MACHINE LEARNING APPLIED TO THE OPTIMIZATION OF SST SENSOR TASKING

Igone Urdampilleta Aldama‘", Daniel Lubian Arenillas®, Ignacio Grande Olalla®, and Fernando Pina
Caballero®

WCDTI, Calle del Cid 4, Madrid 28001, Spain, Email: igone.urdampilletaQcdti.es
@ Deimos Space, Ronda de Poniente 19, Tres Cantos 28760, Spain, Email:
{daniel.lubian,ignacio.grande,fernando.pina’} Qdeimos-space.com

ABSTRACT

In the frame of Spanish Space Surveillance and Tracking
(SST) activities, and in particular, in regards to the oper-
ations of the national network of SST sensors (S3TSN),
the S3TOC (Spanish operational centre for SST) is un-
dertaking research activities aimed at optimizing the use
of national resources. One of those initiatives is centred
on an analysis of the performances of sensors over three
years of operations, with special focus on the five tracking
sensors of the total of nine optical sensors contributing to
the S3TSN network.

Data since July 2016 is being analysed, with Machine
Learning techniques, in order to identify the most relevant
patterns within the unsuccessful tasks that have not been
accomplished by the sensors. The outcome of the study
will be considered for new dynamic planning of activities
under evaluation in the S3TOC.

Supervised Machine Learning algorithms from neural net-
works to ensemble-learning-based estimators are applied
to a set of data formed by the original planning requests
sent by the S3TOC sensor planner, the orbital information
associated to those objects (maintained by the S3TOC
cataloguer or based on third party information), and the
Sensor Monitoring System (SMS) deployed at S3TOC.
SMS retrieves the information from the sensors daily data,
including information on any relevant technical unavail-
ability and information on weather conditions.

Over the past three years of operations, more than 1200
planning requests (a request to observe a certain object in
a predefined period containing several slots) with more
than 150.000 observation slots have been sent to the nine
optical telescopes of the S3TSN. The overall 35% of these
requests have been identified as unsuccessful tracking re-
quests (after removing bad weather and technical issues
unavailability). The study is intended to estimate the prob-
ability of a tracking request being successfully observed
or not by evaluating which are the main aspects playing
a role (faint objects, inaccurate orbital information, geo-
metrical conditions, sky conditions, etc). The aim is to
identify the best recommendations for future tasking to
minimize the impact of such conditions.

The paper summarizes the statistical analysis carried out as
a first step to understand the possible contributing features
to the model together with the main findings derived from
this work. Additionally, it describes the approach used
in deriving the Machine Learning based estimator of a
successful observation probability, comparing models like
a feed-forward neural network, a random forest or adaptive
boosting based on decision trees. This probability can
be incorporated into the future planification activities in
the S3TOC. Finally, general recommendations for SST
observations, not only for the national S3TSN network
will be derived.

Keywords: SST; S3TOC; EUSST; machine learning; sen-
sor tasking; random forest.

1. INTRODUCTION

The Spanish Space Surveillance & Tracking Operational
Centre (S3TOC) sends planned observation requests for
each night to the S3T sensor network. The main objective
is to maintain the quality of the space objects catalogue
and to provide collision risk assessment as part of the Eu-
ropean SST consortium (EUSST). These planned requests
are successful if the observation is carried out by the tele-
scope and measurements are sent back to the S3TOC to be
processed. Nevertheless, the requests are not always ful-
filled due to bad weather, technical issues or other reasons
(known or unknown).

The objective of this activity is to find an underlying pat-
tern for these failed observations and determine an estima-
tion of the probability of a request being successful, using
machine learning (ML) techniques. With this probability,
the observation tasking process could be improved and
optimized.

