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ABSTRACT

The ability to study the performance of different sensor
configurations is crucial for the development of any sen-
sor network that provides data for Space Surveillance and
Tracking (SST) services. Any software suite devoted to
this purpose shall be able to assess the performance of an
existing network in terms of effectiveness and robustness,
as well as to estimate the advantages and disadvantages
of any structural change, such as the addition of new sen-
sors or the upgrade of existing ones.

This paper is devoted to introducing the Space Surveil-
lance Sensor Network SImulation Tool (SΞNSIT) and its
contribution to the above task. SΞNSIT is a software
suite conceived to perform a statistical analysis of the ob-
servational and cataloguing capabilities of a sensor net-
work. The software can model optical, radar and laser
ranging sensors and simulate different operational scenar-
ios. The user is provided with the necessary interfaces to
define the list of sensors composing the network, along
with a reference population of space objects in terms of
Two-Line Elements or orbital parameters. The typical
sensor properties that can be specified by the user include
type, operating mode (survey or tracking), location, mea-
surement accuracy, pointing constraints, sensitivity and
time availability. The provided sensor properties and ob-
ject population are processed to predict the transits that
can be successfully detected by each sensor, consider-
ing visibility and detectability constraints. The passes
are analyzed to assess the network capabilities in terms
of number of observations and catalogue coverage. Ded-
icated plots are provided to compare sensors in terms of
coverage, to identify overlapping in the sets of observed
objects, and to provide an estimate of the level of com-
plementarity or redundancy.

Afterwards, the software simulates the measurements
gathered by the network during the passes and processes
them to carry out initial orbit determination and orbit
determination refinement, with the aim of assessing the
network performance in terms of catalogue build-up and
maintenance. All the results are exposed to the user in
informative tables and graphs with different levels of de-
tail, starting from a general overview of the network per-
formance up to the complete list of the passes observed
by each sensor. The user can also browse the object cata-
logue of the network, analyzing its evolution in time.

The modularity of the software allows the user to easily
modify the properties of the network and to carry out a
sensitivity analysis to different parameters, such as the
number and location of the sensors or their characteris-
tics. This is expected to ease the setup process of sen-
sor networks for SST, as well as the identification of the
most promising upgrades to be recommended. As a side-
product, the tool grants the opportunity to show and ex-
port all the data associated to the observable passes, in-
cluding their pointing requirements, allowing for further
analyses.

Keywords: Sensor networks; Space object catalogu-
ing; Space Surveillance and Tracking; Space Situational
Awareness; Orbit determination .
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1. INTRODUCTION

The space environment has become a valuable asset
for communication, navigation and observation purposes
over the past few years. Due to the increasing number
of satellites, potential collisions with other objects and
uncontrolled debris reentry, that may endanger populated
areas, are of major concern. The population of space ob-
jects is mainly located in three orbital regimes [1]:

• Low Earth Orbit (LEO): below 2000 km, where the
issue of space debris is presently most urgent,

• Medium Earth Orbit (MEO): between 2000 km and
36 000 km, widely used by navigation constellations
such as the Global Positioning System (GPS),

• Geostationary Earth Orbit (GEO): a roughly toroidal
region of space close to the equatorial plane at about
36 000 km, the vast majority of telecommunication
satellites are in this slot.

Since 1957, more than 4900 space launches have led to an
orbital population of more than 23 000 trackable objects
with sizes larger than 10 cm [2]. About a thousand of
these are operational satellites, while the remaining 94%
are space debris – objects that no longer serve any useful
purpose. About 64% of the routinely tracked objects are
fragments from some 250 breakups, mainly explosions
and collisions of satellites or rocket bodies. In addition,
about 670 000 objects larger than 1 cm and 170million
objects larger than 1mm are expected to be in orbit. A
schematic representation of the entire space debris popu-
lation is given in Fig. 1.

