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ABSTRACT

This paper investigates the performance of tracking filters
for coherent radar systems according to the filter input
data type. In the context of a real time implementation,
the study examines the trade-off between the quality and
the revisit rate of the input measurements. Three differ-
ent kinds of input data are taken into consideration. In
the first case, the raw observation vectors, available with
a high refreshment rate, are directly used as input for the
tracking filter. In the two other cases, the raw data are
either averaged or filtered over a given time interval be-
fore feeding the tracking filter, thus reducing the overall
revisit rate of the measurement update. Simulations are
realized to study the tracking performance achieved with
these different filter input data types. Finally, real data
acquired by the Tracking and Imaging Radar (TIRA) are
used to validate the findings.

Keywords: Tracking filter; Input data; Radar data pro-
cessing.

1. INTRODUCTION

The TIRA system, developed and operated at Fraunhofer
FHR, consists of a tracking radar and an imaging radar,
which both use a 34 m parabolic antenna. During an ob-
servation, the antenna beam follows a space object and
radar data are recorded. From these data, observation
vectors are generated at different instants of time, which
include the measurements of range, range rate, elevation
and azimuth angles. These observation vectors can be
used for various applications e.g. initial orbit determina-
tion and orbit determination. Real-time tracking filters
are used to steer the antenna beam of the TIRA system
to the selected space object in order to continuously track
that object. These tracking filters can be fed with differ-
ent types of data, which may affect the overall tracking
performance of the system.

As a first option, the generated observation vectors can
be directly fed to a tracking filter for orbit determina-
tion. According to the default pulse repetition frequency
(PRF), which is about 30 Hz, a measurement update oc-

curs approximately every 33 ms.

In the context of a real-time implementation of an ad-
vanced tracking filter for the TIRA system, it could be
beneficial to pre-process these data before feeding them
to the tracking filter. This is done to reduce the revisit
rate and to improve the estimation accuracy of the radar
observables.

A second option consists in pre-processing the raw data
through an averaging. As an example, the measurements
are averaged over 30 pulses resulting in a measurement
update around every second.

As a third possibility, a new local filtering technique has
been recently developed to improve the accuracy of the
observables at the cost of a higher computational load
compared to a simple averaging [1]. A peculiarity of this
technique is the estimation of an additional parameter, the
range rate rate, i.e the second temporal derivative of the
range. These filtered observation vectors are then used as
input to the tracking filter.

The goal of this study is to understand which of these
input data lead to the best performance of the tracking
filter, which means the highest orbit determination accu-
racy. In particular, we want to investigate how the choice
of the input data affects the filter efficiency by examining
its convergence behaviour and accuracy. For instance, it
is interesting to understand what is better between using
raw observation vectors with a high measurement rate or
more accurate observation vectors, estimated over several
pulses, with a lower refreshment rate.

Another aspect to analyse deals with the implementation
of a future real-time tracking filter. A trade-off between
filter accuracy and computational load has to be found.
This is the reason why, in this paper, as a second option of
the three above-mentioned, we used a simple and fast av-
eraging instead of the more complex one that is currently
implemented in the TIRA system that works offline.

The TIRA system includes also an imaging radar. Since
the imaging radar operates at a much higher frequency,
the antenna footprint is much smaller compared to the one
of the tracking radar. Thus, accurate tracking filters are
needed to guarantee that the antenna beam of the imaging
radar still illuminates the imaged space object. We con-
sidered the extended Kalman filter (EKF) for our study
[2], also for a future prospective of real-time tracking.
A first analysis of the performance of these input data is
conducted through simulations. In particular, Section 2
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shows some simulations that are performed in order to
test the averaging and the new filtering technique. In ad-
dition, Section 3 verifies the same pre-processing tech-
niques with real data through three observations of the
French satellite Stella performed with the TIRA system
in 2019. For each pass, the observation vectors are fil-
tered according to the three above-mentioned options and
used as input of the tracking filter.