ML is a data-driven modelling technique [1, 2] from the
field of Artificial Intelligence (AI) that has been booming
in the last decade due to the digitization of the society, the
availability of a multitude of data in all industrial sectors
and the increase of computing capabilities. This, together
with the possibility of extracting and recognizing patterns

Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20-23 April 2021, published by the ESA Space Debris Office
Ed. T. Flohrer, S Lemmens & F. Schmitz, (http://conference.sdo.esoc.esa.int, May 2021)

https://www.eusst.eu/

easily thanks to programmatic techniques such as ML,
makes it very interesting to import them to a sector such
as space, and in particular in the area of Space Situational
Awareness (SSA).

The high proliferation of space objects in orbits in the
recent years and the future prospect, make necessary the
application of different mitigation strategies in coopera-
tion with an exhaustive surveillance and tracking services
of these objects, as provided by EUSST. Anything that can
contribute to the improvement and automatization, and
make this services provided more efficient should be defi-
nitely encouraged. This includes, for example, the usage
of ML techniques in some processes of the SST-chain, like
sensor tasking and planning.

ML techniques are mainly based on statistics and opti-
mization. Through this, a base algorithm automatically
adjusts a multitude of parameters to a previously selected
and prepared set of data. This collection and preparation
is perhaps the most important and difficult part of the pro-
cess. If the data used is not good enough, the model will
not be able to find an underlying pattern and could not
be used with new similar examples (or samples) of that
data. In other words, it will not be able to ‘learn’ from it.
Therefore, it is important to have a model as good as the
dataset, with at least similar performance.

In this work, the dataset is directly provided by the S3TOC
and it has been expanded with the two-line elements
(TLESs) in order to increase the information available for
the ML algorithms. Using the information included in
these requests and knowing whether the observation re-
quest is successful or not (and the reason), a ML model
is trained to solve this binary classification problem (suc-
cessful or unsuccessful observation). Several supervised
ML algorithms are considered [1, 2, 6] and evaluated to
finally select a Random Forest (RF) classifier as the best
candidate for the sensor tasking and planning activity.

This paper is organized as follows. Section 2 offers an
overview of the methodology followed along the study.
The results derived from the training and evaluation of the
different ML algorithms are then described in Section 3.
Finally, Section 4 summarizes the main conclusions and
future work proposals.

2. METHODOLOGY

The first step in the methodology of working in the field
of ML is to define the problem properly. In this case, the
aim is to classify an observation request into two classes
(possibly successful or unsuccessful). The problem is
then a binary classification, and the number provided by
the algorithm as output will be the probability that an
observation request is successful or unsuccessful.

Given the data-driven nature of ML, the second step once
the problem has been defined is to get the data needed
to solve it. This data shall be prepared, filtered and ex-
panded, when it is possible. For example, it should be

evaluated the generation of new information (or features)
from the raw dataset, which can influence the problem to
be solved. Another activity could be the elimination of
those samples that are easily distinguishable as erroneous
or uninformative, like outliers.

Subsequently, we proceed to select the algorithm or algo-
rithms that can be used to solve the problem. There are
algorithms specialized in the treatment of images, time
series or a vector of numbers. Moreover, the metric used
to evaluate the goodness of the model depends on the type
of problem, since a regression problem (with a continu-
ous output) is not the same as a classification problem
(discrete output).

In the final step, these ML algorithms are trained (fit) with
a part of the dataset (Training set and Test set), while a
smaller part (Validation set) is reserved for the evaluation
of the model, as there are usually many hyperparameters
to optimize in the algorithm, see Fig. 1.

Validation set } [Training set] [Test set }

Select algorithm
and
hyperparamers

ML
engineer

Train model

Evaluate model

Figure 1. Activity diagram of the Model Trainer and Eval-
uator component.

2.1. Dataset

The initial dataset contains 1200 observation requests with
more than 150.000 observation slots from the six sensors
of the S3STN (TJO, TRACKER, TAC80 and BOOTES
network: B2-ESP, B3-NZL, B5-MEX). From each slot
the target object, time slot, sensor and sensor location
information have been derived for a time period between
May 2017 and June 2020. If the observation request is
unsuccessful, the reason is codified in four classes: ‘bad
weather’, ‘technical issues’, ‘other’ and ‘unknown’. This
is shown in both Fig. 2 and Fig. 3.

