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ABSTRACT 

The reliability of the uncertainty characterization, also 

known as uncertainty realism, is of the uttermost 

importance for Space Situational Awareness (SSA) 

services. One of the greatest sources of uncertainty for 

the orbits of Resident Space Objects (RSOs) comes 

from the uncertainty of dynamic models, which is not 

normally taken into account during the orbit 

determination processes. A classical approach to 

account for these sources of uncertainty is the consider 

parameters theory, which consists in including 

parameters in the underlying dynamical models whose 

variance represents the corresponding uncertainty. 

However, realistic variances of these consider 

parameters are not known. This work presents a 

methodology to infer the variance of the consider 

parameters, based on the observed distribution of the 

Mahalanobis distance of the orbital differences between 

predicted and estimated orbits, which theoretically 

should follow a chi-square distribution under Gaussian 

assumption. The methodology is presented in this paper, 

validated in a simulated scenario and tested in a real 

operational environment with radar data of the Sentinel-

3A satellite. 
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1 INTRODUCTION 

The provision of most of the services in Space Traffic 

Management (STM) and SSA relies on the proper 

characterization of the orbital uncertainty. This is 

known as uncertainty realism, and focuses on the correct 

representation of the Probability Density Function 

(PDF) of the orbital state. Uncertainty realism can be 

reduced to covariance realism under Gaussian 

assumptions, requiring not only an unbiased estimation 

but also covariance consistency (correct covariance 

orientation, shape and size). When these requirements 

are met, the PDF representing the uncertainty of the 

system can be fully characterised by its two first 

moments, gathered in a covariance matrix. The 

misrepresentation of the uncertainty of a RSO impacts 

STM and SSA products, being crucial for: RSO 

cataloguing, collision risk assessment, fragmentation 

analysis, re-entry prediction, track association, 

manoeuvre detection or sensor tasking and scheduling, 

among others.  

Many existing Orbit Determination (OD) processes are 

based on weighted batch least-squares theory and 

provide the estimation (state and covariance) as the 

nominal output, given that measurements are sufficient 

and available. Along this process, the dynamical model 

defining the motion of the orbiting object is assumed to 

be deterministic, and only the measurements uncertainty 

is normally accounted for. The resulting covariance 

matrix in this estimation process is known as the noise-

only covariance [1]. However, one of the main sources 

of uncertainty during OD and subsequent propagation 

arises from the errors in the underlying dynamical 

models, which is typically disregarded. For instance, 

when the ballistic coefficient is estimated in an OD 

process, the correlation of its uncertainty with the 

uncertainty of the rest of the state might not be 

accounted for during the covariance computation. This 

will cause the covariance realism to be degrade, since 

the uncertainty in the ballistic coefficient is spread to the 

position and velocity components through propagation 

in time [2]. 

Therefore, it is customary for SSA and particularly for 

Space Surveillance and Tracking (SST) purposes to 

characterize and determine the inherent uncertainty and 

their effects, which is commonly known as uncertainty 

quantification. Two fundamental problems can be 

distinguished for uncertainty quantification: the 

propagation of uncertainty and the inverse problem 

(model and parameter uncertainty) [3]. The former one 

concentrates on how to propagate forward an initially 

given Probability Density Function (PDF) of a state, 

accurately and efficiently. This is not the focus of the 

present work, where linearized propagation techniques 

are used. The inverse problem, on the contrary, consists 

in assessing the differences between the observed 

behaviour of a system and the underlying models and 

parameters used to represent it. Regarding the 

uncertainty in the modelling, an alternative is to revisit 

the deterministic assumption in the equations of motion. 

A common approach is to account for the model 

uncertainty with stochastic dynamics or process noise, 

exploring different stochastic modelling such as 

Brownian motion, Ornstein-Uhlenbeck or Gauss-
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Markov processes [3]. The other target of the inverse 

problem is the parameter uncertainty, whose objective is 

to represent the uncertainty in specific terms of the 

dynamic or measurement equations. If the uncertain 

parameter can be observed or estimated, it is possible to 

include its time evolution in the differential equations of 

motion. On the contrary, if the parameter is not 

observable, it can be treated probabilistically by 

assuming that the parameter follows a certain 

distribution, such as a Gaussian one. In the end, the goal 

of the parameter uncertainty modelling is not only the 

posterior quantification of the errors, but also to 

represent the relationship between the uncertain 

parameter and the state variance.  

