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ABSTRACT

The space environment around Earth is being continu-
ously exposed to risks of on-orbit break-up events and to
the growing number of smaller satellites and large con-
stellations, leading to the unavoidable growth of space
debris population. Surveillance and tracking of this popu-
lation including the operational satellites remain essential
to monitor the space environment evolution and to protect
the operational satellites, and population and infrastruc-
ture on the ground. That drives the need to develop and
improve the algorithms in orbit computation.

The Infinitesimal Angles Method introduced in [1] is con-
ceived to compute initial orbits of Low Earth satellites
from radar data by applying a correction to the line of
sight. Here a description of the extended algorithm [2]
is provided, with some numerical tests to show how this
method can correct the errors in the angular measure-
ments for some simulated objects.

Keywords: Initial Orbit Determination; LEO Satellites;
Earth Oblateness.

1. INTRODUCTION

Since the last decade, we observe that the population den-
sity in space environment around the Earth, in particu-
lar at low altitudes (LEO), continues to increase signifi-
cantly. With the proliferation of smaller payloads accom-
panied by larger constellations, almost 14000 objects or-
biting the Earth in LEO region were recorded in 2019 [3].
It is clear from the outset that surveillance and tracking
of satellites are even more challenging nowadays. There-
fore, we need to develop new methods for orbit compu-
tation and improve the existing ones. When these algo-
rithms imply iterative calculations, it is also important to
start with a good initial guess of the orbit.

A new method to compute initial orbits of LEO satellites
with radar observations was introduced in [1]. Named
Infinitesimal Angles Method, it has been extended in [2]
to take into account the Earth’s oblateness effect. In this
paper, an overview of this technique is provided, consid-
ering the secular effect of the J2 term of the geopotential

Figure 1. Geometry of the observations.

in the dynamical model. We also include some numerical
tests that show the capability of this method to correct the
errors in the angular measurements, and compare it with
the same method but without perturbations [1].

2. ORBIT COMPUTATION WITH RADAR OB-
SERVATIONS

A single radar observation gives the topocentric position
of the satellite at epoch t defined by (t, ρ, α, δ), where
ρ, α, δ are respectively the range, the right ascension and
the declination. Using α and δ as angular coordinates in
an equatorial reference frame (e.g. J2000), we can ex-
press the line of sight by the following unit vector

eρ = (cos δ cosα, cos δ sinα, sin δ)T , (1)

and the geocentric position of the observer by q. Then,
the geocentric position of the observed satellite is defined
by (see Fig. 1)

r = q + ρeρ. (2)

We introduce the unit vectors

eα = (− sinα, cosα, 0)
T
,

eδ = (− sin δ cosα,− sin δ sinα, cos δ)
T

and the orthonormal basis {eρ, eα, eδ}. In this basis, we
can write the geocentric velocity of the satellite as

ṙ = ξeα + ζeδ + (ρ̇eρ + q̇) (3)

Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20–23 April 2021, published by the ESA Space Debris Office

Ed. T. Flohrer, S. Lemmens & F. Schmitz, (http://conference.sdo.esoc.esa.int, May 2021)



where
ξ = ρα̇ cos δ, ζ = ρδ̇, (4)

are the components of the topocentric velocity of the
satellite orthogonal to the line of sight, with α̇, δ̇ the an-
gular velocities, ρ̇ the range rate, and q̇ the observer geo-
centric velocity.

A radar tracklet is made by a set of m ≥ 4 radar obser-
vations, which are collected at short time intervals during
the same pass of the satellite. In that case, the range ρ
is accurate and the line-of-sight direction given by α, δ is
poorly determined.

From one tracklet we can derive the vector

(t̄, ᾱ, δ̄, ρ, ρ̇), (5)

where t̄ is the mean epoch of the m observations. The
quantities ᾱ, δ̄ are the mean values of the angles, and the
values of the range ρ and the range rate ρ̇ can be obtained
by a polynomial fit. In order to compute an orbit, we have
to determine the values of the angular velocities (α̇, δ̇)
and provide corrections to the angles. Let us denote by
∆α,∆δ the unknown small deviations from ᾱ, δ̄ that we
call the infinitesimal angles.