Figure 1. Timeline of the number of space debris in orbit
(plot available on the ESA website [3])

To mitigate these risks, surveying and tracking such ob-
jects is becoming of primary importance, as well as
providing this information to a variety of stakeholders.
The amount of catalogued objects in orbit scales with
the quality of the available space surveillance systems.
Hence, simulating a sensor network can have a signif-
icant impact when dealing with catalogue build-up and
maintenance.

At European level, two examples of available sensor net-
work simulation tools are the BAS3E (Banc d’Analyse et

de Simulation d’un Systeme de Surveillance de l’Espace
- Simulation and Analysis Bench for Space Surveillance
System) and the S3TOC (Spanish Space Surveillance and
Tracking Operations Center) tool. BAS3E is a complete
SST simulation framework developed by CNES [4], with
the goal to evolve existing Space Surveillance and Track-
ing (SST) network, both from a software and hardware
point of view, and to define major evolutions of existing
SST networks. It implements the capability to simulate
ground and space based sensors via the integration of the
following functions:

• Detection, tracking and generation of observations
of space objects

• Object identification and tracking correlation

• Orbit determination

• Maintenance of a space debris catalogue

• Centralized / de-centralized tasking and scheduling

The S3TOC is located in the Torrejón de Ardoz Military
Air Base [5], 30 km away from Madrid (Spain). The cen-
tre is devoted to the generation of SST end-user products,
for which a catalogue of objects is maintained, and or-
bital information from SST observations obtained by the
S3TSN (Spanish Space Surveillance and Tracking Sen-
sor Network) is computed. The S3TOC consists of the
following elements:

• Data Processing and Cataloguing

• Service Processing

• Sensor Planning and Tasking

• Fragmentation messages

• Service Provision

The Italian SΞNSIT software provides functionality sim-
ilar to those of its European counterparts. SΞNSIT is a
tool for modeling sensor networks and evaluating their
performance in terms of coverage and capability of build-
ing and maintaining a catalogue of space objects. More-
over, it allows the user to perform sensitivity analysis of
the performance of the sensor network by varying the net-
work configuration.

2. SΞNSIT

Figure 2. SΞNSIT logo



The Space Surveillance Sensor Network Simulation Tool
(SΞNSIT) is a software tool conceived by Politecnico
di Milano in collaboration with the SpaceDyS company
and the Italian Space Agency. SΞNSIT is written in
the Python programming language, relies on the NASA
SPICE library, and runs on the major operating systems
(Windows, MacOS, Linux). The software makes use of
YAML files for the configuration and a SQLite database
file for internal data storage. It can be used either from the
command line or by means of a Graphical User Interface
(GUI) based on the Qt library.

Given a list of space objects, a sensor network and a time
frame, it performs the following tasks:

• computation of the observable transits of space ob-
jects over the selected ground stations

• simulation of the observations and the correspond-
ing measurements

• orbit determination using the simulated measure-
ments and the provided sensor accuracies

• catalogue build-up and maintenance according to
the outcomes of the orbit determinations
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REFERENCE
POPULATION OUTPUT:

PERFORMANCE
ANALYSIS
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Figure 3. SΞNSIT scheme

SΞNSIT is composed of four modules (Fig. 3):

• Data initialization: gathers and pre-processes the
inputs provided by the user and updates the SPICE
kernels (files containing planetary ephemerides and
leap second information).

• Pass computation: evaluates the observable passes
of the objects belonging to the reference population,
taking into account various observability constrains.

• Catalogue build-up: selects passes to be observed,
simulates the measurements and carries out orbit de-
termination, in order to build-up and maintain the
network catalogue as the simulation proceeds.

• Performance analysis: allows to analyze the data
created by the previous modules, by means of ta-
bles and charts, providing an overview of the perfor-
mance of the sensor network.

2.1. Data initialization

2.1.1. Configuration

Figure 4. SΞNSIT GUI: configuration tab

The configuration tab of the GUI (Fig. 4) allows to define
the following parameters:

• generic parameters to tune the processes,

• accuracy thresholds, that will be used to determine
if an object is considered catalogued, according to
the covariance of its position,

• time windows for the simulation,

• Space-Track credentials for automatic download of
TLEs (optional).

