ {|$

($

,!
	 , (12) 

ẋ(() =
~x(()
~(

= x( + x9
2(
2!
+ ⋯+ x$

,($-(

,!
. (13) 

In the above expression, the origin of time is at the middle 
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time of the track. 

This method manages to average out noise and reduce the 
standard deviation of the virtual measurement. Following 
the nomenclature in [19], the set of equations that allows 
to solve the parameters in the sense of least-squares is: 

d = �

x∗
yz∗
{|∗
x∗̇

Ä = ΑDEDp + É = �

A 0 0
0 A 0
0 0 A
AḞ 0 0

Ä s
xI
yzÖ
{|Ü
t + 	É, (14) 

Where d contains the measurements of all observables, 
p are the parameters that one wants to calculate, and the 
matrices A and AḞ have, respectively, coefficients found 
from the attributable time-varying formula for (x, yz, {|) 
and ẋ respectively. The error á follows the distribution of 
the measurements. Then the problem to solve is posed as 
weighted least-squares as follows 

min
H
É,WÉ = min

H
	(d − ΑDEDp),W(d − ΑDEDp), (15) 

where the solution is well-known: 

p = (ΑDED
I WΑDED)-(ΑDED

I Wd. (16)	 

This method manages to average out noise and reduce the 
standard deviation of the virtual measurement. The 
weighting matrix W is chosen to be the inverse of the 
covariance matrix of á, ΣJ, thus the attributable 
parameters covariance matrix is: 

ΣK = (ΑDED
I 	ΣL-(	ΑDED)-(. (17) 

This allows to know how good the virtual measurement 
:(() for a given observable with parameters >% is going 
to be at any point of the fit: 

"çé[:(()] = 	èP%*
(%(*

ê! E!
%,*

	 . (18) 

This expression, if evaluated at the epoch of the 
attributable (( = 0), gives P!!, the covariance of the first 
parameter. The elements P%* (the coefficients of ΣK) are 
sufficient to provide the covariance matrix of the 
complete attributable (ΣM) at the epoch without further 
processing, so that any information derived from w will 
have uncertainty information, such as the position in 
inertial coordinates. 

A test track with radar standard deviations PF = 30	d, 
and PḞ = 10	d/h has been used for an example of range 
attributable, zoomed around the centre, as it is the point 
chosen for the virtual measurement, in Figure 3. The 
uncertainty is mitigated with a noticeable reduction in the 
standard deviation by 40% (in the case of the range rate, 
the reduction is by 80%, a consequence of the 
methodology used for the definition of the range-rate 
attributable. 

In addition, one can estimate the azimuth and elevation 

rates and use it to perform a simple Initial Orbit 
Determination. However, notice that this would give a 
rather inaccurate approximation for an orbit passing 
through the measurement (one cannot expect to perform 
a good IOD with such a short observation arc), and 
therefore it is not pursed in this work. 

 
Figure 3. Range attributable and reduction of error 

5.2 Algorithm 1: Comparison of real and 
projected attributables 

Applying the ideas of Section 5.1, from the 
measurements at times (% one can obtain the virtual 
values of range, range-rate, azimuth and elevation at the 
middle of a track, namely (x!, {|!, yz!, x() as well as the 
associated uncertainty in the form of a covariance matrix 
ë. This is denoted as the attributable. 

The following algorithm is used to obtain a “projected” 
(or predicted) measurement from the initial value of the 
reference orbit, which is assumed to follow a certain 
known distribution: 

• Sample the PDE of the initial condition 
obtaining d sample points. Denote these as #!* 
for E = 1,… ,d. The set of initial conditions Ω! 
is then approximated by these points. 

• Propagate the sampled points using an OREKIT 
propagator up to time (N. Taylor differential 
algebra methods can be used to greatly speed up 
this computation, at the price of a lengthy initial 
calculation [28]. Thus, one obtains d 
trajectories #*((). 

• Projected values at the attributable time (% are 
obtained as a cloud of points x*((%), with the 
density of points giving an approximate 
measure of the probability associated to the real 
trajectory.  