3. INFINITESIMAL ANGLES METHOD

In [1] we introduced the “Infinitesimal Angles Method”,
an initial orbit determination (IOD) method for LEO
satellites based on radar observations and assuming a
pure Keplerian dynamical model [1]. This method tries
to link two tracklets1, assuming that both belong to the
same object, by solving a system of eight equations in
the eight unknowns (∆αi,∆δi, α̇i, δ̇i), i = 1, 2, where
the subscripts refer to the mean epochs of the tracklets,
which are denoted by t̃1, t̃2 after correcting for aberra-
tion.

In [2], this method has been modified by considering in
the dynamical model the secular effect of the J2 term of
the geopotential. The rates of the orbital elements due to
this secular effect are given by (see [5])
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where p = a(1 − e2) is the parameter of the two-body
trajectory and n =

√
µ/a3 the mean motion. We note

1Note that we use the term radar track in [1] and [2], which has the
same meaning as radar tracklet in this paper.

that only the right ascension of the ascending node Ω, the
argument of perigee ω, and the mean anomaly ` change
uniformily with time, while the other orbital elements re-
main constant.

Equations (6) can shortly be written as

Ėkep = Xkep(Ekep), (7)

with the Keplerian coordinates Ekep = (a, e, I,Ω, ω, `)
for the orbits. In the following, we shall assume that the
observed satellite moves according to the dynamics de-
fined by Equations (6), (7).

3.1. Projections of the equations of motion

We want to write the equations of motion (6) in Carte-
sian coordinates Ecar = (r, ṙ). To do so, we first convert
Equation (7) in

Ėcar = Y(Ecar) (8)

where

Y =
( ∂φ1

∂Ekep
Xkep

)
◦ φ−1

1

is the transformed vector field with the coordinate change

Ekep
φ1−−→ Ecar. Then, from the expression above we get

the acceleration r̈ as a function of Ecar along the solutions
of (8):

r̈ =
( ∂ṙ

∂Ekep
Xkep

)
◦ φ−1

1 =: ỹ(r, ṙ). (9)

The equations of motion (9) are projected along the line
of sight eρ at each epoch t̃i, i = 1, 2, thus obtaining two
equations of the form

K = 0

= (r̈− ỹ) · eρ

= ρ̈− ρη2 + q̈ · eρ − ỹ · eρ.
(10)

The quantity η =
√
α̇2 cos2 δ + δ̇2 is the proper motion.

3.2. The evolution of the two-body integrals

We recall the first integrals of Kepler’s problem: the an-
gular momentum c, the energy E , and the Laplace-Lenz
vector L. They are expressed as functions of r, ṙ as fol-
lows:

c = r× ṙ,

E =
1

2
|ṙ|2 − µ

|r|
,

L =
1

µ
ṙ× c− r

|r|
.



Between the epochs t̃1, t̃2 of the tracklets, the angu-
lar momentum and the Laplace-Lenz vector are not con-
served anymore if the J2 perturbation is included. In fact,
assuming the secular J2 model (6), the following rela-
tions hold (see Fig. 2):

Rcc1 = c2,

E1 = E2,
RLL1 = L2,

(11)

where

Rc = Rẑ
∆Ω, RL = Rĉ2

ω1+∆ωR
ẑ
∆ΩR

ĉ1
−ω1

.

Here Rv
ϕ denotes the rotation of an angle ϕ around the

axis defined by vector v. The unit vectors ẑ, ĉi, i = 1, 2,
are defined as

ẑ = (0, 0, 1)T ,

ĉi = (sin Ωi sin Ii, − cos Ωi sin Ii, cos Ii)
T .

Using Equations (6), the angular variations ∆Ω and ∆ω
can be determined by the formulae:

∆Ω = Ω̇1(t̃2 − t̃1), ∆ω = ω̇1(t̃2 − t̃1). (12)

Note that Equations 12 can also be written by ∆Ω =
Ω2 − Ω1, ∆ω = ω2 − ω1.

