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ABSTRACT

The huge number of unknown space debris infesting the
near-Earth orbits represents a serious menace for the life
of active satellites. For the purposes of spacecraft safety,
it is extremely important to characterize and catalog as
many debris as possible. Radar Beam-Park Experiments
(BPEs) allow to get insights into the space debris statis-
tical distribution. By applying adapted Initial Orbit De-
termination (IOD) techniques to the data collected during
a BPE, it is possible to associate a preliminary orbit es-
timate with each detected object. The accuracy of these
techniques needs to be investigated to assess the benefit
of such estimations. To perform this investigation, a BPE
was simulated and the output data were processed via dif-
ferent IOD methods. This paper presents and discusses
the results of the simulation, focusing on the comparison
of the performance of the considered IOD techniques.

Keywords: Space Debris; Radar Beam-Park Experiment;
Initial Orbit Determination.

1. INTRODUCTION

The number of space debris orbiting the Earth is contin-
uously growing and is considerably larger than the num-
ber of operational satellites. The space debris population
poses a severe threat to the operations of active satellites,
because as it grows in number, the probability of in-orbit
debris-satellite collisions increases as well. Such colli-
sions have the potential to destroy the satellite and even
to trigger the so-called Kessler effect [1], compromising
the usability of all the involved orbital regions. As a con-
sequence, to ensure the safeguarding of current and fu-
ture space missions, it is of absolute importance to get
insights into the distribution of these objects. Two ma-
jor models have been developed to describe the space de-
bris population: ESA’s Meteoroid and Space Debris Ter-
restrial Environment Reference model (MASTER) and
NASA’s Orbital Debris Engineering Model (ORDEM).

Currently, according to the ESA Space Debris User Portal
[2], about 28210 debris objects are regularly tracked by
space surveillance networks and maintained in their cata-
log. This is, however, only a small fraction of the tremen-
dously high number of debris orbiting the Earth. Indeed,
the statistical models estimate that there are around 34000
debris greater than 10 cm, 900000 debris between 1 cm
and 10cm and 128 millions debris between 1 mm and
1cm [2].

Radars and telescopes are the primary sensors used to
track and catalog the space debris. Specifically, radar
systems are employed to observe the Low Earth Orbit
(LEO) region, while for larger ranges the optical tele-
scopes are preferable. In order to calibrate and verify the
space debris population models, observation campaigns
are regularly coordinated by the Inter-Agency Space De-
bris Coordination Committee (IADC). One type of these
campaigns consists in the realization of the so-called
Beam-Park Experiments (BPEs), mainly conducted with
radar systems. In such experiments, the radar antenna is
‘parked’ looking towards a certain direction and data are
collected continuously for around 24 hours.

The Fraunhofer Institute for High Frequency Physics and
Radar Techniques (Fraunhofer FHR) participates in BPE
campaigns since 1993 with its Tracking and Imaging
Radar (TIRA). The TIRA system, sketched in Fig. 1, has
a 34 m parabolic antenna and is equipped with two dif-
ferent radars: an L-band tracking radar and a Ku-band
imaging radar (not used during a BPE) [3].

After a BPE, Fraunhofer FHR provides a detection list
that includes several parameters for the observed objects
such as the range, the range rate, the Radar Cross Sec-
tion (RCS), the diameter (obtained using the NASA Size
Estimation Model [4]), the altitude and the Doppler in-
clination [5]. There are however some limitations. The
Doppler inclination is obtained under the assumption of
circular orbit. Therefore, for objects on eccentric orbits,
this parameter is poorly estimated because the adopted
model is no longer valid. Additionally, the Doppler incli-
nation is derived from a second order equation with two
admissible solutions that lead to an ambiguity for beam
pointing directions other than East or West [5].

It could be beneficial for calibrating the space debris pop-
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ulation models to include in the detection list also the
full orbital state of the detected objects, e.g., in the form
of the six Keplerian orbital elements. In order to assess
the benefits of such an addition, we need to understand
whether these parameters can be reliably estimated, or at
least bounded, from BPE data by using adapted Initial
Orbit Determination (IOD) methods. We need as well to
investigate the expected accuracy of these different IOD
techniques. A straightforward upside is that these meth-
ods do not resort to the limiting assumption of circular
orbit. A downside is that the IOD solution accuracy is
limited by the low amount of information contained in
the very short orbit arcs observed (typical time intervals
for BPE observations are in the order of few seconds).