• Now for each sampled orbit, one can compute 
the measurements at (%, obtaining a “cloud” of 
measurements, from which one can obtain its 
mean (x!ì,{|!Ü ,yz!Ü ,x(ì) as well as the associated 
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uncertainty in the form of a covariance 
matrix  ΣK. This is denoted as the projected 
measurement (in the sense that it is the 
attributable value one would expect given the 
starting distribution of the initial condition). 

• Finally, the attributables and projected 
measurements can be compared. If no 
manoeuvre has been performed, one would 
expect that both values should somewhat agree. 
To formulate this more precisely, define: 

												�

Δx!
Δyz!
Δ{|!
Δx(

Ä = �

x!
yz!
{|!
x(

Ä −

⎣
⎢
⎢
⎡
x!ì
yz!Ü

{|!Ü
x(ì ⎦
⎥
⎥
⎤
, ΔΣ = Σ + ΣK. (19)	 

• Then, if there is no manoeuvre, one would 
expect that, under an assumption of normality, 
(Δx!, Δ{|!, Δyz!, Δx() should belong to a 
normal distribution of zero mean and covariance 
ΔΣ. This can be checked either by computing 
confidence regions or equivalently through the 
Mahalanobis distance, as briefly explained next. 

Use of confidence regions and Mahalanobis distance.  

For a multivariate normal distribution with mean d and 
covariance matrix Σ, the >-level confidence ellipsoid (this 
is, the ellipsoid containing with probability > samples 
from the distribution) is given by 

(# −d),Σ-((# −d) ≤ õ$9(>), (20) 

where õ$9(>) is the inverse cumulative distribution 
function of the chi-square distribution with ,	degrees of 
freedom (the dimension of the vector #), evaluated at the 
probability value p. Similarly, the Mahalanobis distance 
is a measure of the distance of a point # from a 
distribution. It is unitless, scale-invariant and takes into 
account the correlations of the distribution. Concretely, if 
the distribution has mean d and covariance matrix Σ the 
Mahalanobis distance (MD) is computed as  

úù = û(# −d),Σ-((# −d)	. (21) 

In particular if the distribution is a multivariate normal, 
then the MD has a chi-square distribution with ,	degrees 
of freedom; thus, it is equivalent to the use of confidence 
ellipsoids. This property can be used to compute 
probabilities of manoeuvre. 

Next, an example is shown where the comparison of real 
and projected attributables is carried out for two cases: 
one example with manoeuvre and one without. Figure 4 
shows that the confidence intervals and MD are able to 
discriminate the manoeuvred case from the non-
manoeuvred one, at least for a simple basic simulation, 
using range and range rate. Further testing to fix a 
threshold in the MD to determine if a manoeuvre has been 
performed or not, as well as how to find the probability 
of manoeuvre, is done in Section 6. 

 

 
Figure 4. Confidence intervals (90%) and Mahalanobis 
distance, considering only range and range-rate, without 
manoeuvre (top) and with manoeuvre (bottom). The 
green ellipse represents the measurement uncertainty, 
the blue one the orbit uncertainty, and the red one the 
total uncertainty. 
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5.3 Algorithm 2: use of optimal control to 
compute a ü† measurement of distance. 

As a more sophisticated alternative to the Mahalanobis 
distance ([20], [21]) one can compute by means of 
stochastic optimal control a distribution of the minimum 
Δ" that connects the uncertain orbit around it. This 
distribution can then be used as a metric to obtain the 
likelihood of a manoeuvre having been performed. The 
optimal control problem is posed as follows: 

úê,O 	° *,(()*(()
""

"!
~( 

h. (.				#P(() = &(#((), *((), () 

#((!) = #!, 

ℎ ¢#£(N§• = [x	ẋ], 

In the above optimal control problem, the initial point is 
known from the precise orbit whereas the function ℎ at 
the final point represents the function relating position 
and velocity with range and range-rate (the most precise 
measurements) which should take the value obtained 
with attributables as explained in Section 5.1. The 
function &	represents the orbital dynamics, including any 
desired perturbation. The selected functional would 
represent the energy of the manoeuvre acceleration, 
which is less problematic than its ¶9 norm from a 
numerical point of view (which could be also replaced by 
the Huber approximation [20]; this is left for future 
iterations). It is well known from the literature that the 
real Δ" is bounded by the square root of this quantity. 