Let us define the vector v2 = eρ2 × q2. The relation
involving the Laplace-Lenz vectors (see the last equation
in 11) is projected onto v2. Finally, the evolution of the
two-body integrals is given by:

Rcc1 − c2 = 0,

E1 − E2 = 0,

(RLL1 − L2) · v2 = 0.

(13)

3.3. Lambert’s equation under J2 effect

Given a pure elliptic motion, Lambert’s theorem states
that the orbital transfer time t2 − t1 only depends on the
semi-major axis a, the sum r1 + r2 of the two distances
r1 = |P1−F |, r2 = |P2−F | from the centre of force F ,
and the length dL of the chord joining the two positions
[1, 6].

We can apply this theorem to the two geocentric posi-
tions r1, r2 of an observed object at epochs t̃1, t̃2. In the
dynamics given by (6), the mean motion evolves linearly
with time. If we denote the expression defining Lambert’s
equation by L , we have

L = ñ(t̃1 − t̃2) + (β − sinβ)− (γ − sin γ) + 2kπ = 0,
(14)

where ñ is taken from the last equation in (6), and k ∈ N
is the number of revolutions in the interval [t̃1, t̃2].

Figure 2. According to the secular J2 model (6), the
shape of the orbit and its inclination remain unchanged
between two epochs t̃1, t̃2. The directions of the an-
gular momentum (ĉ), line of nodes (n̂) (see 16) and
Laplace–Lenz vector (L), by contrast, are rotated due to
the secular variations ∆Ω,∆ω accumulated during the
time interval t̃2 − t̃1

.

The angles β, γ are defined by

sin2 β

2
=
r1 + r2 + dL

4a
, sin2 γ

2
=
r1 + r2 − dL

4a
,

(15)
where 0 ≤ β − γ ≤ 2π and r1 = |r1|, r2 = |r2| are the
two geocentric distances of the observed object at epochs
t̃1, t̃2.

In (15) the length of the chord

dL = |R̃r1 − r2|

is obtained after rotating the osculating ellipse at t̃1 so
that it overlaps with the osculating ellipse at t̃2. Precisely,
the position r1 is subject to the rotation R̃, which is ex-
plicitly given by

R̃ = R̃2R̃
T
1 ,

with

R̃1 = Rĉ1
ω1
Rn̂1

I1
Rẑ

Ω1
, R̃2 = Rĉ2

ω1+∆ωR
n̂2

I2
Rẑ

Ω1+∆Ω,

and where

n̂i = (cos Ωi, sin Ωi, 0)T , i = 1, 2, (16)

are the directions of the lines of nodes. In fact, R̃1 and
R̃2 represent the transformations from the selected equa-
torial reference frame to the orbital reference frame at the
epochs t̃1 and t̃2, respectively.

3.4. Solving a linkage problem

The Infinitesimal Angles Method tries to join the data
from two radar tracklets of the form (5), to compute one



or more initial orbits. The subscripts 1, 2 are used to dis-
tinguish the quantities according to the epochs of the two
tracklets.

The system to be solved is made by the eight equations

(Rcc1−c2, E1−E2, K1, K2, (RLL1−L2) ·v2, L) = 0
(17)

in the eight unknowns

X = (ξ1, ζ1, ξ2, ζ2), ∆ = (∆α1, ∆δ1, ∆α2, ∆δ2),
(18)

where ∆ is the vector of the infinitesimal angles.

To solve system (17), we split it into the two subsystems

G(∆) = G(X(∆),∆) = 0, (19)
J (X) = J(X,∆) = 0, (20)

where

G = (K1, K2, (RLL1 − L2) · v2, L),

J = (Rcc1 − c2, E1 − E2).