Besides choosing to target the previously described 

components of the inverse problem separately, there 

exists a wide variety of techniques whose intention is to 

cover the complete problem. Process noise methods, 

which consist in adding an additional noise in the 

dynamics to account for un-modelled error sources, are 

gaining confidence over stochastic acceleration methods 

in the current state of the art since they can account for 

both dynamic model and parameter uncertainty. Some 

authors propose to estimate the process noise with a 

calibration process in order to improve the covariance 

realism [4]. However, a physically-based derivation of a 

process noise can be rather challenging, and typical 

solutions lack the physical meaning of the different 

sources of the uncertainty. These techniques are 

typically used for filtering applications rather than in 

batch processing. Nonetheless, some works describe the 

computation of a process noise matrix that accounts for 

the drag uncertainty and include it in the batch least-

squares estimation process [5]. Other approaches 

suggest the use of empirical covariance matrices to 

include all residuals of the estimation process in the 

covariance computation, regardless of whether the 

uncertainty has been modelled or not [6]. This proposal 

claims to account more accurately for noise variations 

rather than process noise or consider parameter analysis, 

at the expense of the physical interpretation of the 

uncertainty.  Finally, filters are also a state of the art 

technique that allows to retain higher moments of the 

PDF under analysis by the selection of specific sigma 

points in pseudo Monte Carlo analysis [7]. The key of 

these methods is the trade-off between accuracy and 

computational cost. 

Apart from uncertainty quantification methods, there are 

other techniques conceived to improve covariance 

realism without focusing on the sources of uncertainty 

and their modelling. For instance, state representation in 

mean orbital elements allows the covariance matrix to 

represent more realistically the uncertainty of Monte 

Carlo simulations [8]. Other typical representations of 

the state and covariance in non-linear reference frames 

that are able to slow down the realism degradation upon 

propagation are being widely studied, such as in [9].  

In an operational environment, operators require simple 

techniques in order to improve covariance realism since, 

as previously discussed, the nominal covariance 

determination methods provide optimistic results. The 

most common options are: (1) the previously mentioned 

process noise and (2) scaling techniques, which inflate 

the covariance by means of scaling factors. Some 

authors propose the computation of such scaling based 

on increasing the initial position uncertainty to match 

the velocity error [10]. Others explore the usage of the 

Mahalanobis distance of the orbital differences to find 

the scale factor [11]. However, a common drawback of 

artificially increasing the covariance is that the physical 

meaning of the correction is lost, not being able to 

understand the contributions of each source of 

uncertainty. These sort of methods are used nowadays in 

operation centres such as Space Operations Center 

(CSpOC) [3]. 

One of the classical approaches for parameter 

uncertainty in the dynamic equations is the consider 

parameter theory, whose details can be found in [1] and 

could be classified as process noise techniques. It 

consists in extending the state space by including 

parameters in the dynamic models, such as atmospheric 

force, solar radiation pressure force or measurement 

models. These parameters are devised to follow a 

certain model with its corresponding uncertainty, in the 

general application, a Gaussian distribution with a null 

mean (to maintain an unbiased estimation) and a certain 

variance. This allows to represent unaccounted error 

sources of the dynamical or measurement models by 

including the parameter uncertainty. This formulation 

can be combined with batch estimation or filtering 

algorithms such as in the Schmidt-Kalman filter [12], 

[13]. This approach provides the advantage of tracking 

the effect of the specific uncertain physically-based 

parameters that are included, as opposed to artificial 

scaling factors. However, one of the main drawbacks of 

the consider parameter theory is that realistic variances 

of such parameters are not normally known, a common 

problem in process noise methods. Overly optimistic or 

sized variances may fail to model the uncertainty of 

parameters in the estimation and subsequent 

propagation of the covariance, not achieving covariance 

realism. 

The aim of this work is to present a novel methodology 

to determine the variance of the included consider 

parameters based on the orbital differences between 

estimated and predicted orbits. Under Gaussian 

assumptions, the differences between both orbits 

projected into de covariance space, i.e. Mahalanobis 

distance, shall follow a chi-square distribution to 

achieve covariance realism. Thus, the variance of the 

consider parameters can be determined by means of a 

minimization process between the observed 



Mahalanobis distance distribution and the expected one, 

i.e. a chi-square distribution. The work carried out 

concentrates in Low Earth Orbits (LEO) regimes, where 

the most relevant uncertainty sources are atmospheric 

density in the drag force acceleration and the range bias 

in the radar measurements [14]. 

A similar analysis based on the consider parameter 

theory to improve the covariance realism is performed 

in [15], a precursor work for this study. There, it is 

proposed to correct the noise-only covariance with a 

least squares fitting to a so-called observed covariance, 

this latter being obtained from Monte Carlo orbital 

differences aggregation. This approach has a main 

drawback, which is that to compute such observed 

covariance, orbital differences at distinct orbital 

positions are mixed from orbit estimated based on 

different observation scenarios. This issue is mitigated 

by the normalisation obtained with the Mahalanobis 

distance concept, which is the cornerstone of the work 

at hand.  