The problem is solved with CasADi [29], an open-source 
solver for MATLAB, with a multiple shooting method 
discretizing the orbital dynamics in 8 time intervals; for 
each of these, since impulses are small, the orbital 
dynamics is replaced with a linearized model obtained 
from OREKIT (computing the State Transition Matrix), 
with the discrete Δ"’s applied at the beginning. 

As a first step, the problem has been solved in a 
deterministic way. Since the solution is fast (seconds or 
less), to incorporate the stochasticity of the problem (both 
in initial orbit and measurements), a Monte Carlo 
algorithm has been implemented as a simple solution, 
albeit rather time-consuming. Figure 5 shows the 
obtained cumulative empirical distribution of Δ" (1000 
samples) for two cases (with and without manoeuvre) and 
gives a proof of concept of how this approach can 
discriminate measurements from orbits with or without 
manoeuvres. It is clear that the distribution without 
manoeuvre is “smaller” than the one with manoeuvre. 

6 NUMERICAL SIMULATIONS 

Several OREKIT-based simulators both for the 
manoeuvres and for the radar observations have been 

developed. They provide realistic (though not accurate) 
testing examples. They are very useful to tune and 
validate the different algorithms and filters. Starting 
point are generated from public TLEs.      

These are used to define reference orbits with 
propagators including J2 and aerodynamic drag, as 
explained in Section 4.6.  

 
Figure 5. Empirical distribution of impulse computed 
from the stochastic optimal control problem (obtained 
from 1000 samples). 

The algorithms, besides the model mismatches explained 
in that section, start from initial conditions within the 
expected limits of error of the real precise orbits (meters). 
Two main scenarios, respectively based on Sentinel 1A 
and Swarm C, are considered. A tangential manoeuvre is 
simulated, maintaining a constant acceleration of 10-3 
m/s2 and characterized by the following fields: 

• Manoeuvre intensity (regulated through the 
duration): low (5 seg) / medium (30 seg) / high 
(120 seg). 

• Manoeuvre location with respect to a radar 
track: 2 h / 6 h / 12 h.   

• The Sentinel-1A scenario spans from 00:00:00 
18/08/2020 to 00:00:00 22/08/2020. The 
manoeuvre starts at 18:25:00 20/08/2020. 

• The Swarm C scenario spans from 00:00:00 
14/07/2020 to 00:00:00 20/07/2020. The 
manoeuvre starts at 12:30:00 17/07/2020. 

Thus, combining all these factors, one gets 18 simulation 
scenarios to try to analyse the influence of these factors 
for the algorithms. Due to space limitations, only 
Sentinel 1-A results are presented, and some comments 
given on the Swarm C result. 

6.1 UKF Results. 

The result without manoeuvre is presented in Figure 6 
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whereas the manoeuvred case is given in Figure 8. The 
value of Ψ which should help in detecting manoeuvres is 
given for all cases in Table 1. 

 
Figure 6. Position error for Sentinel-1A with respect to 
“real” orbit without manoeuvre. Red dots indicate the 
mismatch between measurements and the predicted state 
after the filter update. 

Case / Ψ  Pre-man. 
Max. 

Post-man. 
Max. 

No manoeuvre  11.03 4.592 

low -2 h 11.03 3.160 

low -6 h 11.03 4.667 

low -12 h 11.03 7.104 

medium -2 h 11.03 4.612* 

medium -6 h 11.03 5.905 

medium -12 h 11.03 7.254 

high -2 h 11.03 501.3* 

high -6 h 11.03 58.51* 

high -12 h 4.435 75.89 

Table 1. Maximum value of detection metric before and 
after Sentinel-1A out-of-plane manoeuvre. The asterisk 
indicates that the maximum arises after the first post-
manoeuvre track (i.e., at a later batch of measurements). 

The results conclusions are as follows: 

• The filter takes some time to stabilize. This is 
probably due to the incorrect initial covariance. 
Since in real scenarios the covariance will not be 
perfectly known this can be expected. 

• The filter is working correctly in all cases, since 
the measurements are scarce it is unavoidable 
that the position errors grow, however, they are 
mitigated at each measurement. 