A double-iteration scheme is used to solve the subsys-
tems, consisting of two nested Newton-Raphson meth-
ods. The Newton-Raphson method at the outer loop of
the scheme computes the vector ∆ from subsystem (19)
using the iterative formula

∆h+1 = ∆h −
[ ∂G
∂∆

(∆h)
]−1

G(∆h) (21)

with the Jacobian matrix
∂G
∂∆

of the subsystem (19).

Given ∆ = ∆h at the h-th iteration, the inner Newton-
Raphson method is applied to compute X(h) = X(∆h)
from subsystem (20) using the iterative formula

Xj+1 = Xj −
[∂J
∂X

(Xj)
]−1

J (Xj) (22)

with the Jacobian matrix
∂J
∂X

of the subsystem (20).

3.5. At iteration h = 0

Let (X0, ∆0) be the starting guess of the double-iterative
scheme. At h = 0, the vector X0 is computed from the
interpolated values of δ, α̇, δ̇, ρ through the expressions
in (4). The vector ∆0 can be set equal to 0, taking advan-
tage of the assumed smallness of the angle deviations.

The vector X(0) such that J(X(0),∆0) = 0 is calculated
through formula (22). At this stage the number of revo-
lutions k is also computed as it is required in subsystem
(19) for Lambert’s equation. It is obtained by

k =

⌊
n(t̃2 − t̃1)

2π

⌋
where n is the mean motion, bxc denotes the integer
part of x. We perform the first iteration of the outer
Newton-Raphson method with the formula (21) wherein
G(∆0) = G(X(0),∆0).

Table 1. Keplerian elements at epochs t̃1 =
54127.1553819 MJD and t̃2 = 54127.2991319 MJD for
Object 1 and Object 2, respectively. The values of a, e, I
are exact, the others are approximated. Distances are in
km, angles in degrees [2].

Object 1 2
a 7818.10 7396.00
e 0.0658 0.0341
I 65.81 26.88
Ω 213.92 255.49
ω 356.70 357.13
` 202.25 198.67

3.6. At iteration h ≥ 1

For the following iterations of the double-iterative
scheme, we set X0 = X(h−1) as the updated starting
guess of vector X, and the iterations continue until we
reach a suitable tolerance on the magnitude of the dif-
ference ∆h − ∆h−1. Once the convergence has been
attained, we compute the vector X(h) with (22) to obtain
the solution(s) (X(h),∆h) of the system (17).

All the derivatives involved in the double-iterative
scheme can be found in [1] and [2].

4. EXAMPLES OF NUMERICAL TESTS

We extract here two examples of numerical tests using
simulated data from [2]. Let us consider two objects
whose orbital elements at their respective epoch t̃1 are
defined in Tab. 1. Note that for the selected orbits, the J2

perturbation is the dominant one if a small area-to-mass
ratio of the two objects is assumed [7], and the J2 effect
will be stronger for Object 2 as the inclination and semi-
major axis are smaller.

We use a two-body propagation with the secular effect of
J2 (Equations in 6) in order to generate two radar track-
lets for each object. Each tracklet is composed of four
observations taken at time intervals of 10 s. The tracklets
for Object 1 are separated by k = 13 revolutions, while
those for Object 2 are separated by k = 8 revolutions.

We add to ρ, α, δ a Gaussian error with zero mean and
different standard deviations (RMS) shown in Tab. 2. The
interpolated data that are obtained after adding the noise
to the simulated observations are given in Tab. 3, 4 for
Objects 1, 2, respectively.

The absolute differences between the computed orbital
elements and the true ones (see Tab. 1) of Objects 1, 2
are shown in Tab. 5. We show the results for the method
including the J2 effect (IA-J2) and the method that con-



Table 2. Standard deviation (RMS) of the errors added
to ρ, α, δ of the radar tracklets. These levels of noise
correspond to the Cases 3 and 4 in [2].

α, δ (◦) ρ (m)
Case 1 0.15 1
Case 2 0.15 10

siders a pure Keplerian motion (IAQ) described in [1],
with the noise levels of Tab. 2.