The remainder of the paper is organised as follows: in 

Section 2 the consider parameter theory is reviewed and 

the methodology is presented. In Section 3 the process 

followed for the validation of the proposed methodology 

is briefly described. Next, the results of the proposed 

covariance determination methodology are shown in 

Section 4 for a real scenario, corresponding to the 

Sentinel 3A satellite. The focus is placed on the physical 

interpretation of the consider parameter variances 

obtained and the level of covariance realism 

enhancement achieved. Finally, Section 5 summarizes 

the conclusions of this work and the future work to be 

performed. 

2 METHODOLOGY 

This section describes in first place the consider 

parameters theory and its direct effect on the covariance 

computation. Then, the analysed consider parameters 

are described. Finally, the concept of Mahalanobis 

distance and its relation with chi-square distribution for 

the minimization process is described. 

2.1 Consider Parameter Theory in Batch 

Least-squares algorithm 

The complete description of the consider parameter 

theory, or consider covariance analysis as denoted by 

some authors, can be found in many references such as 

[1] or [16]. For brevity, only the final derivation in the 

nominal batch least-squares process is described next. 

The expected value of the orbit estimation remains 

unbiased provided that the consider parameters have 

null mean and their variances are uncorrelated with the 

measurement noise. On the contrary, the covariance of 

the estimation is affected. Recalling the nominal OD 

process, the noise-only covariance is obtained as 

follows: 

 

 

 

𝑃𝑛 = (𝐻𝑥
𝑇𝑊𝐻𝑥)−1   

(1) 

where 𝐻𝑥 corresponds to the Jacobian of the 

observations with respect to the reference state, and 𝑊 

is the weighting matrix containing the confidence of 

each measurement and the possible correlation among 

the measurements.  

Then, the consider covariance results in: 

 

 

 

𝑃𝑐 = 𝑃𝑛 + (𝑃𝑛𝐻𝑥
𝑇𝑊)(𝐻𝑐𝐶𝐻𝑐

𝑇)(𝑃𝑛𝐻𝑥
𝑇𝑊)𝑇   

(2) 

where 𝐻𝑐  is the Jacobian of the observations with 

respect to the consider parameters and 𝐶 is a diagonal 

matrix containing the consider parameters variance, 

where no correlation between them is assumed: 

 

 

 
𝐶 = (

𝜎𝑐1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑐𝑛

2
)   

(3) 

 

A more compact form of Eq. 2 can be defined as 

follows: 

 

 

𝑃𝑐 = 𝑃𝑛 + 𝐾𝑇𝐶𝐾   
(4) 

with: 

 

 

 

𝐾 = 𝑃𝑛(𝐻𝑥
𝑇𝑊𝐻𝑐); 𝐾 ∈  ℝ𝑛𝑐  ×  ℝ𝑛𝑥   

(5) 

being 𝑛𝑐 and 𝑛𝑥 the number of consider parameters and 

the state vector dimension, respectively.  

Therefore, the consider covariance is obtained as the 

noise-only covariance plus a covariance correction, 

which depends on the consider parameter variances. The 

goal of the work at hand is to determine the values of 𝐶 

so that the consider covariance realism is improved.  

2.2 Analysed Consider Parameters 

Two different consider parameters have been analysed 

representing the error of the atmospheric drag force 

model and of the range bias calibration. The classical 

drag force equation with the applied consider parameter 



is defined as: 

 

 

 

𝑎⃗𝑑𝑟𝑎𝑔 = −
1
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𝜌

𝐶𝐷𝐴

𝑚
 𝑣𝑟𝑒𝑙
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| 𝑣⃗𝑟𝑒𝑙|
(1 + 𝑐𝐴𝐸)  

 

(6) 

where 𝜌 is the atmospheric density, 𝐶𝐷 the drag 

coefficient, 𝐴 the cross-sectional area, 𝑚 the object 

mass and 𝑣⃗𝑟𝑒𝑙  is the relative speed of the object with 

respect to the atmosphere. Finally 𝑐𝐴𝐸  is the applied 

consider parameter representing the error of the model, 

which is assumed to follows Gaussian distribution of the 

form: 

 

 

 

𝑐𝐴𝐸~ 𝑁(0, 𝜎𝐴𝐸
2 )  

 

(7) 

where 𝜎𝐴𝐸
2  is the variance of the parameter. The 

objective of this consider parameter is to absorb and 

model the error in the atmospheric density and ballistic 

coefficient, containing 𝐶𝐷, mass and cross-sectional area 

uncertainty. 