In this paper, we examine the performance of several IOD
techniques and compare their accuracy. To achieve this
goal, we simulated a 10-day East-staring BPE performed
with the TIRA system, by using the in-house developed
‘SpaceView’ software. The parameters of the simula-
tion (i.e., antenna beam, waveform, etc.) were selected
identical to those of the TIRA system L-band radar. By
applying a geometrical filter, we reproduced the list of
all the objects crossing the antenna beam and simulated,
for each pass, all the associated observation vectors mea-
sured by the radar. Then, we added to these measure-
ments white Gaussian-distributed noises, computed ac-
cording to different values of the Signal to Noise Ratio
(SNR). Finally, we processed these data through the se-
lected IOD methods. We used both state-of-the-art tech-
niques and newly developed techniques derived at Fraun-
hofer FHR. Following this methodology, we investigated
the quality of the estimated orbits for the different IOD
methods, as well as for the different input SNR values.

It must be noted that the IOD performances presented in
this paper correspond, actually, to an upper bound. In-
deed, in this simulation, we kept the SNR constant over
each individual pass and we neglected the RCS variations
from pulse to pulse as well as the antenna pattern modula-
tion. However, these effects occur with real observations
and, moreover, the phase of the object complex reflec-
tivity is not constant over time. All these features cause
a decorrelation of the radar data, a variation of the esti-
mated parameter accuracy along the same pass and, even-
tually, discontinuities in the target detection over time.
Thus, in a real BPE investigation, all these factors would
have a negative impact on the IOD performances.

The structure of the paper is the following: Section 2 de-
scribes the BPE simulation. Section 3 introduces the dif-
ferent examined IOD techniques. Section 4 presents and
discusses the results of the analysis. Lastly, Section 5
concludes the investigation.

2. SIMULATION

This section describes the BPE simulation. The first part
of this simulation is similar to the one presented in [6].

The in-house software ‘SpaceView’ was used to realize a
BPE that spanned a time interval of 10 days (13.12.2019-
23.12.2019). Such a long duration was chosen in order to

Figure 1. TIRA system sketch.
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Figure 2. Frequency distribution of the number of pulses
for the 3018 simulated beam crossings. On the top right,
there is a zoom of the first part of the distribution (up to
a number of pulses equal to 100).
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Figure 3. Orbital parameters of inclination and eccen-
tricity for the 3018 simulated beam crossings. The asso-
ciated number of pulses is indicated in the colorbar.



have a larger number of beam crossing objects, leading
to more statistically significant parameter distributions
for the simulated passes. Concerning the beam point-
ing direction, an East-staring configuration was selected.
Hence, the antenna was ‘parked’ towards East with an
azimuth angle of 90° and an elevation angle of 75°. The
antenna beam-width was set to 0.5°, (i.e., approximately
the 3dB beam-width of the TIRA L-band radar) while
the range window was included between a lower bound
of 300 km and an upper bound of 5000 km.

The software ‘SpaceView’ took as input the whole satel-
lite catalog downloaded from the SpaceTrack web page
[7] on the 12% of December 2019. By that time, the
catalog included the Two Line Element sets (TLE) of
18628 objects (both active and inactive), spread around
the different orbit regimes of LEO, Medium Earth Orbits
(MEO), Geostationary Earth Orbits (GEO) and Highly
Elliptical Orbits (HEO). ‘SpaceView’ propagated all the
TLEs for the entire simulation time span by using the
simplified perturbation model SGP4 [8]. Then, through
the application of a simple geometrical filter, it recorded
the list of all the objects crossing the antenna beam. It is
important to mention that this list was obtained without
recurring to any radar performance model to compute the
detection probability (i.e., we assumed that all the objects
crossing the beam were detected by the radar).

After some minor pre-processing steps, aimed at maxi-
mizing the number of beam crossings as well as the num-
ber of associated pulses, we obtained 3018 visible passes
in the simulation, belonging to 2709 different objects.
The frequency distribution of the number of pulses for
all these beam crossings is shown in Figure 2. Figure 3,
instead, presents, for each pass, the orbital parameters
of inclination and eccentricity, included in the TLE of
the corresponding space object, together with the related
number of pulses (indicated in the colorbar).

In addition to the list of all the crossing objects (with
the associated TLE orbital parameters), for each beam
crossing, ‘SpaceView’ produced as output a list of several
time-dependent parameters. These parameters, described
in Table 1, were provided every 0.033 s, i.e., with a sam-
pling frequency of 30 Hz, comparable to the Pulse Repe-
tition Frequency (PRF) of the TIRA system. In this list,
we have the time stamp associated with each pulse (from
which we can compute the total beam crossing time) as
well as the radar observables of range, range rate, azimuth
and elevation. Another listed parameter is the range rate
rate. This latter is the second temporal derivative of the
range and, currently, is not provided by the TIRA system,
but could be derived through a dedicated coherent signal
processing [9]. The beam crossing list also contains the
satellite position and velocity vectors in the Earth Cen-
tered Inertial (ECI) reference frame, obtained from the
TLE through the SGP4 propagation. These vectors rep-
resent the reference data used to assess the performance
of the different IOD methods.