Thanks to the accurate knowledge of the position of the
satellite Stella over time from ephemerides, the results
are presented in terms of residuals between the outputs
of the EKF and the ephemerides. The exploitation of
these residuals is the key to understand the performance
of the tracking filter according to the input data process-
ing. Lastly, Section 4 concludes the paper.

2. INVESTIGATED INPUT DATA

The goal of this section is to test, through simulations,
the performance of the EKF according to the three differ-
ent input data: raw data, averaged data and filtered data.
The raw data are directly created from the simulation de-
scribed in Section 2.1. Then, Section 2.2 and Section 2.3
investigate the averaging and the new local filtering tech-
nique, respectively.

2.1. Performed simulation

We simulated an observation of the French satellite Stella
with the tracking radar of the TIRA system for a dura-
tion of 600s. The satellite Stella was chosen as test ob-
ject since we also have access to real data of the same
satellite. The TLE used for the simulation is displayed
in Table 1. Figure 1 shows the simulated parameters
(range, range rate, azimuth and elevation) during the
whole observation time. The range is contained in the
interval between 1300 km and 2600 km and the elevation
reaches a peak around 33 degrees near the point of clos-
est approach. The raw data are created by adding white
Gaussian-distributed noise (WGN) to these nominal mea-
surements. The noise value depends on the accuracy
of the different observation parameters, according to the
corresponding signal-to-noise ratio (SNR). The lower the
SNR, the higher the noise on the raw data. The SNR is
kept constant for one simulation. It has to be mentioned
that no error is introduced with the propagation of the
state vector because the propagator used to simulate the
trajectory is exactly the same as for the tracking filter.

2.2. Averaging

We averaged the raw data over a certain number of sam-
ples ng, in order to generate new observation vectors,
more accurate, but necessarily with a higher sampling
time (ns - 0.033 s). Thus, a single observation vector is
created out of ns observation vectors. By assumption,
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Figure 1: Range, range rate, azimuth and elevation simu-
lated over 600 s.

these ns data are assigned to the same time instant (the
central time of the sub-interval), so that the averaging is
a simple arithmetic mean. The accuracy of the averaged
observation vector improves according to Eq. 1.

Oav :Uraw/\/”Ts (1)

For linear functions or functions with odd symmetry
around the center, the central value is not changed by av-
eraging. To analyse the results, we firstly focused on the
impact of the number of samples, trying to understand
which is an optimum averaging time interval. Secondly,
we investigated the influence of the SNR value in terms
of tracking filter performance.

2.2.1. Impact of the number of samples

In this simulation, we took into considerations three dif-
ferent values for n, to obtain new observation vectors
from the raw data: 31, 101 and 401. No weights were
applied since all the measurements in the simulation are
assumed to have the same SNR of 10dB.

Figure 3 shows the residuals of the observation vector en-
tries computed as the difference between the nominal tra-
jectory and the averaged data. WGN was added to ob-
tain raw data with a SNR of 10dB. The corresponding
statistics of the residuals (mean, standard deviation and
root mean square (RMS)) are listed in Table 2. The same
residuals are displayed for the EKF outputs in Figure 4
with the corresponding statistics in Table 3.

If we focus only on the range residuals for the averag-
ing method with 31 and 101 samples, the averaged data
seem to perform better than the raw data in both cases
(Figure 3a). Nonetheless, while the mean of the average
with 31 samples is close to zero, the one with 101 sam-
ples is around 11 m. The same behaviour is visible in the
EKF range residuals, where the RMS for the observation
vectors every 101 samples is the largest. In particular, we



Table 1: TLE used for the performed simulation.

Stella
1 22824U 93061B
2 22824 98.9126 48.7284 0006571

19073.15924862 -.00000030
13.1848

00000-0 66708-5 0 9990
51.8073 14.27376269326598

can notice that in the middle of the observation the resid-
uals are higher, while at the beginning and at the end the
tracking filter performs better (Figure 4a). The nominal
range, shown in Figure 1, is almost linear at the begin-
ning and at the end of the pass, while it is curved in the
middle. 31 samples (~ 1 s of sampling time) are enough
to better estimate the range parameter, while 101 samples
are already too much. It is important to mention that the
range is the parameter with the highest variability, there-
fore the least suitable for a linear fit [3]. By increasing
the number of samples to 401, the curvature in the mid-
dle becomes clearly visible in the residuals. The mean is
~ 150 m away and it compromises the performance of
the tracking filter.