These parameters can alternatively be set in specific files
in YAML format.

2.1.2. Sensors

The user shall configure the sensor network either
through the GUI (Fig. 5) or by means of a YAML file for-
matted according to the instructions reported in the soft-
ware manual.

The parameters to be entered for each sensor are:

• Name

• Type (optical, radar mono/bistatic)

• Mode (tracking, survey)

• Working hours (optional)

• Measurement sample interval

• Measurement accuracies



Figure 5. SΞNSIT GUI: sensors tab - general

Figure 6. SΞNSIT GUI: sensors tab - receiver

For the receiving station (Fig. 6), it is necessary to enter:

• Geographical coordinates

• Pointing and Field Of View (for survey sensors)

• Slew speed (for tracking sensors)

• Geometrical constraints (e.g., Field of Regard)

• Optical and radar signal limits

If the sensor is a bistatic radar, the user shall also pro-
vide the information about the transmitting station. In
this case, the fields are the same as those for the receiver,
except for the optical and radar signal limits that are not
present.

2.1.3. Reference population

The reference population of space objects can be loaded
through the GUI (Fig. 7) or using a command line script,
using one of the following formats:

Figure 7. SΞNSIT GUI: population tab

• Two-Line Elements in a text file,

• Cartesian states in CSV format,

• List of Satellite Catalog Numbers (NORAD IDs),
for which TLEs will be automatically downloaded
from Space-Track.org,

• ESA MASTER population file (*.pop),

• SGP4 elements (in CSV or JSON format).

The inputs are automatically converted to SGP4 ele-
ments (if necessary) and are saved in the internal SQLite
database of the application.

Furthermore, it is possible to load the Radar Cross Sec-
tion and the intrinsic brightness of the objects (in CSV or
JSON format): these are used to compute the radar signal
loss and the optical magnitude, respectively. The signal
loss is computed according to Eq. 1.

lossdB =+ 20 log10 (ρRX · ρTX)− 10 log10(σ)

+ 30 log10(4π)− 20 log10(c)
(1)

with ρRX and ρTX the distance of the target from the
receiver and the transmitter in m, σ the RCS in m2 and c
the speed of light in m/s.

Considering the link budget equation, the value of signal
loss limit to use can be determined from the characteris-
tics of the sensor, as in Eq. 2.

losslimdB =+ 10 log10(PRX)− 10 log10(PTX)

+ 10 log10(GRX) + 10 log10(GTX)

− 20 log10(f)

(2)

with PRX minimum detectable value of received power
in W, PTX transmitted power in W, GRX and GTX re-
ceiver and transmitter gains, f carrier frequency in Hz.

Magnitude is computed according to Eq. 3.



m =+ ibr

− 2.5 log10 ((π − φ) cos(φ) + sin(φ))

+ 5 log10(ρ)− 15− ext
(3)

with ibr intrinsic brightness, φ phase angle in radians, ρ
distance in km and ext atmospheric extinction, computed
with Eq. 4 [6].

ext =
0.1451e−h/7.996 + 0.120e−h/1.5 + 0.016

sin(el) + 0.025e−11 sin(el)
(4)

with h altitude of the ground station in km and el eleva-
tion angle in radians.

2.2. Pass computation

Figure 8. SΞNSIT GUI: passes tab

This process computes the observable passes of the ob-
jects belonging to the reference population, taking into
account the observability conditions set by the user. The
computed passes are shown in the GUI (Fig. 8).

The computation is based on the bisection algorithm and
takes advantage from several optimizations:

• The states of the stations and of the objects are
cached when possible

• The core of the algorithm is written in C++

• The code runs in parallel on separate processes

The algorithm, schematized in Fig. 9, starts from the time
window chosen by the user and splits it into segments. At
each splitting point, it evaluates the observability condi-
tion, giving a preliminary estimation of the passes. At the
end, it applies bisection to find the precise start and stop
epochs of the passes.