By means of TLE sets, this initial dataset is expanded by
adding more features like the classical orbital elements,
descriptors of the right ascension, declination, azimuth,
elevation, and features related to background illumination
or the magnitude of the target object.

The list of features evaluated in this study is as follows:

e sensor_id: sensor identifier.

sensor_lat: latitude of the location where the
sensor is located in degrees.

sensor_lon: longitude of the location where the
sensor is located in degrees.

sensor_alt: altitude of the location where the
sensor is located in meters.

slot_duration: duration of the observation slot.

target_sma: semi-major axis of the target object
in kilometres.

target_inc: inclination of the target object in de-
grees.

target_raan: right ascension of the ascending
node of the target object in degrees.

target_ecc: eccentricity of the target object.

target_aop: argument of the perigee of the target
object in degrees.

night_fraction: fraction of the night, from O to
1 (0 is sunset and 1 is sunrise). This feature would
show if an observation was taken early in the night
or at the end, when there is more background light
noise.

observer_sun_sat_angle_max: maximum so-
lar angle in degrees.

observer_sun_sat_angle_min: minimum so-
lar angle in degrees.

ang_distancemoon_min: minimum angular
(degrees) distance to the moon during the predicted
track.

moon_phase: phase of the moon between 0 and 1
(new to full moon).

elev_min: minimum elevation during the track in
degrees.

elev_max: maximum elevation during the track in
degrees.

az.min: minimum azimuth during the track in de-
grees.

az_max: maximum azimuth during the track in de-
grees.

ra_min: minimum right ascension during the track
in degrees.

ra_-max: maximum right ascension during the track
in degrees.

dec_min: minimum declination during the track in
degrees.

dec_max: maximum declination during the track in
degrees.

35000 BN successful

mm unsuccessful -
30000
25000
20000
15000 .
10000
5000 . I
, — 1
& 8 & &8 2 &
& B 8 = §

Sensor_name

Figure 2. Distribution of successful/unsuccessful request
samples per sensor (absolute values).

100

EE equest_successful
N request_unsuccessful

B2-ESP
B3-NZL
BS-MEX
IACED
TJO
TRACKER

EENSOr_name

Figure 3. Distribution of successful/unsuccessful request
samples per sensor (relative to total observation per sen-

sor).

2.2.

Machine Learning models and algorithms

Since this is basically a binary classification problem,
different models suitable for this problem [1, 2, 6] are
considered:

e Multilayer Perceptron (MLPClassifier): the

most basic kind of Feed-forward Neural Network
(NN).

¢ Decision Tree (DecisionTreeClassifier):

¢ Random

predicts the value of a target variable by learning
simple decision rules inferred from the data features.

Forest (hereafter RF,
RandomForestClassifier): using a set
of decision trees, each built from a sample drawn
with replacement and at each node the best split

is found using information of a subset of features.
Then, the prediction of all trees is averaged for the
result of the ensemble. This technique is called
ensemble learning.

» Extremely Randomized Trees
(ExtraTreesClassifier): similar to RF,
but the splits are selected from the best of a set of
random splits, increasing the randomness of the
process.

* Logistic Regression (LogisticRegression):
consists on performing a regression for a binary vari-
able using a logistic function.

¢ Linear model fitted with Stochastic Gradient Descent
(SGD, SGDClassifier): fits a linear model using
the SGD optimiser.

* Gradient Boosting (CatBoost, XGBoost and
LightGBM): gradient boosting on decision trees,
from the catboost [12], xgboost [I]1] and
lightgbm [10] libraries. Similar to RF, but each
decision tree of the ensemble is added and trained in
conjunction to the previously trained decision trees.

» Adaptive Boosting (AdaBoost): adaptive boosting
on an ensemble of decision trees. Similar to RF, but
instead of averaging all decision trees, it is a weighted
sum that is learned during the training process.