On the other hand, the same discussion does not apply
for the range rate and the angle residuals to the same de-
gree. In this case, the statistics of the averaging method
with 101 samples are still better than that of the raw
data, therefore the averaging technique can be applied for
a longer interval of time. Averaging with 401 samples
yields still an improvement for the range rate. The angle
accuracy instead is lower than the one obtained by the
raw data. In Figure 4d we can notice how the residuals
increase in the middle of the pass, where the curvature of
the nominal elevation is maximal. However, this is not as
obvious as on the range.

By considering the state vectors obtained as output of the
EKEF, it is possible to compute the residuals in the Earth-
centered inertial (ECI) reference frame. Figure 4e and
Figure 4f show the norm of the position and the veloc-
ity vector residuals with respect to the nominal trajectory.
In both cases, the averaged data with 31 and 101 pulses
are sufficient to approximate the functions since they per-
form better than the raw data. By using the averaged data
with 401 samples instead, the EKF estimates are again
poor on the position, especially in the central part. On
the other hand, the velocity is well estimated even with
such a high revisit rate. This reflects the results obtained
on the range rate, the only observation parameter that is
well estimated even with 401 samples. We can say that
the averaging method works well for a linear function. As
soon as a linear function cannot fit the data anymore (i.e.
range for long observation time), the performance of the
averaging technique degrades. Therefore, averaging with
31 samples is a good choice in this case and we used only
this one to perform the experiment on the SNR impact.

2.2.2. Impact of the SNR parameter

After verifying the effective improvement obtained by av-
eraging, we performed another kind of simulation, this

time focusing on the impact of the SNR. For a fixed SNR
value, we ran 100 simulations. For each run, we fed the
tracking filter with the raw data and the averaged data (31
samples) and we computed the residuals of the observa-
tion vectors with respect to the nominal trajectory, and
their corresponding RMS. Therefore, it is possible to cal-
culate the RMS of each individual run and to compute the
mean of these 100 RMSs. The only quantity changing in
every run is the random WGN added to the nominal pa-
rameters in order to create the raw data.

Table 4 shows the mean over 100 different runs of the
RMS related to the tracking filter residuals. The results
are listed for SNR equal to 5 dB, 15dB, 25 dB and 35 dB.
As we can see, at 5 dB the RMS of the averaged data is al-
ways lower than the one of the raw data, which means the
averaging technique increases the accuracy on all the pa-
rameters (range, range rate, azimuth and elevation). This
is still true when increasing the SNR to 15 dB. Neverthe-
less, if we focus on the range, the corresponding mean
of the RMS values of the averaged data is lower than the
one of the raw data, but only by 0.1 m. In fact, by increas-
ing even more the SNR value to 25 dB, the raw data start
outperforming the averaged one, until arriving at 35 dB
where the RMS of the raw data is clearly below the one
of the averaged data. However, even at 35 dB, the differ-
ence between the means of the RMSs is only 0.5 m. It is
known that the higher the SNR the higher the accuracy
on the measurements. Therefore, by increasing the SNR,
the noise added on the simulated measurements decreases
having a deeper impact on the raw data in terms of EKF
performance. On the other hand, the averaging method
performs better on the range rate and on the angles at
any SNR value. Again, the range is the most “problem-
atic” parameter to improve with the averaging technique,
which is more suitable for linear functions. This assump-
tion is not fulfilled by the range that can be modelled as a
quadratic function over a short time interval. [1].

In any case, the results show that, with a low value of
SNR, the averaging method completely outperforms the
raw data in terms of tracking filter performance. When
the SNR is higher we can still say that the averaging tech-
nique generally performs better.