Start End

1) User defined time window:

3) Precise pass computation via bisection algorithm:

Observable
passes

Observable
Not observable

2) Preliminary pass estimation:

Figure 9. SΞNSIT algorithm for passes computation

2.3. Catalogue build-up

The third module processes the observable passes in or-
der to build-up and maintain the network catalogue.

Figure 10. SΞNSIT GUI: cataloguing tab

As a default, the cataloguing simulation is performed
considering all the defined sensors. Alternatively, the
user can select a subset of sensors from the GUI (Fig. 10):
in this way, it is possible to conveniently execute different
simulations and compare the results.

A schematic representation of the catalogue build-up pro-
cess is given in Fig. 11.

It is supposed at the beginning of the simulation pro-
cess to have an empty network catalogue. When a non
catalogued object is observable by a sensor in survey
mode, Initial Orbit Determination (IOD) is performed
(Fig. 12). Provided that the diagonal components of the
state covariance in the QSW reference frame are below
a user-defined threshold, the object will join the network
catalogue. The condition on the covariance is checked
throughout the simulation, since position and velocity un-
certainties enlarge over time. When a catalogued object
is observable, a scheduling algorithm decides whether the
pass is actually observed. If this is the case, Refined Or-
bit Determination is executed, that updates the covariance
matrix of the object. In order to simplify the process, the
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Figure 11. Schematic representation of the catalogue
build-up and update process.
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Figure 12. Schematic representation of the IOD and ROD
processes, blue line = mean state, red line = uncertainty.

mean state of the object obtained by the orbit determina-
tion process is not recorded: instead, it is always evalu-
ated by SGP4 propagation of the elements provided by
the user, adding noise when necessary. Concerning the
OD sub-module two different pipelines have been pro-
posed: the Estimated covariance OD and the Non-Linear
Least Squares OD. The former ensures a reduced compu-
tational cost by estimating only the expected outcome of
an OD process in terms of covariance. The latter instead
performs the whole orbit determination process using the
Non-Linear Least Squares optimization algorithm.

2.3.1. Catalogue build-up and maintenance process

First of all, the list of observable passes is chronologically
sorted. Then, for each transit, if it occurs over a sensor in
tracking mode, the following checks are carried out:

• The object to be detected needs a valid covariance
computed from a previous IOD or ROD and propa-
gated.

• The re-observation time for an object is to be higher
than a user-defined threshold. The underlying idea
is to ensure to follow up less frequent objects.

• If time is not sufficient to steer the sensor to the de-
sired spot, the transit will be considered invalid.

• To reduce the tracking sensors workload, if the ob-
ject will be observed by a survey sensor within a
given time, it is not observed by the tracking sensor.

Before moving on, it is worthwhile to explain how the co-
variance is assessed to be valid or not. Firstly, the rotation
matrix RE2Q from the Earth-Centered Inertial (ECI) ref-
erence frame to the QSW frame [7] is computed, where:

• ~q is the unit vector collinear to the geocentric satel-
lite position (from the planet center to the space-
craft)

• ~w is the unit vector collinear to the orbital kinetic
momentum (normal to the orbital plane)

• ~s is the unit vector equal to ~w ∧ ~q

The covariance matrix CQ in QSW frame is obtained
from the one in ECI frame CE as in Eq. 5.

CQ = RE2Q CE RE2Q
T (5)

The object enters or remains in the network catalogue if
the first three diagonal components dQ of CQ are lower
than a specified threshold d̃Q as described in Eq. 6.

dQi
< d̃Qi

for i = 1, 2, 3 (6)

d̃Q has to be defined by the user and may be different
according to the altitude of the object.