Each model has its advantages and disadvantages. For ex-
ample, simpler algorithms like Logistic Regression or the
Decision Tree might not be able to capture the complexity
of the problem if the pattern is not very clear. Another ex-
ample is that the Extremely Randomized Trees algorithm
is, in principle, less prone to high variance and bias than
the RF. On the other hand, RF has the advantage of reduc-
ing the bias, although it can have an increased variance
compared to other ensemble learning methods [3].

Half of the selected models listed above rely on a tech-
nique called ensemble learning. This technique consists
of a set of ‘weak’ learners, which are trained together and
their results are considered at the same time to create a
’strong’ learner. An example of this kind of weak learner
is a Decision Tree, which is a very simple model (a set
of if-else rules whose thresholds are computed automati-
cally). Depending on how a set of these Decision Trees
is trained (rules of node splitting, voting, etc.), different
ensemble learning algorithms arise.

The implementation of these models is done in the
scikit-learn Python library [0, 7], the standard li-
brary for Machine Learning in Python, except where oth-
erwise specified.

2.3. Training and evaluation process

The aforementioned models are going to be tested, or
trained with default parameters and basically no tuning

RandomForestClassifier

CatBoostClassifier

ExtraTreesClassifier

MLPClassifier

AdaBoostClassifier

LogisticRegression

DecisionTreeClassifier

SGDClassifier

Figure 4. ML model score with default parameters consid-
ering features directly related to the sensors

RandomForestClassifier
ExtraTreesClassifier
XGBClassifier
CatBoostClassifier
LGBMClassifier
DecisionTreeClassifier
MLPClassifier
AdaBoostClassifier

LogisticRegression

00 02 04 06 08 10

Figure 5. ML model score with default parameters remov-
ing features directly related to the sensors

of hyperparameters, in two exercises. First one, with
a dataset including the features that identify directly a
sensor (sensor ID, sensor coordinates and observation slot
duration) and second one, removing the features related
with the sensor characterization. The results are shown in
Fig. 4 and Fig. 5. These figures contain the score of the
model to perform the classification of the test set against
known results. The way to compute the score differs from
model to model, but the library manages to define it in a
way that it is comparable between them. The closer it is to
1, the better the accuracy of the model is. The results are
better, in average, for the first exercise, since it includes
information from the sensor. Removing that information
decreases the accuracy of the model since there is a direct
link between the sensor identifier (or any other feature
directly related to the sensor like the location) and the
distribution between successful/unsuccessful requests, as
it can be seen in Fig. 2.

The comparison between Fig. 4 and Fig. 5 confirm that
the dataset is unbalanced regarding the sensor information.
Additionally, the distribution of successful/unsuccessful
samples differs among them for the different sensors, as
shown in Fig. 3. Therefore, including features that directly
link those difference regarding to the sensor characteristics
would hide underlying patterns. For example, TJO has a
large number of unsuccessful requests due to contractual
differences and operational framework. The most basic

LogisticRegression DecisionTreeClassifier RandomForestClassifier

0.8 07 08
__ unsuccessful 0.22 _ 06 —
% 06 % % 0.6
é é 05 é
= 04 = = 0.4
P successful 0.076 = 04
0.2 0.3 0.2
Predicted label Predicted label Predicted label
ExtraTreesClassifier AdaBoostClassifier CatBoostClassifier
0.8 08 0.8
__ unsuccessful _ 0.37 _
3 06 3 063 06
o] o
g g g
= 04 = 04 = 0.4
= successful = 0.11 =
0.2 0.2 0.2
Predicted label Predicted label Predicted label
MLPClassifier LGBMClassifier XGBClassifier
0.8
08 0.8
__ unsuccessful _ _
o 06 @ 06 2 0.6
© o @
g g g
- 04 =) 04 = 0.4
= successful = 09 =
02 02 0.2
unsuccessful successful unsuccessful successful unsuccessful successful
Predicted label Predicted label Predicted label

Figure 6. Confusion matrix for different models when no sensor features are considered. It shows the number of TN (top
left), FP (top right), TP (bottom right) and FN (bottom left).