2.3. Local filtering technique

Currently, a new technique based on a matched filtering
has been developed to improve the accuracy of the pre-
processed data [1]. Also in this case, the final observation
vectors are computed every 31 pulses. With this filter-
ing technique we are able to compute a new parameter,
the range rate rate, that is later used in the EKF in or-



Figure 2: [Illustration of the French satellite Stella
[CNES]

der to better estimate the state vector of the object. The
same simulation described in Section 2.1 (SNR of 10 dB)
is used to evaluate the performance of the filtering tech-
nique. Figure 5 shows the residuals on the observation
vector parameters computed as the difference between
the nominal trajectory and the simulated observation vec-
tors. Table 5 lists the statistics related to these residuals.
It is obvious how the filtering technique applied to the
raw data reduces the noise impact even more than by av-
eraging. Looking at the values of the standard deviation,
we can clearly notice how the filtering reduces the o, es-
pecially on the range and range rate. The same results
can be observed once these data are processed by means
of the EKF. Figure 6 and Table 6 show the EKF residuals
and the corresponding statistics, respectively. Also in this
case, the highest improvement is on the range and on the
range rate. The residuals are lower on the angles too, and
consequently on the norm of the ECI position residuals.

3. PERFORMED EXPERIMENTS

In this study, we analyzed three passes of Stella, a French
passive satellite launched by CNES in 1993 (Figure 2).
Stella is dedicated to geodetic and geophysical studies
with Satellite Laser Ranging (SLR). It is a 24 cm diam-
eter sphere covered with 60 identical retroreflectors [4].
The three passes were observed in March 2019 and in
this paper we refer to the three different observations with
the convention “XXX-YY-ZZ” where XXX is the day of
the year (DOY), YY the hour and ZZ the minute of the
starting time of the pass. Therefore, the three considered
observations are Stella 073-15-26", ’Stella 077-13-38”
and “Stella 077-15-17”. All the passes are really simi-
lar to each other, the TIRA system tracked the object for
~ 11 minutes with a maximum elevation around 35-40
degrees. Although Stella is a very small object, high val-
ues of the SNR are caused by the high reflectivity due
to the presence of specular reflections occurring on the
edges of the retroreflectors. In these experiments, we
considered a SNR threshold of 13 dB for detection.

The choice of these three observations is due to the avail-
ability of accurate ephemerides of Stella. For each ob-
servation we processed the data according to the three
different possibilities and compared the results with the

corresponding ephemerides.

Table 7, Table 8 and Table 9 show the mean, the standard
deviation and the RMS of the observation vector residuals
and of the norm of position and velocity vector residuals
in the ECI frame, as for the simulations. As a first con-
sideration, we can say that the averaging method always
outperforms the raw data, exactly like in the simulations.
The major improvement is on the standard deviation.
Looking at the filtered data, the residuals are always
lower in all the passes compared to the raw and the av-
eraged data. The only exception concerns the elevation
residuals that are higher in the first and in the third pass.
In this case, there is not a total match with the findings
of the simulation. Anyway, with real data the accuracy
of the position and the velocity estimates is increased by
around a factor 2.5, which means that the filtering tech-
nique is still guaranteeing the best tracking filter perfor-
mance.

4. CONCLUSIONS

In this paper, we investigated the performance of track-
ing filters according to different input data. The EKF was
taken as an exemplary tracking filter. Similar results were
also achieved with an Unscented Kalman filter. The in-
put data were chosen as raw data or pre-processed data.
The idea is to increase the accuracy of the new input data
at the cost of a lower revisit rate. In the simulations,
we showed that for the averaging method the best per-
formance was obtained by averaging around 31 samples,
which means refreshing the observation vector about ev-
ery second. In addition, the major improvement with re-
spect to the raw data is visible at low SNR, where the
raw measurements are more affected by noise. Concern-
ing the filtering technique, the simulated results always
outperform the averaged data and the raw data. After
the simulations, we tested the algorithms on real data by
observing three passes of the French satellite Stella and
comparing the EKF results with accurate ephemerides.
The averaged data are always more accurate than the raw
data, as expected from the simulations. The new filtering
technique is always improving the accuracy of almost all
the observation parameters and of the position and veloc-
ity in the ECI frame.