The second consider parameter is the range bias error, 

included to represent possible errors in the 

measurements model and calibration process. In this 

case, the measurement model is modified as follows: 

 

 

 

𝑧∗ =  𝑧 + 𝑐𝑧  
(8) 

where 𝑧 represents the range measurement and 𝑐𝑧 is the 

range bias error consider parameter. Analogously: 

 

 

 

𝑐𝑧~ 𝑁(0, 𝜎𝑧
2)  

(9) 

with 𝜎𝑧
2 representing the variance of the consider 

parameter. Note that Eq. 8 could represent any other 

measurement retrieved from a sensor, which in the case 

of a typical radar for SST purposes corresponds to: 

azimuth and elevation angles, range and range rate. 

 

2.3 Mahalanobis Distance with Consider 

Covariance 

The Mahalanobis distance is a well-known statistical 

metric that describes how far a state is from a certain 

reference, projected into the covariance space [17], this 

is: 

 

 

 

𝑑𝑀
2 = (𝒙 − 𝒙𝒓𝒆𝒇)

𝑇
(𝑷 + 𝑷𝒓𝒆𝒇)

−1
(𝒙 − 𝒙𝒓𝒆𝒇)  (10) 

where the covariance of both the state and the reference 

must be considered. However, the covariance of the 

reference is generally several orders of magnitude 

smaller, allowing to neglect it from the computations. 

As will be further detailed, precise orbits from GNSS 

data are used as reference in part of the present work, 

allowing to neglect their covariance in the Mahalanobis 

distance computations. For the sake of clarity, the 

reference covariance is omitted in the following 

equations. 

Combining Eq. 4 with Eq. 10:  

 

 
𝑑𝑀

2 = Δ𝒙𝑇(𝚽(𝑷𝑛 + 𝑲𝑇𝑪𝑲)𝚽𝑇)−1Δ𝒙  
(11) 

 

where Δ𝒙 = 𝒙 − 𝒙𝒓𝒆𝒇 and 𝚽 is the State Transition 

Matrix (STM). Since the objective of this work is not 

limited to the covariance realism improvement at 

estimation epoch, but also during the typical 

propagation arcs performed in SST, a propagation by 

means of the state transition matrix is performed, as 

applied operationally in most SST services. More 

complex and accurate uncertainty propagation methods  

are out of the scope of this work, though the linearized 

orbital propagation shall remain valid for the 

propagation arcs analysed in this work, having checked 

the required Gaussian behaviour along the validation 

and real case scenarios. Besides, it is important the 

propagation of the full covariance matrix, since the 

effect of the estimated parameters covariance will affect 

significantly the position and velocity covariance 

evolution. For instance, the uncertainty in the drag 

coefficient must be considered if the proper evolution of 

the position uncertainty in the velocity direction is to be 

computed, since this component is strongly affected. 

2.4 Consider Parameter Variance 

Determination 

Under linear and Gaussian assumptions, this is, when 

the differences between the state and the reference are 

normally distributed and the covariance is representative 

of such distribution (i.e. realistic), the squared 

Mahalanobis distance should follow a chi-square 

distribution, whose detailed characteristics may be 

found in [18]. Eq. 10 allows us to evaluate the 

Mahalanobis distance at any propagation epoch by 

computing the orbital differences between a predicted 

orbit and a reference. Thus, if a sufficient number of 

predicted orbits is available, it is possible to look for the 

consider parameter variances included inside the matrix 



𝐶 so that the squared Mahalanobis distance population 

resembles the theoretical chi-square distribution. Hence, 

computing 𝐶 is reduced to a minimization process, 

where the optimization variables are the variances of the 

consider parameters. 

The minimisation process consists in comparing the 

Cumulative Distribution Function (CDF) of the 

observed squared Mahalanobis distances with the chi-

square CDF of as many degrees of freedom as the ones 

included in the Mahalanobis distance computation.  

Therefore, the covariance determination process can be 

divided in three main steps: 

1. For a sufficient amount of orbits, perform an 

OD process to obtain the noise-only covariance 

and the components of matrix 𝑲. Then 

propagate the estimated state to obtain the 

predicted orbit and the state transition matrix. 

2. For each predicted orbit, compute the orbital 

differences at any desired propagation epoch 

comparing against a reference orbit. 

3. With all the data from the orbits population to 

construct Eq. 10, obtain the consider 

parameters variance that minimizes the 

differences between the observed squared 

Mahalanobis distance distribution and the chi-

square distribution. 

An example of the minimization process can be seen in 

Fig. 2, where the obtained squared Mahalanobis 

population resembles the chi-square distribution with 

the optimum consider parameter variances. 

3 VALIDATION 

To test the covariance realism improvement capabilities 

of the proposed methodology, a validation campaign in 

a simulated environment was carried out. Progressively 

more realistic cases were performed, sharing a common 

scheme that is summarized below: 

1. Starting from a reference state vector of a LEO 

RSO, an orbit propagation is performed with a 

high fidelity dynamical model. This defines the 

reference orbit. 