For every pass, we added white Gaussian-distributed
noises to the four radar measurements of range, range
rate, azimuth and elevation to replicate the effects of a
real observation. The noises we introduced, had zero
mean and a standard deviation dependent on the value of
the SNR. We assumed that the SNR was constant along

Table 1. List of the time-dependent output parameters ob-
tained by ‘SpaceView’ software for each beam crossing.
ECI stands for Earth Centered Inertial reference frame.

Parameter Symbol | Unit
Time t S
Range R m
Range rate RR m/s
Range rate rate | RR2 m/s?
Azimuth angle | Az deg
Elevation angle | El deg
Position in ECI | Pgcy km
Velocity in ECI | Vg km/s

all the passes. For the noise addition, we considered
seven different SNR values (from 0 dB to 30 dB, with in-
crements of 5dB). As a result, we obtained seven differ-
ent noisy data sets for each of the 3018 beam crossings.
Such data sets were fed to the selected IOD techniques,
presented in the next section.

3. 10D TECHNIQUES

In this section, we briefly describe the six IOD techniques
selected for the current analysis. Out of these six meth-
ods, two are state-of-the-art techniques, well known and
established in the literature. The other four have been re-
cently developed at Fraunhofer FHR [10].

The first technique under evaluation is described in [11].
From the name of the authors of this manuscript, we
called this method the ‘Kaiser-Jehn’ method, or briefly
KJ. This algorithm was already successfully tested in the
past with real beam-park data coming from the TIRA sys-
tem. For this reason, we selected it as a reference method
for this paper. In KIJ, a weighted linear fit is performed
on the measurements of range rate, azimuth and eleva-
tion. A linear trend is assumed as well for the range, with
the central point set equal to its mean value. The newly
obtained observation vectors are then exploited to com-
pute two position vectors spaced in time by 1s. Lastly,
from their differential quotient, a velocity vector is esti-
mated.

The other state-of-the-art technique is the worldwide used
Herrick-Gibbs algorithm [12], here referred to as HG. HG
requires as input three co-planar sequential position vec-
tors to determine the orbit. HG is a variation of the Gibbs
method [13], specifically used when the position vectors
are very close to each other, that is exactly the case we
have with BPE data. HG uses a Taylor-series expansion
to estimate the velocity vector corresponding to the cen-
tral position vector. The satellite dynamics assumed by
HG follows the two-body problem (only the gravitational
force of the Earth is considered).

The third analyzed algorithm is a generalization of HG



and is therefore abbreviated as HGG. Instead of consid-
ering only three position vectors, HGG uses as input all
the position vectors we manage to estimate from the pass
data, i.e., as many as the number of measured observa-
tion vectors. As output, this method finds the position
and velocity vectors associated with the central time, by
solving the final system of equations in a least squares
sense. With HGG, the J2 perturbation is also included in
the satellite dynamics.

The next IOD technique is another generalization of HG,
that, additionally, takes into account the range rate infor-
mation provided by the TIRA system. We refer to this
method as HGGRR. As previously with HGG, HGGRR
includes the J2 perturbation in the satellite dynamics and
exploits all the estimated position vectors. Also this al-
gorithm solves the final system in a least squares sense to
find the central position and velocity vectors. In contrast
with HGG, here, the final system has an entire set of new
equations coming from the definition of the range rate,
i.e., the satellite velocity vector projected along the line
of sight.

The fifth method under analysis is the two-body integrals
IOD, or simply TB. As its name suggests, this method
assumes that the satellite follows the dynamics of the
two-body problem, without taking into consideration any
perturbation force. TB exploits the conservation of two
quantities that remain invariant along the orbit of a space-
craft with such dynamics: the angular momentum vector
per unit of mass and the energy per unit of mass. By
equating these two quantities evaluated at two different
time instants, we obtain a system of equations that is
solved to estimate the two corresponding velocity vec-
tors. This approach is already present in the literature.
It was first proposed in [14] and then revisited e.g., in
[15, 16, 17, 18]. Since for this method only two obser-
vation vectors are required, we tried to improve their ac-
curacy by merging together the information contained in
several adjacent pulses. We performed an averaging on
a number of pulses varying on a case by case basis, ac-
cording to each individual pass length, but with an upper
limit fixed to 31 pulses (i.e., with a maximum time dis-
tance between the first and the last considered pulses of
1s). Thanks to this averaging, we achieved observation
vectors less affected by the noise [19].