As a future work, the filtering technique needs to be tested
on other objects and with different observation geome-
tries in order to have a better understanding of the param-
eters that influence the performance of this new method.
An investigation of the optimum number of pulses to use
in the filtering is needed too. Even if the computational
load is higher than a simple average, the simulations show
that this method, especially thanks to the range rate rate
parameter, has the potential to improve the accuracy of a
tracking filter, more than a simple averaging can do. In
the future, the challenge will be to understand if with such
a higher computational cost, it is really possible to imple-
ment this filtering technique on the raw measurements in
real-time before feeding the tracking filter.
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Figure 3: Residuals for the observation vectors, computed as the difference between the nominal trajectory and the

simulated observation vectors.

Table 2: Statistics for the residuals of the observation vectors over one run. y is the mean, o is the standard deviation and

RMS is the root mean square.

Meas. statistics Range Range rate Azimuth Elevation
) (m) (m/s) (mdeg) (mdeg)
w=-1.33 n=0.07 1w =-0.05 n=0.25
Raw data o =169.68 o=15.73 o0=5722 o =56.90
RMS = 169.69 | RMS = 15.73 | RMS =57.22 | RMS = 56.90
=225 1 =0.07 1 =-0.04 =026
A(gelfag:f ;ﬁt)a o =29.50 o =288 o =10.60 o =10.15
p RMS =29.59 | RMS=2.88 | RMS =10.60 | RMS = 10.15
w=-11.21 w="0.07 w=-0.04 w=0.42
‘(‘lvgﬁg‘l’g ‘}23‘ o=17.49 o =161 o =589 o=577
p RMS=20.73 | RMS=1.61 | RMS=5.89 | RMS=5.77
L =-156.02 =005 [L=-021 =225
‘(‘Zgﬁgﬁ ‘}23‘ o =87.28 o=1235 0=9.55 o=571
p RMS = 178.28 | RMS =1.35 | RMS=9.55 | RMS =6.07
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Figure 4: EKF residuals for the observation vectors (a) - (d) and norm of the position and velocity vector residuals (e) -
(f). The residuals are computed as the difference between the nominal trajectory and the tracking filter estimates.



Table 3: Statistics for the EKF residuals over one run. Residuals for the observation vectors and norm of the position and
velocity vector residuals. p is the mean, o is the standard deviation and RMS is the root mean square.

. Range Range rate Azimuth Elevation Position Velocity
EKF statistics (m) (m/s) (mdeg) (mdeg) (m) (m/s)
=043 =007 =002 =026 1 =195.36 11 =28.65
Rawdata | o=11.14 o=5.18 o =541 c=5.12 o =108.48 o =15.08
RMS=11.15 | RMS=5.18 | RMS =541 | RMS = 5.13 | RMS = 223.46 | RMS = 32.38
1=-1.39 =007 =003 =016 1= 125.68 =856
A(gelriag;d ;L";t)a o=10.88 o =2.06 o =338 o =343 o =66.82 o =428
p RMS = 10.96 | RMS =2.06 | RMS =3.38 | RMS = 3.43 | RMS = 142.32 | RMS = 9.57
1=-1032 11=0.06 =007 =028 1 =107.29 =570
fz‘lvgiasg;g ‘{:5‘ o=12.63 o=139 o =2.84 0 =297 o =55.48 o=3.11
p RMS = 1628 | RMS =1.39 | RMS =2.84 | RMS =2.97 | RMS = 120.72 | RMS = 6.49
[1=-156.23 1= 0.04 1= 0.04 =237 1 =314.19 =475
?X;iasgaﬂ ‘{:;;‘ o =87.43 o=133 =930 0=552 o =102.23 0=543
p RMS = 178.53 | RMS = 1.33 | RMS =9.30 | RMS = 5.94 | RMS = 330.03 | RMS =7.17

Table 4: Statistics for the EKF residuals over 100 runs. For each run the RMS of the residuals is computed. RM S, is
the mean of the 100 RMSs for the raw data, RM S3; is the mean of the 100 RMSs for the averaged data with 31 samples.