• Manoeuvres induce large errors after they 
happen, since the dynamic from the manoeuvres 
is unmodelled and therefore unaccounted for in 
the process covariance. The largest the 
manoeuvre the larger the error and the more it 
takes to recover from it. 

• The value of Ψ is indicative of the presence of a 
manoeuvre only in medium and specially in 
high-intensity cases. Low-intensity manoeuvres 
are indistinguishable from process noise.  

• The distance to the radar measurement does not 
seem to have much influence in the value of Ψ. 

In the Swarm C case (not shown), the value of Ψ is 
indicative of the presence of a manoeuvre only in high-
intensity cases. For low- and medium-intensity 
manoeuvres, they are, in principle, indistinguishable 
from process noise, unless the manoeuvre happened at a 
long enough distance from the first radar measurement. 
The main cause of this is, besides the long gap without 
measurement, having less radar measurements; in the 
case of Sentinel 1-A, nine values were obtained as the 
pass after the manoeuvre is longer, whereas in the case of 
Swarm C, only five values are obtained. 

6.2 Reachability Analysis Algorithm 1 
Results. 

Table 2 contains the results of Algorithm 1.  

Case / 
Metric 

MD 
(ß, ß̇) 

PR 
(%) 

MD 
(El,Az) 

PR 
(%) 

MD 
(All) 

PR 
(%) 

WoM 0,29 0 2,18 33 2,60 0 

L-12h 1,54 8 1,66 13 2,22 0 

L-6h 1,16 0 1,52 7 1,96 0 

L-2h 1,35 0 2,10 30 2,16 0 

M-12h 3,17 59 2,15 32 3,97 18 

M-6h 4,66 81 0,97 0 4,81 39 

M-2h 4,32 77 2,29 36 4,80 38 

H-12h 23,48 100 3,61 67 23,53 100 

H-6h 30,37 100 4,44 78 30,38 100 

H-2h 12,27 100 1,23 0 12,44 97 

Table 2. Sentinel 1A Reachability analysis with 
Algorithm 1 and probability from MD using (22). 
WoM=without manoeuvre, L=low, M=medium, H=high. 

In the table, the Mahalanobis distance (MD) has been 
computed considering only range-range rate (column 2), 
El-Az (column 4) and all data (column 6). Based on the 
MD, a probability measure has been computed based on 
the MD being distributed as a õ9distribution function 
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with as many degrees of freedom (,) as variables. Thus, 
the number PR (which is a possible estimation of the 
probability of manoeuvre) is computed as follows: 

JW = max{0, 2(õ9(úù; ,) − 0.5}. (22) 

This way, if the MD has a probability of 50% or less of 
occurring, it is assumed that there is no manoeuvre, to 
reduce false positives. If the MD has a probability of 
more than 50% of happening, then one subtracts 50 from 
the probability and multiplies it by two; if one gets, e.g., 
a probability of a certain MD of 80%, the probability of 
manoeuvre would be 60%. 

From the results, several conclusions can be drawn: 

• In general, using only range and range rate is 
more sensitive in more cases; using elevation 
and azimuth can induce false positives. 

• All high- and medium-intensity manoeuvres are 
detected. 

• Low-intensity manoeuvres are usually not 
detected. 

• The distance to the radar measurement does not 
seem to affect these results. 

The results can be inspected visually in Figure 9. Note 
that due to the propagation “stretching” the orbit 
uncertainty in the range-range rate plane, it is hard to 
verify if measurements belong to the confidence region, 
except in high-intensity cases. In the Swarm C case (not 
shown), only high-intensity manoeuvres are detected, 
with varying success for medium-intensity manoeuvres. 