The last technique considered for this investigation ex-
ploits the estimation of the range rate rate, parameter al-
ready introduced in Section 2. Knowing this parameter,
indeed, the velocity vector of the space object can be fully
determined. Since the range rate rate is derived through a
coherent signal processing, we refer to this algorithm as
coherent integration IOD, or briefly CI. In CI, the satellite
dynamics includes also the J2 perturbation.

For HG, HGG, HGGRR and TB, we studied two dif-
ferent realizations: the first one uses as input the noisy
measurements as they come from the simulation; the sec-
ond one, instead, performs beforehand the same fit on the
measurements realized in KJ in order to smooth out the
oscillations introduced by the noise. The algorithms with
the fit are referred to as HGf, HGGf, HGGRRf and TBf,
respectively.

4. RESULTS

This section presents the results of the paper. It is divided
into two parts. Section 4.1 compares the performance of
the different IOD methods, considering a minimum visi-
bility time threshold of 0.5 s. Section 4.2 investigates how
the number of pulses associated with each beam crossing
affects the IOD accuracy.

4.1. 10D performance investigation

As described in Section 2, we have 3018 beam crossings
for each of the seven considered SNR values. For the
analysis concerning the IOD performances, we decided
to discard all the beam crossings with a duration below
0.5s, i.e., with a number of associated pulses lower than
15. In those cases, indeed, even a single outlier caused
by the noise would have the potential to compromise the
IOD solution. By introducing this step, we removed a
few passes, reducing their number from 3018 to 2960.
The observation vectors associated with the remaining
beam crossings were processed with the IOD techniques
described in Section 3.

After the application of each IOD method, we obtained
for each crossing object as output a state vector (position
and velocity) in the ECI reference frame. Such state vec-
tor was compared with the corresponding position and
velocity vectors derived from the TLE through the SGP4
propagation. A first measure of the accuracy of the IOD
techniques can be given in terms of differences between
these vectors. Specifically, we computed two residuals:
the norm of the position vector difference and the norm of
the velocity vector difference. For each SNR and each al-
gorithm, we obtained 2960 residuals for the position and
2960 for the velocity. We calculated the mean values of
these two residuals and plotted them in Figure 4 and Fig-
ure 5.

Figure 4(a) shows the mean of the position residuals
against the SNR for all the selected IOD methods. It is
clearly visible that the algorithms that do not perform an
initial fit on the noisy measurements lead to less accurate
results, especially with low SNR values, i.e., with higher
noises. TB without the fit leads instead to results com-
parable to TBf, since, by averaging together several adja-
cent pulses, we already filtered out partially the effects of
the noise.

Figure 4(b) is a zoom of Figure 4(a) in which the non-
fitted algorithms are left out. We can see that CI is the
IOD technique that performs best, having the highest im-
provement in particular with low values of the SNR. This
enhancement is caused by the coherent signal processing
performed on the radar data, that is more complex than
the simple data fitting used by the other methods. The CI
residuals range from 2 km with an SNR of 0 dB to 65 m at
30dB. On the other hand, all the other algorithms reach
almost exactly the same level of accuracy (from 2.3 km at
0dB to 75 m at 30dB). Indeed, their computation of the
position vector follows very similar mathematical steps.
For the velocity, this uniform behavior is lost since each
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Figure 4. Mean of the norm of the position vector difference against the SNR. The figure on the left presents the residuals
in km for all the IOD techniques. The figure on the right shows the residuals in m for the coherent integration IOD and
all the algorithms that perform the fit on the measurements.
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Figure 5. Mean of the norm of the velocity vector difference against the SNR. The figure on the left presents the residuals
in km/s for all the 10D techniques. The figure on the right shows the residuals in m/s for the coherent integration I0D
and all the algorithms that perform the fit on the measurements.
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Figure 6. Means of the absolute values of the three ve-
locity vector difference components along the coordinate
axes of the RSW reference frame. The plots present the
residuals in m/s against the SNR for the coherent integra-
tion IOD and all the algorithms that perform the fit on the
measurements. The top, mid and bottom figures show the
residuals along the radial, along-track and cross-track
components, respectively.

algorithm follows very different procedures to estimate
this quantity. Figure 5(a) shows, for all the different IOD
techniques, the mean of the velocity residuals against the
SNR. We notice again that the algorithms that take as in-
put the noisy measurements without the fit lead to less ac-
curate results, but this time, excluding HG, the difference
is not that wide. We even have the unexpected result that,
for SNR higher than 15dB, HGGRR performs slightly
better than its corresponding HGGRRf (this unexpected
result needs to be investigated in more detail).