(and dummy) model that predicts the probability of a re-
quest being successful for TJO would say that it is 30%.
Removing sensor-related features reduces the possibility
of this happening, and would force the appearance of un-
derlying patterns. For all these reasons the sensor-related
features are neglected and only sensor-agnostic features
are used instead in the present work. Apart from the ob-
vious sensor-related features like the sensor identifier or
its location, the slot duration was also dismissed because
some sensor had smaller values which would have created
a direct link to the sensor.

The Confusion Matrix (see Fig. 6) is an additional tool
for evaluating the performance of classification models.
The figure shows clockwise the number of true negatives
(TN), false positives (FP), true positives (TP) and false
negatives (FN), adimensionalized with respect to the total
number of true samples per category. The TP measures
the proportion of positives (successful observations) that
are correctly identified. Otherwise, the TN measures the
rate of negatives (unsuccessful observations) that are cor-
rectly identified. The rule of thumb proves that the more
diagonal the matrix is, the better is the classification.

3. RESULTS

The initial results of the ML models evaluation based on
Confusion Matrices (see Fig. 6) present a TP rate close to
90% for most of the models. However, the TN rate covers
a large variety of values from 22% (Logistic Regression)
to 65% (Decision Tree), confirming that, at first, not all
the models can estimate the TN with enough accuracy.
Additionally, in general all the models have a high rate of
FP, between 30-60%, which means that a lot of requests
are being flagged as successful when it is known that they
are not. This value can be still improved and it is important
to reduce it as much as possible, although it is preferable
to a high rate of FN.

For both cases (with and without sensor information),
ensemble-learning algorithms based on trees (Decision
Tree, RF and Extremely Randomized Tree) seem to per-
form better. Amongst them, the RF algorithm is the most
promising one due to its good performance and accuracy.
Thus, it is selected for further investigation. Another
model considered for the next step is the Feed-forward
NN, because its potential capabilities, flexibility and their
different principles compared to other algorithms.

3.1. Feed-forward Neural Network

Neural Networks are the basis of the ML field known
as Deep Learning [5]. Since the multi-layer perceptron
seemed to work relatively well, the Feed-forward NN is
selected for a more precise training and evaluation phase.
The Feed-forward NN is a generalization of the multi-layer
perceptron.

However, scikit-learn is a specialized ML library
but does not have the capabilities for NN models. For this
reason, it is necessary to make the leap to another Python
library designed and developed specifically for the Deep
Learning field, i.e. NN. The selected library is Tensorflow,
from Google [9]. This library includes several optimizers,
layers and evaluation functions for all kinds of NN.

Normalized Confusion Matrix

Tue label

0.0 10
Predicted label

Figure 7. Confusion Matrix for the NN found by autokeras.

As part of this phase, several architectures are tested to
find the optimal one by using the autokeras library
[13] on top of Tensorflow. This way one can automatically
tune the hyperparameters, improve the architecture and
performance of the NN (see Fig. 7). After several trails
with the optimal architecture, the results obtained in all
the cases show lower performances than the RF algorithm
(see Fig. 10). Moreover, since the SW development effort
using a library like Tensorflow is very high (it is compu-
tationally expensive), this model is ultimately discarded.
Nevertheless, further analysis is highly recommended,
since the NN is expected to provide better results. Some
future upgrades could include the improvement the hyper-
parameters tuning, the trial of different scaling methods
or the application of alternative regularization techniques
as neuron dropping, among others.

3.2. Random forest

The implementation of the RF algorithm [4] is provided by
scikit—-learn. This algorithm presents the best per-
formance among the ones tested during the first selection.
After an initial analysis, the hyperparameters used for the
first training, make the model overfit the Training set. The
Confusion Matrix for the Training set shows that the TP
rate is 1, which means a 100% of success, whereas the
Confusion Matrix for the Test set shows a TP rate of 0.89.
This difference appears in the under or overfit estimators.