2. Monte Carlo iterations: 

a. From the reference state, propagate 7 days 

backwards including a perturbation in the 

dynamic model, particularly in the 

aerodynamic force. The perturbations follows 

a Gaussian distribution with certain variance. 

b. From such perturbed orbits, tracks are 

simulated from a ground-based sensor with 

similar visibility capabilities and accuracy as 

a real operational case. The range bias 

perturbation is introduced in this step. 

c. ODs are performed with the simulated tracks, 

with a determination arc of 7 days. The 

estimated state is then propagated from the 

estimation epoch (𝑡0), corresponding to the 

last measurement, obtaining the predicted 

orbit and the state transition matrix. 

3. Once the complete population of predicted orbits is 

obtained, the covariance determination 

methodology previously explained is applied. 

Table 1 shows the most relevant results of the validation 

process.  

Table 1: validation tests cases summary 

Id Analysis 

epoch 

Orbit 

comparison 

Input 

Perturbat

ion 

Consider 

Parameter 

Result 

1 𝑡0 predicted vs 

reference 

None None 

2 𝑡0 predicted vs 

reference 

𝜎𝐴𝐸 = 25% 𝜎𝐴𝐸 =  24.5% 

3 𝑡0 predicted vs 

reference 

𝜎𝑅𝐵 = 20𝑚 𝜎𝐴𝐸 =  18.2𝑚 

4 𝑡0, Δ𝑡  predicted vs 

reference 

𝜎𝐴𝐸 = 35% 𝜎𝐴𝐸 =  34.1% 

5 𝑡0, Δ𝑡 predicted vs 

reference 

𝜎𝐴𝐸 = 5% 

𝜎𝑅𝐵 = 20𝑚 

𝜎𝐴𝐸 =  4.83% 

𝜎𝑅𝐵 = 20.1𝑚 

6  𝑡0 + 𝑁 

days, Δ𝑡 

predicted vs 

reference 

𝜎𝐴𝐸 = 35% 𝜎𝐴𝐸 =  34.6% 

7 𝑡0 + 𝑁 

days, Δ𝑡 

predicted vs 

estimated 

𝜎𝐴𝐸 = 30% 

𝜎𝑅𝐵 = 20𝑚 

𝜎𝐴𝐸 =  30.1% 

𝜎𝑅𝐵 = 17.7𝑚 

 

Where Δ𝑡 denotes that the OD arc of each Monte Carlo 

iteration is shifted 1 day in absolute time, as would be 

the case in an operational environment. The results 

shown in Table 1 correspond to a population of 480 

Monte Carlo samples. This number was selected to 

resemble the amount of data that was available for the 

real scenario. Along the different cases, the proposed 

methodology was tested when computing the 

Mahalanobis distance at different epochs (estimation or 

relative propagation epochs) and perturbations. In the 

last validation case, a different orbit is used for the 

computation of the orbital differences. For each 

predicted orbit under analysis, an estimated orbit 

obtained from an OD process using measurements 

contained during the propagation arc of the predicted 

orbit is used. 

Case 1 showed that in the absence of model errors, the 

noise-only covariance is a realistic representation of the 

uncertainty, directly obtaining a chi-square distribution 

without requiring any consider parameter correction. 

This can be seen in Figure 1. On the contrary, the noise-

only covariance was found to lack realism when 



perturbations were included. Case 2 and 3 prove that the 

covariance determination method is able to retrieve the 

input perturbation at estimation epoch. In the case of the 

aerodynamic force perturbation, the proposed 

simulation scheme caused the perturbation to be 

absorbed in the drag coefficient in the OD process, 

therefore requiring some propagation time to appreciate 

the effect on the perturbation in the orbit ephemeris. 

Cases 4 and 5 show that the proposed method is able to 

retrieve the input perturbation when a sliding window 

simulation scheme is applied, also determining both 

consider parameter variances simultaneously. In Case 6, 

the performance of the proposed method when 

computing the orbital differences at relative propagation 

epochs is tested, being able to retrieve precisely the 

consider parameter variances only using the position 

components of the state vector for the Mahalanobis 

distances computation. Finally, Case 7 demonstrated the 

possibility of using as reference for the orbital 

differences computation an orbit estimation whose 

determination arc includes the propagation epoch under 

analysis. In this case, the covariance of the estimated 

orbit used as reference must also be included in the 

Mahalanobis distance computations to account for the 

estimation uncertainty. The Mahalanobis distance 

distribution of this case can be appreciated in Figure 2, 

with the obtained consider parameters variance, being 

able to recover the chi-square behaviour and the input 

perturbations using the operationally feasible orbit as 

reference. 

Overall, the validation cases showed a satisfactory 

performance of the proposed consider parameter 

covariance determination, being able to retrieve the 

input perturbations up to a 12% accuracy, even in the 

case when both consider parameters are estimated 

simultaneously. Additional tests performed confirmed 

that increasing the number of samples used in the 

Monte-Carlo simulation allow to reduce this 12% to 

much lower values. 