.. Range Range rate Azimuth Elevation
EKEF statistics
(m) (m/s) (mdeg) (mdeg)
sdB RJ\:/[Smw =16.87 R]\:/_mew =6.90 RJVSW =8.49 RJ@SW =8.25
RMS3, =16.09 RMS3, =2.83 RMS3, =5.63 RM S35, =5.44
15dB RJ\:45mw =5.40 R]E/[Smw =3.85 RJVSW =3.55 R@Smw =3.46
RMS3; =531 RMS3;=1.36 RMS3; =224 RMS3, =222
25 dB R]\:JSTW =1.70 R]VSTW =2.02 RJVSTW =1.49 RJY/[Smw =145
RMS3, =198 RM S5, =0.50 RMS31=092 RM S5, =0.89
35dB R]E/[Smw =0.73 RZ?[STW =1.02 R@Smw =0.63 RZVSTW =0.61
RMS3, =126 RMS3,=0.20 RM S5, =037 RM S5 =0.36

Table 5: Statistics for the residuals of the observation vectors over one run. p is the mean, o is the standard deviation and
RMS is the root mean square.

Meas. statistics Range Range rate Azimuth Elevation
) (m) (m/s) (mdeg) (mdeg)
1w=1.09 1=0.04 1 =0.59 n=-0.04
Raw data o =170.33 o=15.75 o =56.75 o =57.02
RMS =170.33 | RMS =15.75 | RMS =56.75 | RMS =57.02
w=0.15 w="0.05 1 =0.59 n=-0.04
A(g‘;":ag:iﬂ)&zt)a o =30.27 o =283 0=1065 | 0=998
RMS =30.27 | RMS=2.83 | RMS=10.65 | RMS =9.98
w=1.02 w="0.01 n=0.55 n=-0.38
Filtered data | 0 =13.29 o =0.01 o=4.60 =424
RMS=13.31 | RMS=0.01 | RMS=4.62 | RMS=4.26
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Figure 5: Residuals for the observation vectors, computed as the difference between the nominal trajectory and the
simulated observation vectors.

Table 6: Statistics for the EKF residuals over one run. Residuals for the observation vectors and norm of the position and
velocity vector residuals. p is the mean, o is the standard deviation and RMS is the root mean square.

. Range Range rate Azimuth Elevation Position Velocity
EKFstatistics | ) (m/s) (mdeg) (mdeg) (m) (m/s)
=134 =004 =064 =011 11 =190.43 1=27.83
Rawdata | o =837 0=522 o =546 o =494 o = 106.09 o=13.37
RMS =848 | RMS =5.22 | RMS =5.49 | RMS =4.94 | RMS =217.99 | RMS = 30.87
=043 =003 =067 =092 11 =99.66 =474
A(gelr';‘ag;d :L"‘St)a o =785 o=1.17 o =258 o =259 o =73.48 o =6.60
p RMS =7.86 | RMS = 1.17 | RMS =2.66 | RMS =2.61 | RMS = 123.78 | RMS = 8.12
=031 =001 =079 =056 11 =84.00 =352
Filtered data | o = 5.59 o =0.06 0 =225 o=228 o =69.95 o =631
RMS =5.75 | RMS = 0.06 | RMS =2.38 | RMS =2.35 | RMS = 109.27 | RMS =7.22
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Figure 6: EKF residuals for the observation vectors (a) - (d) and norm of the position and velocity vector residuals (e) -
(f). The residuals are computed as the difference between the nominal trajectory and the tracking filter estimates.