Three hyperparameters are tuned to reduce the overfit-
ting: the number of estimators (n_estimators), the
maximum depth of the decision trees (max_depth) and
the percentage of the total number of samples to con-
sider for node splitting (max_samples). The training

Tue label

Tue label

Tue label

Tue label

Tue label

Tue label

]

Training set

0 031
14 0.045
] 1

Predicted label

0+ 031
1 0.046
o 1

Predicted label

0 1 00012
| . 1
0 1

Predicted label

094 0.056

0.00017 1
1

Predicted label

Predicted label

Predicted label

|
ﬂ
ﬂ
|
|
|

0.8

0.6

04

0.2

08

0.6

0.4

0.2

10

0.8

0.6

0.4

02

0.0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

09
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

Tue label

Tue label

Tue label

Tue label

Tue label

Tue label

Test set

0.29
0.053
] 1

Predicted label

029
0.054
o 1

Predicted label

Predicted label

Predicted label

|
ﬂ
ﬂ
|
|
|

09
08
o7
06
05
04
03
02
01

09
08
o7
0.6
05
04
03
02
01

09
08
07
06
05
04
03
0z

01

09
08
07
06
05
04
03
02
01

09
08
07
06
0s
04
03
0z
01

08

o7

06

05

0.4

03

0z

MODEL 0. Score = 0.703
boostrap = True

ccp_alpha = 0.0
class_weight = None
criterion = gini

max_depth = 8
max_features = auto
max_leaf_nodes = None
max_samples = None
min_impurity_decrease = 0.0
min_impurity_split = None
min_samples_leaf = 1
min_samples_split = 2
min_weight_fraction_leaf = 0.0
n_estimators = 100

n_jobs =8

oob_score = False
random_state = None
wverbose =0

warm_start = False

MODEL 1. Score = 0.703
n_estimators = 130

MODEL 2. Score = 0.798
n_estimators = 200

MODEL 3. Score = 0.792
max_depth = 20

MODEL 4. Score = 0.771
max_depth = 15

MODEL 5. Score = 0.779
ccp_alpha = 1e-05
class_weight = balanced
n_estimars = 150

score and the cross-validation score should be similar
in value when no under or overfitting is present. See
Fig. 9 for the validation curves of these hyperparameters,
with n_estimators= 100, max_depth= None and
max_samples= 1 as default values.

Validation Curve with RF: n_estimators

100

095

0.90 —— Taining score

~——— Cross-validation score

Score

0.85

0.80 et e

10* 107
HﬁEStIthOI’S
Validation Curve with RF: max_samples

—— Taining score
0.710 4 — Cross-validation score

0.705

Score

0.700

0.695 ~

0.690

T T

T T T T T
01 0.2 03 04 05 06 07 0.8
max_samples

Validation Curve with RF: max_depth

100 1/— Taining score
—— Cross-validation score
095

090

0.80

100 10t
max_depth

Figure 9. Cross-validation curves for the RF model.
The blue and orange lines show the training and cross-
validation scores, respectively. The shaded area represent
the variability in the 5-fold cross validation set.

Several combinations of these values are selected and
tested further, see the hyperparameters for the five differ-
ent models in Fig. 3.2, Right, and their Confusion Matrices
in Fig. 3.2, Left and Middle. When comparing the Con-
fusion Matrix for the Training set and the Test set, it is
possible to see that overfitting happens in most scenarios,
so0 a compromise solution has to be taken. Overfitting hap-

pens when the model is fitted to the Training set and is not
able to generalize in the same way to the Test set (or new
data, eventually). Looking to the figures (Fig. 3.2), this
means that the model would perform significantly worse
in the Test set when compared with the performance on
the Training set. Therefore, when both matrices are close,
the model is less overfitted. With that in mind, Model 5
(the more fine-tuned) is the best candidate and is selected
as final RF model (Fig. 10). It has additional variation of
hyperparameters (see Tab. 1) that improves the general
performance of the model. As a result, 84% of successful
observations (TP rate) and 68% of unsuccessful observa-
tion (TN rate) are truly identified and classified. The rate
of FP in the Test set is not negligible: 32%. This proves a
remarkable good performance for an initial analysis, even
though, the score is still not completely optimized, and it
can be improved in future studies.