Next, if the object has already a valid covariance CE,ti−1

at the previous ti−1 ROD or IOD instant, it is propagated
up to the initial observation epoch (CE,ti ) as shown in
Eq. 7:

CE,ti = Jkep CE,ti−1
Jkep

T (7)

Jkep is the Jacobian obtained by a Keplerian state transi-
tion matrix and projects the covariance from ti−1 to ti. If
CE,ti is valid too, ROD will be performed.

For this stage, as stated in Sec. 2.3, two approaches have
been implemented. The first one is the Estimated Covari-
ance OD, that requires:



• CE,ti : the known state covariance matrix,

• Cm: the covariance matrix of the measurements
(sensor dependent),

• Jm/s: the Jacobian matrix of the measurements with
respect to the propagated states of the object,

• Js/s0 : the Jacobian matrix of the propagated states
with respect to the initial state, approximated as the
state transition matrix of a Keplerian propagation.

The updated covariance CE,ti,new
is computed as:

Jm/s0 = Jm/s Js/s0

CE,ti,new
= (Jm/s0

T Cm
−1 Jm/s0 +CE,ti

−1)−1
(8)

The other OD formulation relies on a Non-Linear Least
Squares optimization [8]. The algorithm has been de-
signed as follows:

• Synthetic measures msens are generated with a
fixed time step within the observation window, and
Gaussian noise is added according to the sensor ac-
curacy.

• The initial state guess s0 is computed by SPG4 prop-
agation of the elements of the object and by the ad-
dition of Gaussian noise, according to the state co-
variance CE,ti .

• An iterative procedure takes s0, propagates it with
Keplerian dynamics up to the time instants of the
measurements and projects it to the measurement
space (mLS). A design matrix D (Eq. 9) is built
using the Jacobian matrix of the measurements with
respect to the initial state (Jm/s0) and weights W
(defined from the sensor accuracy). The initial state
with its covariance is considered as a priori infor-
mation.

D = W � Jm/s0 (9)

• The cost function is the measures residual res:

res = msens −mLS (10)

• res and D are intended to solve the normal equa-
tion, that outputs CE,ti,new

and the s0 correction
factor.

• The routines stops if a maximum number of itera-
tions or convergence is reached.

In the event that the object is out of catalogue and passes
over a survey ground station, IOD will be conducted in
similar manner as illustrated for ROD. The differences
are:

• For the Estimated Covariance OD, the updated co-
variance is determined as:

Cti,new
= (Jm/s0

TCs
−1Jm/s0)

−1 (11)

• For the Non-Linear Least Squares algorithm, no a
priori information is considered.

After ROD or IOD, the updated covariances and the cor-
responding epochs are saved in the program database.

3. RESULTS

The results from the previous steps are stored in the ap-
plication database file. These are employed to illustrate
data as different interactive graphs, designed to maxi-
mize the user awareness of the network performance. The
representations are both sensor-oriented and population-
oriented, to have an organic view of the results of the sim-
ulation.

The available visualizations are described hereafter.
Then, an analysis of the computational time required by
the software is reported.

3.1. Sensor network performance analysis

3.1.1. Pass list

The first view that is shown to the user is a list of the ob-
served passes, with the ID of the object, the epoch, the
sensor name, the orbit determination type and the result-
ing covariance. This allows to analyze in detail the obser-
vations performed by each sensor.

3.1.2. Redundancy matrix

The redundancy matrix (Fig. 13) is a table that shows the
ratio of objects visible from a given sensor that can also
be seen by another. This can help in determining the re-
dundancy of the sensors.

3.1.3. Catalogue population plot

An example of population-focused plot is displayed in
Fig. 14. It shows a Cartesian plane, having two orbital
parameters as axes. X and Y can be modified by the user
and the distribution changes accordingly, allowing to un-
derstand the orbital regime they belong to. The color of
each point varies according to the number of times it was
observable by the sensors. It is possible to select only
a subset of sensors, and the color intensity of the points
changes accordingly: this lets the user understand the im-
portance of each sensor in the observations.