The zoom leaving out the algorithms without the fit, is
shown in Figure 5(b). In this case, there is a higher vari-
ability between the techniques, with only two algorithms
overlapping: HGf and HGGf. In contrast with what hap-
pens with the position residuals, for the velocity, there
is not a method performing always better. For very low
SNR values, HGf and HGGf lead to the highest accu-
racy (1.2 km/s with an SNR of 0 dB and 700 m/s at 5 dB).
With an SNR of 10dB, their performances are matched
by CI as well (residuals around 400 m/s). Finally, from
an SNR of 15dB on, CI gives the best results (ranging
from 160 m/s at 15 dB to 20 m/s at 30 dB).

For the velocity vector, in addition to the norm of the dif-
ference, we present also other three residuals. By exploit-
ing the state vector obtained from the TLE propagated
with SGP4, we found for each beam crossing the corre-
sponding transformation matrix to rotate the vectors from
the ECI reference frame into the RSW coordinate system.
This latter system, defined in [20], is widely used to de-
scribe satellite relative displacements, so it fits perfectly
for such analysis. Its coordinate axes are the radial direc-
tion (parallel to the ECI position vector), the along-track
direction (perpendicular to the ECI position vector) and
the cross-track direction (normal to the plane defined by
the ECI position and velocity vectors).

We applied this rotation to both the velocity vectors, i.e.,
the one derived from the TLE and the output of the dif-
ferent IOD techniques. Then, for each method and each
SNR value, we computed the difference between the two
rotated vectors and we used the absolute values of the
three resulting components as residuals for the investiga-
tion.

The mean values of these residuals are shown in Figure 6
against the SNR for the coherent integration IOD and all
the algorithms that perform the fit on the measurements.
From the figures, it is again possible to notice how HGf
and HGGf overlap.

For the radial residuals, we see in Figure 6(a) that at
low SNR values, TBf is the method giving the highest
accuracy (180m/s at 0dB and 115m/s at 5dB) with a
quite considerable distance with respect to the other tech-
niques. From 10dB on, instead, CI allows to reach the
best results (from 65 m/s at 10dB to 5m/s at 30dB). At
higher SNR values, however, the accuracy of all the meth-
ods is pretty similar.

Figure 6(b) shows that, for the along-track component, CI
is again the preferable algorithm from an SNR of 10dB
on, with an accuracy ranging from 140 m/s at 10dB to
1.5 m/s at 30 dB. Only in correspondence with an SNR of
0dB and 5dB, this result is overturned by HGf, HGGf
and KJ (accuracy around 500 m/s and 280 m/s, respec-
tively).



Lastly, for the cross-track component, we can see in Fig-
ure 6(c) that TBf gives the best accuracy for small SNR
values (around 925m/s at 0dB and 550 m/s at 5dB),
where CI has notably larger residuals compared to all the
other techniques. From 10dB on, however, CI becomes
once more the most accurate algorithm (accuracy going
from 300 m/s at 10 dB to 20 m/s at 30 dB).

If we analyze each technique individually with respect to
the mean residuals for the three different velocity compo-
nents, we see that the behavior of the various algorithms
is different. Independently of the SNR values, KJ, HGf
and HGGf have the cross-track residual always larger
than the along-track, with the radial being the smallest.
The same behavior is valid for CI as well up to an SNR
of 15dB, while, from 20dB, the along-track becomes
the lowest residual. Finally, for HGGRRf and TBf, the
along-track residual is the most significant, followed by
the cross-track and lastly by the radial (with only one ex-
ception at 30 dB where for TBf the cross-track is larger).
When trying to characterize a spacecraft, we can not ne-
glect talking about its orbital parameters. Therefore, the
final analysis presented in this section concerns the or-
bital parameters of semi-major axis, eccentricity, inclina-
tion and true longitude. This latter quantity is the sum of
the right ascension of the ascending node, the argument
of the periapsis and the true anomaly. We used the true
longitude instead of considering the three angles individ-
ually, to avoid the problems of orbital singularity rising
when the inclination or the eccentricity are null or too
close to zero.

For this investigation, we computed the osculating orbital
elements from the state vectors obtained through the dif-
ferent IOD techniques. Then, we compared these quan-
tities with the corresponding osculating elements derived
from the SGP4 propagated state vectors. The absolute
values of the differences represent our residuals. For each
SNR value and each IOD method, we calculated the me-
dian of such residuals. We used the median for this anal-
ysis in order to avoid the effects of the outliers corrupting
the mean value.

Table 2, Table 3, Table 4 and Table 5 present the results
of this investigation for the coherent integration IOD and
all the algorithms that perform the initial fit on the mea-
surements. Once more, in all the tables, it is possible to
see that the accuracy obtained with HGf and HGGf is al-
most identical.