6.3 Reachability Analysis Algorithm 2 
Results. 

It is not immediate to use Algorithm 2 to detect 
manoeuvres, since it produces a distribution of [" that 
might be hard to interpret; thus, a basic Monte Carlo 
simulation of the case with no-manoeuvres has been 
carried out to find the distribution in the non-manoeuvred 
case. This is shown in Figure 7. The Monte Carlo 
simulation allows to derive a “mean distribution” as well 
as a distribution at a 2-sigma distance from the mean, 
which is helpful to avoid false positives. The percentiles 
10%, 50% and 80% are computed for these two 
distributions as well as for all the simulations to derive 
several possible different metrics for the probability of 
manoeuvre, as follows. P1M and P1D compare the 
percentile 10% of the resulting [" with the mean 
(respectively, 2-sigma) non-manoeuvred distribution. 
The algorithm computes the probability > of the resulting 
[" to be below this non-manoeouvred value, then: 

J1 = max{0,0.1(0.1 − >)}. (23)	 

This way, if p is above 10% the probability becomes zero 
and if it is below 10, the difference is multiplied by 10 
(thus, having zero probability would represent a 100% 
probability of manoeuvre). P5M and P5D are computed 

similarly for the 50% percentile. P8M and P8D are 
computed similarly for the 80% percentile. 

 
Figure 7. Monte Carlo analysis of non-manoeuvred 
results of Algorithm 1 (Sentinel 1-A case). Black: mean 
distribution. Red: mean plus 2-sigma distribution. 

From the results in Table 3, some conclusions are drawn: 

• Algorithms detect all high- and (except P8M 
and P8D) medium-intensity manoeuvres. 

• P1M is the most sensitive algorithm being able 
to detect even some low-intensity manoeuvres. 
However, it has a non-negligible rate of false 
positives (a false positive is defined as a non-
manoeuvred case from the Monte Carlo 
simulation being detected with > ≥	50%). 

• P1D is also quite sensitive and, even though it 
fails in detecting some manoeuvres that P1M 
detects, it reduces the number of false positives. 

• Other metrics are worse than P1M and P1D. 

The computed CDFs can be inspected visually in Figure 
10. In the Swarm C case (not shown), only high-intensity 
manoeuvres are detected, with varying success for 
medium-intensity ones. As in Section 6.1, The main 
causes are long gaps without measurement and having 
less radar measurements right after the manoeuvre.  

7 CONCLUSIONS AND FUTURE WORK 

Several methods for the detection of manoeuvres in LEO 
from radar data have been presented, based on UKF, 
attributable theory and reachability analysis. Simulation 
results using OREKIT show that the filter does not detect 
manoeuvres unless they are rather intense, whereas the 
reachability approach is more sensitive at the price of 
longer computation times. As a next step, the filter and 
reachability approaches will be unified, to improve 
detection and orbit estimation. The aim is to have these 
algorithm integrated in the S3T Cataloguing System in 
order to provide routine automatic manoeuvre detection 
capabilities to the system in the future. 
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Case/ 

Metrics 

P1M 
(%) 

P5M 
(%) 

P8M 
(%) 

P1D 
(%) 

P5D 
(%) 

P8D 
(%) 

FP 10 1 0 3 0 0 

L-12h 100 72 0 70 40 0 

L-6h 100 42 0 50 0 0 

L-2h 0 0 0 0 0 0 

M-12h 100 96 0 100 84 0 

M-6h 100 100 95 100 100 95 

M-2h 100 98 0 100 96 0 

H-12h 100 100 100 100 100 100 

H-6h 100 100 100 100 100 100 

H-2h 100 100 100 100 100 100 

Table 3. Sentinel 1-A probability of manoeuvre. FP=false 
positives, L=low, M=medium, H=high. 

In addition, validation of all the algorithms will be carried 
out with real tracks from S3TSR [1], the Spanish 
surveillance radar developed, installed and validated by 
Indra with the funding of the Spanish Government under 
technical and contractual management of ESA on behalf 
of  Centro de Desarrollo Tecnológico e Industrial 
(CDTI). Manoeuvre information and ephemerides will be 
obtained from ESA/ESOC and DLR/GSOC to assess the 
results. The simulation results predict that the 
measurements provided by the actual version of S3TSR 
will allow for the detection of sufficiently intense 
manoeuvres of the LEO objects that the radar can 
observe. 
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Figure 8. Position error with respect to “real” orbit for Sentinel-1A manoeuvred scenarios. Red dots indicate the 
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Figure 9. Reachability results (Algorithm 1) for Sentinel 1A manoeuvre, Range vs Range-rate. 

 
Figure 10. Reachability results (Algorithm 2) for Sentinel 1-A. 