Another relevant comment from the validation cases is 

that the velocity terms were discarded from the 

Mahalanobis distance computations due to unstable 

behaviour after 3 days of propagation. Small errors in 

the propagation accumulated in the along-track 

component of the velocity, whose expected accuracy 

was orders of magnitude smaller than the other 

components.  

 

Figure 1: Case 0 – squared Mahalanobis distance 

distribution at estimation epoch without perturbations. 

 

 

Figure 2: Case 7: Consider Parameters covariance 

results at  𝑡0 + 7 days, considering position and Cd, 

with an input perturbation of  𝜎𝐴𝐸 = 30%, 𝜎𝑅𝐵 = 20𝑚. 

4 REAL SCENARIO RESULTS 

The Sentinel 3A LEO satellite has been used as a 

realistic scenario to test the proposed methodology. 

Measurements from two different radars covering from 

01/01/2019 up to 01/05/2020 are used. Moreover, 

Precise Orbit Determination (POD) ephemeris of 

Sentinel 3A are used as the reference orbits, estimated 

from GNSS data. The accuracy of these orbits are of the 

order of 1 cm, allowing to discard their covariance in 

the Mahalanobis distance computations. Additionally, 

the manoeuvres of the Sentinel 3A are publicly 

available at [19].  

ODs in batches of 7 days are performed, each one 



having a 1 day shift. Each estimated state is propagated 

14 days. After discarding outliers and ODs affected by a 

manoeuvre, a population of 315 ODs with their 

corresponding orbital propagations are available. The 

sensor calibration process yielded the expected accuracy 

and biases in Table 2: 

Table 2: sensors calibration and bias 

 Residuals RMS Bias 

Sens 1 Sens 2 Sens 1 Sens 2 

Range [m] 27.4 15 -7.4 -4.7 

Range-rate 

[mm/s] 

212 5460 -82 35 

Azimuth 

[mdeg] 

460 400 -240 150 

Elevation 

[mdeg] 

160 270 -2.7 3.2 

 

Additionally, the assumption of Gaussianity for the 

orbital differences was tested using Michael’s normality 

test, whose details may be found in [20] and [21]. 

According to [22], Michael’s normality test is one of the 

best suited tests for orbital differences analysis due to a 

more powerful tail outlier rejection. It was observed that 

the cross-track component failed to pass the Gaussianity 

test after several days of propagation. This is shown in 

Figure 3, where several points of the distribution lay out 

of the acceptance limits (red line).  

 

Figure 3: Michael’s Gaussianity tests result for cross-

track component at 𝑡0 + 7 days. 

Thus, the cross track component is discarded from the 

Mahalanobis distance computations, remaining the 

along track and normal components of the position. 

4.1 Covariance Determination Results 

The purpose of the proposed covariance determination 

methodology is to improve the covariance realism not 

only at estimation epoch, but at the widest possible 

range of propagation days, as would be required for 

cataloguing or collision risk assessment services. For 

this reason, the orbital differences required for the 

computation of the Mahalanobis distance are computed 

at several relative epochs (from 𝑡0 + 4 up to 𝑡0 + 8 

days, in half day intervals), including all the orbital 

differences in the same minimisation process. The 

objective is to obtain consider parameter variances that 

are representative of the complete propagation period. 

The optimum consider parameter variances for the 

Sentinel 3A data are shown in figures 4-6. Bear in mind 

that, under this configuration, each estimated/predicted 

orbit pair provides 9 different Mahalanobis distances, 

obtaining a higher population for the minimisation.  

 

 

Figure 4: optimum consider parameter variances for 

Sentinel 3A in the region [𝑡0 + 4 − 𝑡0 + 8 days], using 

POD orbits as reference. 



 

Figure 5: optimum consider parameter variances for 

Sentinel 3A in the region [𝑡0 + 4 − 𝑡0 + 8 days], using 

estimated orbits as reference. 

 

Figure 6: squared Mahalanobis distance distribution 

for Sentinel 3A using Noise-only covariance (no 

consider parameter). 

Figure 6 depicts how the noise-only covariance is not 

able to characterise the orbital uncertainty when real 

data is used, causing the squared Mahalanobis distance 

distribution to be far from the chi-square behaviour. 

This is yet another indicator of the presence of errors in 

the dynamical model and that the noise-only covariance 

is an optimistic representation of the uncertainty, since 

large squared Mahalanobis distances are observed when 

normalizing the orbital differences.  

