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ABSTRACT

Characterization is a method to determine the geomet-
ric and kinematic properties of an unknown space object.
The most straightforward approach is a direct observa-
tion by a ground-based telescope, but its applicability is
limited to a relatively large object in low Earth orbit. A
more versatile method is a light curve inversion scheme,
but the shape inversion is challenging for concave ob-
jects. This research discusses a potential application of
a compressed sensing technique for a resolved image re-
covery of an unknown satellite, given its non-resolved
light curve. Compressed sensing is a signal compression
and recovery method that uses a so-called sensing matrix
as an encryption key. In a preliminary study, the mea-
surement noise due to the atmosphere is modeled as the
sensing matrix, and a resolved image has been recovered.
This research has revisited the model and found some
limitations. Therefore, an alternative method has been
proposed by considering shadow cast on the satellite as
the sensing matrix. Two scenarios are investigated: the
first scenario models the shadow as a binary random vari-
able while the second scenario uses ray tracing to com-
pute the shadow. In both cases, a net of an unknown satel-
lite has been recovered from its light curve, assuming the
shadowing conditions are known. This result implies a
great potential of compressed sensing in characterizing
space objects that are so remote that traditional resolved
imaging is impossible.

Keywords: Characterization; Light Curve; Compressed
Sensing.

1. INTRODUCTION

The near-Earth space environment is occupied by over
100 million debris objects greater than 1 mm in size [13].
Although most of the debris objects are fragments that
would not appear to be much of a threat, they pose a risk
for damaging assets in orbits because of their high or-
bit energy. The Space Fence system tracks over 200,000
debris objects greater than 1 cm in low Earth orbit to
cope with this issue, but many debris objects are yet to

be tracked. In this context, it is necessary to detect, track,
and characterize new objects to predict their locations at
any given time. As a part of this space situational aware-
ness framework, this research focuses on the characteri-
zation of unknown space objects.

Several studies have been carried out to observe a satel-
lite by a ground-based telescope directly. The most out-
standing example is the FGAN Tracking and Imaging
Radar (TIRA), [24] equipped with a high-resolution Ku-
band imaging radar. This radar successfully diagnosed
the malfunction of the Advanced Earth Observing Satel-
lite (ADEOS) in 1997. Such a direct observation gives an
easy interpretation of the space objects. However, most
Earth-orbiting objects are too small or remote to be im-
aged by even the most advanced ground station resources.

A more implicit yet versatile method is a light curve in-
version technique. The light curve is a time history of
the photometric intensity of light reflected off an ob-
ject, which is available even from higher orbits including
geosynchronous orbits. The light curve inversion aims to
estimate an object’s shape, surface properties, or attitude
based on its light curve. The initial work focused on ce-
lestial objects’ characterization and successfully obtained
a three-dimensional shape of asteroids [19; 20]. Recently,
several studies have been carried out on characterizing
artificial objects. Calef et al. [7] reconstructed the three-
dimensional shape of an object based on its thermal emis-
sions and light curve, assuming the known observer posi-
tion and convexity of the object. Linares et al. [23] used
the Unscented Kalman filter to determine the most prob-
able shape out of predefined geometry models, based on
the angles data and light curves. Linares and Crassidis
[22] adopted the Bayesian inversion approach to recover
the space object’s shape and surface parameters. In the
recent development of the deep learning technique, ma-
chine learning has also been adopted to the light curve
to classify the object shape [18; 3]. Fan, Friedman, and
Frueh [15; 14; 17] implemented the light curve inversion
considering the observation noise and conditions for ob-
taining a sufficient amount of data for inversion.

Although much improvement has been made for the light
curve inversion problem, it is still challenging to simulta-
neously estimate attitude, shape, and surface parameters.
Even when concentrating on the shape inversion problem
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alone, the problem is ill-posed, which often has multi-
ple solutions and ambiguities. Therefore, this research
adopts an image processing technique to avoid this dif-
ficulty. The key technique used in this research is the
so-called compressed sensing.