Table 2 shows the semi-major axis residuals. CI, with
an accuracy ranging from 323.9km at 0dB to 2.1 km at
30dB, is performing considerably better than all the other
algorithms. With the exception of 0 dB, there is always a
factor bounded within 7 and 13 between the residuals of
CI and the finest of the other algorithms.

The eccentricity residuals are listed in Table 3. For an
SNR of 0dB, KJ, HGf and HGGf perform best, with a
residual of 0.0841. From an SNR of 5dB, instead, CI
gives the most accurate results (residuals from 0.0153 at
5dB to 0.0004 at 30 dB). In this case, the difference with
respect to the performance of the other algorithms is not
as large as for the semi-major axis (without considering
the SNR of 0dB, the gain factor is always included be-
tween 3 and 7).

For the inclination residuals, shown in Table 4, at 0 dB,

TBf has the lowest median (3.20°), at 5dB, KJ, HGf,
HGGf and HGGRRf have the highest accuracy (1.81°)
and from 10dB on, CI becomes once more the prefer-
able algorithm (residuals from 0.91° at 10dB to 0.07°
at 30dB). For this parameter, the advantage of using CI
(when it is performing better) is not that evident (we
have a gain factor slightly larger than 1, with a maximum
around 1.4).

Table 5 presents the residuals for the true longitude. With
low SNR values, HGf and HGGf are the algorithms per-
forming best (with an accuracy of 3.98° at 0 dB and 2.24°
at 5 dB), while again, from 10 dB on, CI overturns this re-
sult (residuals from 1.14° at 10dB to 0.09° at 30 dB). As
for the inclination, also for the true longitude, when CI
is performing better, its accuracy is comparable to that of
the other algorithms (the gain factor is always included
between a little more than 1 and 1.4).

4.2. Impact of the number of pulses

In the previous section, we applied a threshold on the
minimum visibility time of 0.5 s, corresponding to a mini-
mum number of 15 pulses within each beam crossing. We
justified this choice by saying that with too few pulses,
even a single outlier originated by the noise would have
the potential to corrupt the IOD solution. By introduc-
ing this condition, we lost 48 of the 3018 simulated beam
crossings.

However, the selected IOD methods work even with less
than 15 pulses. Specifically, KJ and TB requires a min-
imum of two observation vectors, whereas HGG, HG-
GRR and CI a minimum of three. On the other hand, HG
needs as input exactly three sets of measurements. When
performing the fit on the radar observables, though, the
higher the number of pulses, the more statistically reli-
able the final solution becomes. Indeed, in such cases, an
equal number of outliers would degrade less significantly
the resulting fit accuracy.

We present in this section the performance of the IOD
methods in terms of velocity vector residuals, with re-
spect to the number of pulses associated to each beam
crossing. For the sake of completeness, in this analysis,
we considered also the beam crossings with a number of
pulses below 15. We fixed the SNR at 15 dB and we com-
puted the norm of the velocity vector differences between
the output of the different IOD techniques and the TLE
propagation. Then, we created clusters of beam cross-
ings according to their associated number of pulses. We
grouped together all the passes with a number of pulses
included in the interval 1-5, 6-10 and so on with a fixed
increment of 5, up to 510, i.e., the maximum value ob-
tained in the simulation. Within each cluster, we com-
puted the mean of the velocity vector residuals and we
plotted the results on a bar graph.

Figure 7 shows these plots for the coherent integration
IOD and all the algorithms that perform the initial fit on
the measurements. These figures have an upper limit of
50 pulses on the x-axis, since we wanted to focus mainly
on the passes with only few pulses. Moreover, we ob-
served that, from that value, the curves reach approxi-



Table 2. Median of the semi-major axis residuals. The table lists the results in km against the SNR for the coherent
integration IOD and all the algorithms that perform the fit on the measurements.

0dB 5dB 10dB | 15dB | 20dB | 25dB | 30dB
KJ 636.7 | 362.6 | 210.3 125.1 | 82.3 63.3 59.7
HGf 646.1 367.6 | 207.1 114.0 | 64.7 36.8 | 21.1
HGGf 6455 | 366.4 | 2064 | 1149 | 64.5 36.4 | 205
HGGRRf | 2772.3 | 1859.9 | 1118.3 | 639.9 | 359.5 | 203.2 | 113.9
TBf 1697.1 | 1081.5 | 673.8 | 420.1 | 254.6 | 152.8 | 92.5
CI 3239 | 527 18.3 8.9 5.0 3.1 2.1

Table 3. Median of the eccentricity residuals. The table lists the results against the SNR for the coherent integration 10D
and all the algorithms that perform the fit on the measurements.