The method IAQ does not find a good orbit for Object 1
with the tracklets separated by 13 revolutions, while we
can be satisfied to see how IA-J2 is able to correct the
errors in the angles α, δ and to recover the known orbits
for both objects. We can observe that with a higher noise
level in ρ (Case 2), the performance of the method IA-J2

is slightly worse for the eccentricity of Object 1, while
it is almost unchanged for the orbital elements of Object
2. Tab. 6 shows the corrections provided by the method
IA-J2 to the angles α, δ for both objects.

5. CONCLUSION

The J2 effect was included in the dynamical model of the
Infinitesimal Angles method that computes initial orbits
of LEO satellites using radar data. This method attempts
to perform a linkage of two radar tracklets by solving the
system (17) in the unknowns (18) using a double-iterative
scheme.

The numerical tests with simulated data show the ability
of this algorithm to correct the errors in the angles α, δ
and to recover the Keplerian elements of the known orbit.
An overview of this method is provided in this paper, and
details and complementary numerical tests can be found
in [1] and [2].

Possible future developments of this work consist in com-
paring the method with other existing IOD methods such
as in [4], also taking large datasets of real observations,
and the inclusion in the dynamical model of the perturba-
tion represented by the atmospheric drag.
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Table 3. Data interpolated from the radar tracklets of Object 1 at epochs t̄1 = 54127.5824653 MJD and t̄2 =
54128.6241320 MJD, using the two different noise levels of Tab. 2 [2].

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 1, k = 13

t̄1
1 242.95755 −79.11215 −0.01356 0.16825 1875.98971 −4.84829
2 242.95755 −79.11215 −0.01356 0.16825 1875.98562 4.84735

t̄2
1 204.34455 53.03103 0.11860 0.10845 2061.14383 5.59005
2 204.34455 53.03103 0.11860 0.10845 2061.15395 5.58735

Table 4. Data interpolated from the radar tracks of Object 2 at epochs t̄1 = 54127.6906251 MJD and t̄2 =
54128.3300348 MJD, using the two different noise levels of Tab. 2 [2].

Epoch Case ᾱ (◦) δ̄ (◦) α̇ (◦/s) δ̇ (◦/s) ρ (km) ρ̇ (km/s)

Object 2, k = 8

t̄1
1 162.41862 −0.70695 0.12744 0.07974 1914.59715 −5.09806
2 162.41862 −0.70695 0.12744 0.07974 1914.59305 −5.09712

t̄2
1 169.53245 −20.90422 0.14196 −0.01396 2013.14698 4.73488
2 169.53245 −20.90422 0.14196 −0.01396 2013.15710 4.73218

Table 5. Absolute errors in the orbital elements of Objects
1, 2 at epoch t̃1 for the noise levels of Tab. 2 [2]. Note
that IAQ does not work with Object 2.

Object 1, k = 13 Object 2, k = 8 Case
IAQ IA-J2 IA-J2

δa 502.4785 0.0105 0.1615 1
502.4096 0.0116 0.1378 2

δe 4.32 × 10−3 7.08 × 10−5 2.00 × 10−4 1
4.76 × 10−3 1.44 × 10−4 1.50 × 10−4 2

δI 6.2022 0.0977 0.9485 1
6.2071 0.0830 0.6724 2

δΩ 5.1509 0.0469 0.5746 1
5.1487 0.0454 0.3900 2

δω 129.2975 0.0203 4.7886 1
129.3858 0.0388 3.5505 2

δ` 239.9665 0.0124 4.2105 1
239.8206 0.0095 3.1483 2

Table 6. Infinitesimal angles in degrees found by the
method IA-J2 using the radar tracklets of Tab. 3 and 4
for Objects 1 and 2 respectively [2].

Object 1, k = 13 Object 2, k = 8

Case 1 Case 2 Case 1 Case 2

∆α1 0.25737 0.08057 −0.01612 −0.00648
∆δ1 0.08058 0.07575 −1.54546 −1.12770
∆α2 −0.23547 −0.24423 0.03328 0.00800
∆δ2 −0.02666 −0.04653 −3.45550 −2.44161
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