Table 1. Hyperparameters for the final RF model.

Hyperparameter Value
bootstrap True
ccp.alpha 1.00E-05
class_weight balanced
criterion gini
max_depth 15
max_features auto
max_leaf_nodes None
max_samples None
min_impurity._decrease 0
min_impurity_split None
min_samples_leaf 2
min_samples_split 10
min_weight_fraction_leaf 0
n_estimators 150
n_jobs 8
oob_score False
random_state None
verbose 0
warm_start False

Tue label

Predicted label

Figure 10. Confusion Matrix for the final RF model.

To evaluate the goodness of the classifier, Tab. 2 provides
useful metrics (Precision, Recall and F;). The closer
are these values to 1, the better they are. The Precision

target_sma

target_ecc
farget_inc

target_raan
target_aop

elev_max

az_min

aZ_max

elev_min

dec_max
dec_min

moon_phase [—— —
T3 —————
ang_distance_moon_min |
3 MAX | ——
night_fraction e m—
observer_sun_sat_angle_max | —
observer_sun_sat_angle_min | ——

B RF internal alg.
Permutation importances

000 002 004

008 0l 012 014 016

Figure 11. Features importance for the internal RF algorithm (blue) and the permutation importance algorithm (orange).

measures the ability of the classifier not to label as positive
a sample that is negative. It is also known as positive
predictive value. The Recall or Sensitivity is, intuitively,
the ability of the classifier to find all the positive samples.
It can be viewed as the probability that a successful request
is labelled as such. The Recall values for successful and
unsuccessful match the diagonal of the confusion matrix
shown in Fig. 10. The Fj score can be interpreted as a
weighted average of the Precision and Recall, where an
F'; score reaches its best value at 1 and worst score at 0.

>~ True positive

Precision — |
recision >~ Predicted condition positive 0
Recall — > True positive @)
> Condition positive
Precision - Recall
F =2 recision - Reca 3)

" Precision + Recall

Table 2. Classification metrics for the final RF model.
Precision Recall F;

Unsuccessful 0.71 0.68 0.70
Successful 0.82 0.84 0.83
Accuracy - - 0.78
Macro average 0.76 0.76 0.76
Weighted average 0.78 0.78 0.78

The results of Tab. 2 show a Precision, Recall and F}
higher than 0.8 for successful observation request and
around 0.7 for unsuccessful, with an accuracy score of
~80%. These values, representative of the binary classifi-
cation metrics, confirm the very good behaviour of the RF
model, already explained above.

One of the most interesting capabilities of the tree-based
models is its explainability [14]. In other words, it is
possible to compute directly from the model the features
importance as the weight of each feature in predicting
the probability of the sample. In Fig. 11 these values are
shown, which are computed with two algorithms: the inter-
nal RF algorithm (blue), and the permutation importance
algorithm (orange).

The first one relies on the criterion used when splitting
new branches and leaves, and the number of samples it
involves. This is based on the mean decrease in impurity
during the training phase. Gini impurity is a measure
of how often a randomly chosen element from the set
would be incorrectly labelled if it was randomly labelled
according to the distribution of labels in the subset. The
impurity-based feature importance of RFs suffers from
being computed on statistics derived from the Training set:
the importance can be high even for features that are not
predictive of the target variable, as long as the model has
the capacity to use them to overfit.

The second one is algorithm-agnostic since it relies on
permuting features to assess the impact of that operation
in the prediction. The permutation feature importance
is defined to be the decrease in a model score when a
single feature value is randomly shuffled. This solves the
limitations of the RF internal algorithm as it is completely
independent on the training phase.