0dB 5dB 10dB | 15dB | 20dB | 25dB | 30dB

KJ 0.0841 | 0.0447 | 0.0236 | 0.0129 | 0.0076 | 0.0054 | 0.0048
HGf 0.0842 | 0.0439 | 0.0232 | 0.0119 | 0.0061 | 0.0031 | 0.0017
HGGf 0.0841 | 0.0440 | 0.0231 | 0.0119 | 0.0060 | 0.0031 | 0.0017
HGGRR(S | 0.4430 | 0.2508 | 0.1385 | 0.0746 | 0.0396 | 0.0207 | 0.0103
TBf 0.2356 | 0.1386 | 0.0799 | 0.0463 | 0.0266 | 0.0145 | 0.0082
CI 0.1091 | 0.0153 | 0.0040 | 0.0016 | 0.0009 | 0.0005 | 0.0004

Table 4. Median of the inclination residuals. The table lists the results in deg against the SNR for the coherent integration
10D and all the algorithms that perform the fit on the measurements.

0dB | 5dB | 10dB | 15dB | 20dB | 25dB | 30dB
KJ 324 | 1.81 | 1.08 0.69 0.54 0.50 | 0.51
HGf 323 | 1.81 | 1.02 | 0.57 0.32 0.18 0.10
HGGf 324 | 1.81 | 1.02 | 0.57 0.32 0.18 0.10
HGGRRf | 3.26 | 1.81 | 1.02 | 0.57 0.32 0.18 0.10
TBf 320 | 1.82 | 1.04 | 0.63 0.42 034 | 0.32
CI 9.17 | 2.33 | 091 0.43 0.23 0.13 0.07

Table 5. Median of the true longitude residuals. The table lists the results in deg against the SNR for the coherent
integration 10D and all the algorithms that perform the fit on the measurements.

0dB | 5dB | 10dB | 15dB | 20dB | 25dB | 30dB
KJ 4.02 | 234 | 1.38 | 0.88 0.67 | 0.61 0.63
HGf 398 | 224|125 070 | 040 | 022 | 0.12
HGGf 398 | 224|125 0.70 | 040 | 022 | 0.12
HGGRRf | 4.06 | 2.24 | 1.25 070 | 040 | 022 | 0.12
TBf 4.08 | 228 | 1.31 0.79 | 0.53 042 | 0.39
CI 11.83 | 295 | 1.14 | 0.54 | 028 | 0.16 | 0.09
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Figure 7. Mean of the norm of the velocity vector difference obtained with an SNR of 15 dB for the coherent integration
10D and all the algorithms that perform the fit on the measurements. The figures present the residuals in km/s against
the number of pulses associated with the simulated beam crossings (up to a maximum of 50 pulses). The dashed red line

represents the threshold of 15 pulses.

mately a plateau for all the considered techniques. The
threshold of 15 pulses, chosen for the previous investiga-
tion, is included as well in the plots as a vertical dashed
red line.

For all the IOD methods, as expected, a higher number of
pulses leads to smaller residuals. Such gain is especially
visible for very low numbers of pulses. Once more, al-
most the exact same behavior can be observed for HGf
and HGGf.

For the first cluster, TBf is the algorithm giving the best
accuracy. Then, up to a number of 20 pulses, HGf
and HGGf become the favorable methods. Finally, with
higher numbers of pulses, this result is overturned by CI.
The IOD solutions obtained by all the algorithms in cor-
respondence with a number of pulses below 10, do not
bring any valuable information, since the minimum mean
error is in the order of 2.5 km/s (i.e., around the 35% of
the standardly assumed LEO regime velocity vector norm
of 7km/s).

Analogous plots were derived for the other considered
SNR values as well (here not presented). The observed
trends were the same as the ones depicted in Figure 7,
with a shift of the residuals towards higher or lower val-
ues, according to the corresponding SNR (a higher SNR
value led to smaller residuals and vice versa).

5. CONCLUSIONS

In this paper we investigated the accuracy of several IOD
techniques applied to simulated noisy BPE data. The idea
behind the analysis was to understand whether or not, for
calibrating the space debris population models, the out-
put of such techniques could be a beneficial addition to
the detection list already provided by Fraunhofer FHR
after a BPE.