Figure 4 and Figure 5 show the computed consider 

parameter variances that are required for the squared 

Mahalanobis distance distribution to resemble the Chi-

square one, found during the minimisation process. In 

the former case, POD orbits are used as reference for the 

orbital differences computations. In the latter case, for 

each predicted orbit under analysis, an estimated orbit 

computed with measurements in the same range as the 

predicted one is used for the comparison. The accuracy 

of these orbits are in the range of several meters, thus 

their uncertainty must be included in the Mahalanobis 

distance computation. It is important to point out that 

the optimum consider parameter variances are similar in 

both Figure 4 and Figure 5. This is a relevant result, 

since it implies that representative results can be 

obtained without the use of external information such as 

POD orbits, which in most operational situations are not 

available.  

The computed consider parameter variances are in 

realistic ranges, in line with the expected uncertainty of 

the modelled parameters according to other studies. The 

obtained drag force consider parameter standard 

deviation representative of the propagation arc is of 

34.74%. According to [14] and [23], the uncertainty in 

the atmospheric density model ranges from a 10-20% 

for the model used (NRLMSISE-90), and the 

uncertainty in the ballistic coefficient presents even 

greater variability. Regarding the range bias, the 

obtained consider parameter standard deviation is of 

18.72 m. Not only the observed range bias can be 

accounted in these results (see Table 2), but also biases 

in other measurements such as the range-rate are 

partially absorbed in the applied model of the consider 

parameter. To characterize the exact sources of each 

uncertainty, additional consider parameters in the 

measurement models or other forces would have to be 

included. 

The computed variances are obtained using 

measurements during 1.5 years approximately. Though 

the optimization aims to represent the modelled 

uncertainty for the complete period, seasonal variations 

of the noise are not observable, being a major drawback 

of the proposed method. However, along this work, 

further studies about the minimum population required 

for a sufficiently accurate consider parameter variance 

determination indicated that around 1 month of 

measurements would suffice for a 10% accuracy, being 

able to capture seasonal variations of the uncertainty as 

expected, for instance, in solar indexes.  Additionally, 

the proposed method can be applied sequentially, 

adding the information of newly estimated orbits as they 

arrive and updating the consider parameter variances in 

an operational schedule. 

As previously stated, the consider parameter theory 

supports an arbitrary number of additional parameters. 

The proposed methodology has been shown to perform 

satisfactorily at minimizing two consider parameters 

simultaneously. Nonetheless, for an increasing number 



of parameters, the possible correlation between them 

should be carefully analysed, being this one of the 

assumptions of the proposed methodology.  

4.2 Covariance Containment 

Under Gaussian assumptions, if the squared 

Mahalanobis distance follows a Chi-square distribution, 

improvement in the covariance realism would be 

directly achieved. However, covariance containment 

tests such as the one proposed by [10] provide further 

physical insight and visual representation of the 

proposed methodology effectiveness. To evaluate if the 

covariance is representative of the orbital differences, 

the Mahalanobis distance can be used as a metric to see 

the amount of points that lay inside a k-𝜎 ellipsoid and 

compare it against the theoretical expected fraction for a 

Gaussian distribution of the same number of degrees of 

freedom.  

 

 

Figure 7: 3-𝜎 covariance containment at 𝑡0 + 8 days 

with the consider covariance 

 

 

Figure 8: 3-𝜎 covariance containment at 𝑡0 + 8 days 

with the noise-only covariance

 

Table 3: covariance containment tests results for the complete propagation arc, 

using the optimum consider parameters of Figure 5 (𝜎𝐴𝐸 = 34.74% , 𝜎𝑅𝐵 = 18.72𝑚) 

 Containment tests [%] 

 Noise-only covariance Consider covariance 

Time 1-𝝈 2-𝝈 3-𝝈 4-𝝈 1-𝝈 2-𝝈 3-𝝈 4-𝝈 

t0+2 4.58 14.82 33.69 49.6 30.49 57.97 81.32 93.41 

t0+3 5.52 15.75 30.39 45.58 32.78 74.71 94.72 100 

t0+4 4.19 12.29 27.65 42.74 37.97 78.26 96.81 100 

t0+5 3.43 11.71 21.71 36.86 38.62 86.17 100 100 

t0+6 4.05 13.01 25.14 38.73 37.35 82.83 96.08 100 

t0+7 2.93 11.14 23.46 35.78 40 91.34 100 100 

t0+8 3.25 11.54 22.78 35.8 34.98 84.83 96.59 100 

t0+9 4.24 11.21 21.21 33.03 41.98 93.52 100 100 

t0+10 2.8 13.66 24.22 36.65 36.36 78.57 94.16 100 

Average 3.89 12.79 25.58 39.42 38.18 85.07 97.66 100.00 

Theoretical 39.3 86.5 98.9 99.97 39.3 86.5 98.9 99.97 



Figure 7 and Figure 8 represent as green dots those 

orbital differences that lay inside the 3-𝜎 ellipsoid and 

in red the opposite, where the difference between both 

figures is the covariance used for the Mahalanobis 

distances computation. Figure 7 shows a remarkably 

larger amount of accepted differences. This is a 

consequence of a better characterization of the 

covariance due to the included consider parameter in the 

aerodynamic force, elongating the covariance in the 

along-track direction. This allows to improve the 

covariance containment as compared with the Noise-

only covariance in Figure 8. 