Once the sensor-related information is removed, the main
feature patterns can be recovered. Fig. 11 reveals that
the most relevant features, which directly affects in the
probability of success, are the classical orbital elements.
Mainly the ones related to the size and the shape of the
orbit: the semi-major axis and the eccentricity. This is
probably due to the presence of a high number of GEO
and GTO objects in the dataset.

4. CONCLUSION AND FUTURE WORK

The present work focuses on a ML model training with
S3TOC data to predict if an observation request might
be successful or not. Once the binary problem definition
has completed, the next step has consisted of the dataset
preparation, filtering and expansion. In the final step, an
exhaustive evaluation of different ML models and algo-
rithms has been performed concluding that the Random
Forest is the most suitable for the optimization of sen-
sor tasking. The RF shows a precision of 80% and a
successful positive rate of 84%. These results present a
remarkable performance of this model for a first study.

One of the main finding derived of this ML model develop-
ment is related to the S3TOC provided dataset. There are
important and relevant differences between the samples
depending on each sensor. This means that a model con-
sidering directly features related to the sensor could give
more weight to the more represented sensor in the sam-
ple, hiding underlying patterns. For this reason, sensor-
agnostic (no sensor-related) features have been selected.
This study has additionally revealed that the classical or-
bital elements are the features with higher influence in the
probability of success calculation.

Future work will include an improvement in the dataset to-
wards a more equally balanced sensor-wise dataset. Addi-
tionally, the hyperparameters tunning and the application
of a dimensionality reduction algorithm will be revisited.
Finally, the integration of the probability in the planifica-
tion process of the S3TOC chain will be evaluated.

ACKNOWLEDGMENTS

The EU SST activities have received funding from the
European Union programmes, notably from the Horizon
2020 research and innovation programme under grant
agreements No 760459 and No 952852.

Disclaimer: The content of this paper reflects only the
view of the SST Cooperation and the European Commis-
sion and the Research Executive Agency are not respon-
sible for any use that may be made of the information it
contains.

REFERENCES

1. Bishop CM., (2006). Pattern Recognition and Machine
Learning, Springer

2. Hastie T., Tibshirani R., and Friedman J., (2008). The
Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction, Springer, 2n ed.

3. Zhou Z.-H., (2012). Ensemble Methods: Foundations
and Algorithms, Chapman & Hall

4. Breiman L., (2001). Random Forests, Machine Learn-
ing, 45, 5-32. DOI:10.1023/A:1010933404324

5. Goodfellow 1., Bengio Y. and Courville A., (2016).
Deep Learning, MIT Press

6. Pedregosa F., Varoquaux G., Gramfort, A., Michel, V.
et al, (2011), Scikit-learn: Machine Learning in Python,
Journal of Machine Learning Research, 12, 2825-2830

7. Scikit-learn documentation (https://
scikit—-learn.org/), version 0.23

8. Keras documentation (https://keras.io/), ver-
sion 2.4

9. Tensorflow documentation
tensorflow.org/), version 2.3

10. LightGBM documentation (https://lightgbm.
readthedocs.io/), version 3.0

(https://www.

11. XGBoost documentation (https://xgboost.
readthedocs.io/), version 1.2.1

12. CatBoost documentation (https://catboost.
ai/), version 0.24

13. Autokeras documentation (https://autokeras.
com/), version 1.0

14. Murdoch W.J., Singh C., Kumbier K., Abbasi-
Asl R., Yu B, (2019) Definitions, methods, and
applications in interpretable machine learning. Pro-
ceedings of the National Academy of Sciences of
the United States of America 116(44):22071-22080.
DOI:10.1073/pnas.1900654116

https://scikit-learn.org/
https://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://lightgbm.readthedocs.io/
https://lightgbm.readthedocs.io/
https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/
https://catboost.ai/
https://catboost.ai/
https://autokeras.com/
https://autokeras.com/

	Introduction
	Methodology
	Dataset
	Machine Learning models and algorithms
	Training and evaluation process

	Results
	Feed-forward Neural Network
	Random forest

	Conclusion and future work