We presented the accuracy reached by the 10D algo-
rithms in terms of position and velocity vectors as well
as in terms of orbital parameters, with respect to differ-
ent SNR values for all the beam crossings with a visi-
bility time of at least 0.5s. It is important to underline
again that such performances correspond only to an up-
per bound since, in this investigation, we assumed a con-
stant value for the SNR along each pass, neglecting the
RCS variations over time, the antenna pattern modula-
tion and the phase decorrelation effects. As anticipated in
Section 1, all these features, occurring with real observa-
tions, introduce a series of problems (e.g., discontinuities
in the target detection over time) leading to a degradation
of the actual IOD performances. Additionally, another
reason for considering this analysis as an upper bound is
the introduction of the minimum number of pulses con-
straint used in Section 4.1. Indeed, we demonstrated that,
removing this constraint, the accuracy of all the different



techniques was negatively affected.

We showed the importance of performing an initial fit on
the radar measurements to reduce the oscillations intro-
duced by the noise. Moreover, since for some 10D tech-
niques, only few observation vectors are taken as input,
the fit represents a quick way to take into consideration
the information included in all the other pulses provided
by the radar as well.

The processing through the IOD methods of the data ob-
tained after the realization of a BPE, is an offline opera-
tion. Therefore, the computational load is not a discrim-
inating factor. However, concerning this facet, there is a
great difference between the selected algorithms. Specif-
ically, CI requires the longest time, followed by HGG
and HGGRR, while all the other techniques (KJ, HG and
TB) need considerably less time. CI is the most time-
consuming method because it is based on two steps, a
computationally intensive filtering process [9] and the ac-
tual IOD. The realization of the initial fit on the measure-
ments does not alter considerably the computational cost,
so it can be neglected in this context.

In all the figures and tables shown, we saw that HGf and
HGGf give almost exactly the same residuals. Indeed the
two algorithms are practically identical. The main dif-
ference is in the number of observation vectors taken as
input. However, when a fit is performed on the measure-
ments to force these latter to follow a linear trend, using
more observation vectors does not bring any new infor-
mation. Indeed, in such cases, the measurement dynam-
ics is already well-captured by the three pulses consid-
ered within the original HGf algorithm.

CI is the only technique able to improve the estimate of
the position vector. This quantity is directly determined
from the measurements of range, azimuth and elevation
coming from the radar. This is why all the other algo-
rithms reach always the same accuracy in terms of po-
sition estimate. The improvement introduced with CI is
due to the fact that, within the coherent processing, the fil-
tering step is able to enhance the accuracy of the measure-
ments of range, azimuth and elevation themselves [9]. A
possibility for the future, would be to feed the more accu-
rate filtered measurements, obtained through the first step
of CI, to the other selected IOD techniques as well and,
then, to compare again their performances.

Another important consideration is that, so far, as men-
tioned in Section 2, no radar performance model was in-
cluded in the simulation to compute the detection prob-
ability. For this reason, we included in the investigation
also the values of 0 dB and 5 dB for the SNR. However, a
common detection threshold for the radar is in the order
of 10-15dB. In a real experiment, especially focused on
small objects (as the majority of the space debris is), it
could be too optimistic to expect to be able to distinguish
the signal back-scattered from such objects in correspon-
dence with an SNR of 0 dB or 5 dB. Having this in mind,
we can say that for all the results shown, if we fix a lower
bound of 10dB for the SNR, the CI algorithm is always
the IOD technique performing best. Thus, these first find-
ings highlight the potential of performing a coherent pro-
cessing of the radar measurements also in terms of IOD
applications [9].

To answer the question at the basis of the paper, the ap-
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Figure 8. Inclination residuals obtained with an SNR of
15dB for CI. The residuals are plotted in deg against the
TLE eccentricity for the 3018 simulated beam crossings.
The colorbar indicates the associated number of pulses.

plication of an IOD technique to BPE data seems to be
able to add some valuable information, at least in bound-
ing the orbital elements. The advantages brought by the
use of such techniques are certainly strongly dependent
on the accuracy of the measurements obtained from the
radar (i.e., on the SNR), as well as on the length of the
observed pass and, therefore, should be evaluated on a
case by case basis.

So far, we focused on a single BPE configuration, but as
shown in [6], to different beam pointing directions cor-
respond different radar parameter trends as well. As a
future work, it would be interesting to perform a similar
analysis with other BPE configurations.

Figure 6 showed that the various algorithms perform dif-
ferently with respect to the three main directions of the
RSW reference frame. It could be an idea to combine the
outputs of several algorithms together to try to enhance
the final accuracy.

Lastly, another possible investigation for the future would
be to focus on a single technique and to study how its ac-
curacy changes according to the orbital geometry of the
beam crossing object. As an example, Figure 8 shows,
for each of the 2960 passes with at least 15 pulses, the
inclination residuals obtained with an SNR of 15dB us-
ing CI, against the TLE eccentricity and the associated
number of pulses (indicated in the colorbar).
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