Table 7: Statistics for the EKF residuals of the observation Stella 073-15-26. Residuals for the observation vectors and
norm of the position and velocity vector residuals. p is the mean, o is the standard deviation and RMS is the root mean

square.
Stella 073-15-26 Range Range rate Azimuth Elevation Position Velocity

EKEF statistics (m) (m/s) (mdeg) (mdeg) (m) (m/s)

©w=-3.35 1 =0.08 1n=9.83 nw=-3.04 ©w=125431 =425

Raw data o =06.06 o=2.11 o=1.67 0=229 o =52.05 o=2.16
RMS =693 | RMS=2.11 | RMS=9.97 | RMS =3.80 | RMS =259.58 | RMS =4.77

1w=-3.86 ©n=0.11 n=9.81 w=-3.07 ©w=251.61 =267

‘*(;‘;r;‘agf ;L‘;t)a 0=431 |o0=121 |o=154 |0=168 | o=3898 o=1.14
p RMS =578 | RMS=1.22 | RMS=9.93 | RMS =3.50 | RMS =254.61 | RMS =2.90

nw=-2.84 ©=-0.01 n=0.34 1w=-3.83 1 =106.99 nw=1.71

Filtered data o=2.12 o=0.17 o=1.25 o=145 o =30.01 0=0.82
RMS =354 | RMS=0.17 | RMS=1.30 | RMS=4.09 | RMS=111.11 | RMS =1.89

Table 8: Statistics for the EKF residuals of the observation Stella 077-13-38. Residuals for the observation vectors and
norm of the position and velocity vector residuals. p is the mean, o is the standard deviation and RMS is the root mean

square.
Stella 077-13-38 Range Range rate Azimuth Elevation Position Velocity

EKTF statistics (m) (m/s) (mdeg) (mdeg) (m) (m/s)

u=-5.59 1=0.10 1w=2_828 =192 n=221.09 =498

Raw data 0 =9.00 o=2.08 o=231 0=2.63 0=95.29 oc=2091
RMS =10.59 | RMS =2.09 | RMS =8.60 | RMS =3.26 | RMS =240.75 | RMS =5.77

uw=-5.79 n=0.12 nw=2_8.25 n=1.84 n=216.49 =327

A(;elr;‘i‘iga o =8.10 =119 | 0=225 |0=220 |o=81.56 o =167
RMS =995 | RMS=1.20 | RMS=8.55 | RMS=2.87 | RMS =231.32 | RMS =3.68

u=-478 1 =0.00 w=-147 w=1.06 w=282.38 u=1.96

Filtered data 0 =6.96 =024 o=3.01 oc=178 o=44.23 o =0.96
RMS =843 | RMS=024 | RMS=3.34 | RMS=2.07 | RMS =93.43 RMS =2.18

Table 9: Statistics for the EKF residuals of the observation Stella 077-15-17. Residuals for the observation vectors and
norm of the position and velocity vector residuals. w is the mean, o is the standard deviation and RMS is the root mean

square.
Stella 077-15-17 Range Range rate Azimuth Elevation Position Velocity

EKTF statistics (m) (m/s) (mdeg) (mdeg) (m) (m/s)

w=-4.81 u=0.09 n=2_8.74 nw=-2.52 1 =208.52 =444

Raw data =694 o=2.09 o=1.88 o=2738 o=69.17 c=2.19
RMS =844 | RMS=2.10 | RMS=8.94 | RMS =3.46 | RMS =219.70 | RMS =4.95

uw=-5.13 n=0.14 n=2_873 w=-2.57 1=207.91 1w=2.88

%‘iri‘agﬁf' ;f;t)a =533 | o=113 |o0=169 |o0=193 |o=5966 o =139
p RMS =739 | RMS=1.14 | RMS=8.90 | RMS =321 | RMS =216.28 | RMS =3.19

w=-423 w=-0.01 w=-0.85 w=-3.30 1= 86.88 w=1.75

Filtered data o=2.51 o=0.20 o=131 o=157 o =25.54 =091
RMS =492 | RMS=0.20 | RMS =1.56 | RMS =3.66 | RMS =90.55 RMS =1.97
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