Figure 13. Redundancy matrix: each cell contains the
percentage of objects visible by the sensor on the row that
are also observable by the sensor on the column.

Figure 14. Catalogue population plot: dots represent
space objects, their color intensity depicts the number of
passes observed by the network.

Figure 15. Evolution of catalogued population over time.
The blue line represents the total amount of objects inside
the catalogue, the orange one depicts a user defined sub-
set of objects belonging to one or more orbital regimes.

3.1.4. Catalogue evolution

A further point of view about the interaction between the
simulated population and the network is the catalogue
evolution representation (Fig. 15), in terms of percent-
age of objects belonging to the reference population. The
entries are determined by a successful initial orbit deter-
mination, while the exits by the covariance exceeding the
thresholds. The plot portrays two different population
trends: the blue one refers to the total amount of objects
belonging to the catalogue, while the orange one depicts
the evolution of a subset of objects located in a specific
orbital regime selected by the user.

3.1.5. Covariance evolution

Knowing the covariance evolution in time of a specific
target is crucial to understand if it is inside or outside
the sensor network catalogue within a simulation. To
be part of it, a satellite requires an initial orbit determi-
nation from a survey ground station where the outcome
is the only state covariance matrix. Each object is sub-
jected to an increase in position and velocity uncertainty
as time goes by, while acquisitions from sensors shrink it
down through refined orbit determination. If the covari-
ance exceeds a predefined limit, the object exits the cata-
logue and a further initial orbit determination is needed.
In Fig. 16 a Cartesian plot describes the trend of an cata-
logued object covariance over time, using the square root
of its trace as metric. The wide oscillations are due to the
period of time between two IOD or ROD procedures that
decrease uncertainty after every new observation. The
orange dots represent initial orbit determinations, while
the green ones refined orbit determinations. The user can
also choose to see separately the first three diagonal com-
ponents of the covariance matrix in the QSW reference
frame.



Figure 16. Covariance trend over time: using its trace
square root as a figure of merit, the beneficial effect of
successful IODs and RODs can be easily noticed by the
orange and green dots respectively.

Figure 17. Pie chart plot showing the contribution of a
maximum of three selected sensors and their combina-
tions, in terms of ratio between observed objects and sim-
ulated population.

3.1.6. Coverage pie chart

A clear view of a sensors subset contributions to the en-
tire network performance can be pictured as a pie chart
(Fig. 17): each slice represents the percentage of simu-
lated objects seen only by the corresponding sensor or
combination of sensors (without any intersection among
them, due to the rule used to determine the contributions).
The user can select up to three sensors at the same time.

3.1.7. FoV projection

In order to have an organic view of the network cover-
age over areas of interest, the plot in Fig. 18 provides
a geographical projection of the FoV of survey sensors
at different altitudes. The representation depends on the
sensor position, the FoV size and shape (rectangular or
elliptical), the sensor pointing and the intersection alti-
tude. Coverage areas are colored according to their type
(optical or radar) and their size changes according to the
intersection altitude, that can be modified by the user in

Figure 18. Sensors coverage areas are used to have a
quick look at zones covered by survey sensors.

Figure 19. Maximum re-observation times

real-time. This plot can also be useful to understand over-
laps between the FoVs of survey sensors.

3.1.8. Maximum re-observation time

It is important to have a sense of what is the maximum
re-observation time (i.e., the time elapsing between two
consecutive observable passes) for all the objects pass-
ing over a ground station. This is instrumental to figure
out how a sensor can contribute to the catalogue mainte-
nance, since the lower the re-observation times the more
the network can keep up to date the covariance estimates
in the catalogue. The graph in Fig. 19 illustrates the
cumulative distribution of the maximum re-observation
times of all the objects transiting over a user defined sen-
sor or over the entire sensor network. On top of that, a
vertical line set at 24 hours splits the distribution in two
parts, to highlight the percentage of objects which can
always be seen within one day or less.