Applying this same analysis to different propagation 

epochs, always using the determined optimum consider 

parameter variances of Figure 5, the results of Table 3 

are obtained. To measure the realism of the covariance, 

the containment results are compared against the 

theoretical containment values that a multivariate 

Gaussian distribution should show. These theoretical 

results are obtained from [24], corresponding to a 

multivariate Gaussian distribution of 2 degrees of 

freedom (along track and normal components). A colour 

scale has been used to highlight the results, where 

colours are similar the closer each value is to its 

theoretical sigma result. It is easily appreciated the 

worse covariance realism of the noise-only covariance. 

On the contrary, the proposed covariance determination 

method provides a consider covariance that notably 

improves the realism. For instance, the average 3-𝜎 

containment of the noise-only covariance is of 25.58%, 

whereas the consider covariance provides an average 

containment of 97.66%, very similar to the theoretical 

objective of 98.9%. 

Note that the average results are computed without 𝑡0 +
2 days results or before. For short propagation epochs, 

the estimation error is still comparable to the 

propagation error and the effect of the consider 

parameter correction on the along track and normal 

components is not fully dominant, reducing the 

covariance realism improvement. Close to the 

estimation epoch, the covariance correction of the 

consider parameters of the present analysis is principally 

observed in the drag coefficient variance, with a small 

contribution from the range bias consider parameter in 

all terms. It is not until some propagation is elapsed that 

the effect of the consider parameters is appreciated in 

the position uncertainty. Therefore, the covariance 

realism enhancement in position is yet not completely 

developed at those early propagation days. In [15], a 

more profound analysis of the contribution of the 

aerodynamic force and range bias consider parameters 

in the consider covariance was conducted, reaching 

similar conclusions. 

Finally, the containment results of Table 3 present 

oscillations around the theoretical values, finding for 

instance higher values at 𝑡0 + 7 and 𝑡0 + 9 days. This 

behaviour is expected since the applied consider 

parameter variances were found by simultaneously 

optimising the complete region [𝑡0 + 4, 𝑡0 + 8]. Thus, 

the containment at specific epochs oscillate and slightly 

overly sized covariance matrices are obtained. Even 

though it is possible to estimate the optimum consider 

parameter variance at each specific epoch 

independently, the operational goal of the proposed 

methodology is to improve the covariance realism of the 

widest possible propagation region with a single 

correction of the covariance. 

5 CONCLUSIONS AND FUTURE WORK 

The proposed covariance determination method shows a 

remarkable improvement of the covariance realism in a 

real case scenario. This has been demonstrated with 

covariance containment analysis, where it is seen how 

the noise-only covariance is corrected to resemble the 

expected theoretical containment of a Gaussian 

behaviour. The two consider parameters included in the 

process, namely the aerodynamic force and range bias 

parameters, are able to represent the major uncertainty 

sources of the LEO satellite Sentinel 3A, not only 

allowing an improvement in the covariance realism but 

also providing realistic quantification of the uncertainty 

and retaining the physical interpretation. Nonetheless, 

other consider parameters should be analysed to obtain 

a closer representation of the specific sources of error 

and analyse the most relevant contributors. The addition 

of other parameters in the measurements model, such as 

the range-rate bias, could provide deeper insight on the 

effect that the uncertainty of each kind of measurement 

has in the estimation. 

The proposed methodology shows promising results for 

its operational applicability. First, matching results have 

been obtained in the real case scenario when using POD 

orbits as reference or using estimated orbits from the 

same measurements set, indicating that the proposed 

covariance determination process is feasible without 

using any external data apart from the sensor 

measurements. However, the necessity of a sufficiently 

large population of estimated/predicted orbits prevents 

the obtained consider parameter variances to capture 

seasonal error variations. Further analysis on the 

amount of orbits required for an accurate consider 

parameter variance computation is required. 

Nonetheless, preliminary analysis indicate that the 

methodology is suitable for monthly noise variations. 

Future research activities will be directed towards the 

analysis of the proposed methodology in other orbital 

regimes such as Geostationary Orbits, taking into 

account other relevant sources of uncertainty such as in 

the solar radiation pressure model. The sources of non-

Gaussianity observed in the cross-track orbital 

differences and their possible effect on the methodology 

should be further studied. Finally, other interesting 



analyses suggested by the authors are the time-

correlation of the model errors instead of pure Gaussian 

models. 
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