3.1.9. Coverage histogram

The coverage histogram (Fig. 20) permits to evaluate the
coverage of specific sensors with respect to different or-



Figure 20. Coverage histogram

Table 1. Time required by pass computation

1 sensor 5 sensors 10 sensors
10 objects 3 s 4 s 4 s

100 objects 21 s 23 s 25 s

1000 objects 204 s 223 s 244 s

bital parameters. The user can choose an orbital param-
eter (for the horizontal axis) and up to three sensors to
compare their coverage. Each sensor is described as a bar
distribution, whose height represent the percentage of ob-
servable objects within that range of the selected orbital
parameter.

3.2. Computational time

The goal of SΞNSIT is not merely to provide an accurate
sensor network modeling, but also to output the expected
results in a reasonable time frame. The analysis of the
computational time has been conducted on a PC featur-
ing a 3700x AMD processor, with 8 physical and 16 log-
ical cores, and 16GB of RAM. Several sensor network
simulations have been performed by setting the follow-
ing parameters:

• Number of input objects: 10, 100, 1000.

• Number of involved sensor: 1, 5, 10

• Simulation time frame: 3 days

Table 1 and Fig. 21 outline the time required for the com-
putation of observable passes (Sec. 2.2). Time clearly
scales up when taking into account an increasing num-
ber of objects, while it is less affected by the amount of
sensors thanks to the implemented optimizations (mainly,
the cache of object states).
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Figure 21. Time required by computation of observable
passes

Table 2. Time required by catalogue build-up using esti-
mated OD

1 sensor 5 sensors 10 sensors
10 objects 1 s 1 s 1 s

100 objects 3 s 3 s 3 s

1000 objects 19 s 30 s 83 s

Table 2 and Fig. 22 report the time needed to perform
catalog build-up and maintenance using Estimated Co-
variance OD (Sec. 2.3). It is similarly influenced by both
objects and sensors.

Table 3 and Fig. 23, instead, report the time needed to
perform catalog build-up and maintenance if Non-Linear
Least Squares OD is used. The reported times are ap-
proximately double with respect to the ones required by
Estimated Covariance OD.

Summing up the values contained in Tab. 1 and 2, the
times reported in Tab. 4 are obtained. It showcases the
total time required for a single simulation run, if Esti-
mated Covariance OD is used. It is worth noting that in
the worst case scenario, SΞNSIT takes roughly 5 min-
utes, allowing for fast simulations.

Table 3. Time required by catalogue build-up using NLS
OD

1 sensor 5 sensors 10 sensors
10 objects 1 s 1 s 1 s

100 objects 4 s 6 s 12 s

1000 objects 40 s 63 s 191 s
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Figure 22. Time required by catalogue build-up using
Estimated OD
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Figure 23. Time required by catalogue build-up using
NLS OD

Table 4. Total simulation times using estimated OD

1 sensor 5 sensors 10 sensors
10 objects 4 s 5 s 5 s
100 objects 24 s 26 s 30 s
1000 objects 223 s 253 s 327 s

4. CONCLUSIONS AND FUTURE WORK

SΞNSIT, the program developed in this work, answers
the need of having a software tool that allows to model
SST sensor networks and evaluate their performance, in
terms of coverage and capability of building and main-
taining a catalogue of space objects. Moreover, SΞNSIT
allows to perform this tasks in a user friendly way, thanks
to its Graphical User Interface, the capability of running
through different operative systems and the speed of exe-
cution.

Yet, several improvements can still be implemented in
SΞNSIT. In particular, the developers are considering
to introduce the automatic generation of new sensors ac-
cording to given criteria (e.g., different locations for a
sensor within a given area, or different type of sensors
in a fixed position). An improved scheduling algorithm
for sensors in tracking mode is also being studied, along
with the ability to consider random events that could pre-
vent observability, such as adverse weather conditions or
maintenance downtime. Furthermore, the possibility of
starting the cataloguing simulation from a non-empty net-
work catalogue will be implemented.
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