Compressed sensing (CS) is a signal compression theory,
which is capable of recovering a compressed signal with
a very high compression ratio even if the compressed sig-
nal is inaccurate and incomplete [8; 9; 11]. A signal is
compressed as a linear measurement by using a so-called
sensing matrix. The original signal can be reconstructed
almost exactly by solving a convex optimization prob-
lem. The number of measurements required by CS is
far fewer than those required by the traditional Shan-
non/Nyquist sampling theorem [26] and hence CS has
brought a paradigm shift in the signal processing field.
There are several applications in aerospace engineering
to enjoy this benefit. Aguilera et al. [1; 2] used CS to
improve the performance of the synthetic aperture radar
(SAR) tomography. Daponte et al. [10] used the CS
framework to design radio frequency sensors to localize
and track non-cooperative objects. Yokoya and Iwasaki
[31] used the CS framework for object detection and clas-
sification in optical remote sensing images.

In the previous work by the authors [21], a similarity be-
tween the light curve measurement and compressed sens-
ing has been investigated. Assuming that an object is sta-
bilized in a known orbit, the object’s light curve may be
regarded as the object image compressed by atmospheric
noise. The atmospheric noise in this model works as a
sensing matrix in the CS framework. In the previous
work, simultaneous observation of a known satellite is
utilized to estimate the sensing matrix, and a resolved im-
age of the observed object is successfully reconstructed.

This paper first re-examines the atmospheric noise model
from a physical perspective and shows some limitations.
Alternatively, the shadowing on the satellite is mod-
eled as a sensing matrix, and compressed sensing is uti-
lized to recover a net of the object. The net is a two-
dimensional figure that can be folded into the original
three-dimensional object, and it is adopted to accommo-
date the multiple viewing directions. This research shows
the resolved image of the net can be successfully recov-
ered from the object’s light curve, assuming the sensing
matrix is known.

The organization of this paper is as follows. First, theo-
ries of compressed sensing and its physical representation
using a single-pixel camera are introduced. Second, the
simulation scheme of a light curve is summarized. Third,
the previous method using the atmospheric noise is sum-
marized, and its physical validity is discussed. Finally,
the alternative method considering shadowing is intro-
duced. Two scenarios are tested according to the scheme
of generating the sensing matrix.

2. COMPRESSED SENSING

2.1. Theory

In compressed sensing, a signal is sampled directly in a
compressed form:

y = Φx (1)

where x ∈ RN is a signal vector, y ∈ RM (M � N)
is a measurement vector, and Φ ∈ RM×N is a so-called
sensing matrix. The sensing matrix compresses the sig-
nal by mapping a high-dimensional vector into a lower-
dimensional vector. This leads to a much shorter sam-
pling rate than that of the classical Shannon/Nyquist sam-
pling theorem [26].

There a two keys to the success of compressed sensing.
First, a signal x needs to be sparse in terms of a dictionary
Ψ that captures the sparse structure of the signal:

x = Ψγ + e (2)

where Ψ ∈ RN×L. The vector γ is a sparse vector and it
satisfies ‖γ‖0 ≤ K with K � N ≤ L. Note that ‖ · ‖0
denotes the number of nonzero entries of a vector. The
term e is the sparse representation error (SRE), which al-
most always exists for the practical signals of interest.

Another key element is a sensing matrix Ψ. It is chosen
so that the useful information in the signal x is preserved.
For a stable reconstruction, an equivalent dictionary ΦΨ
needs to satisfy a measure called Restricted Isometry
Property (RIP) [12]. However, verifying whether a gen-
eral matrix meets the RIP is an NP-hard problem [4].
Nevertheless, Baraniuk [5] showed that most random ma-
trices satisfy the RIP. There are also some well-known
and widely-used sensing matrices such as a Gaussian ma-
trix, a Fourier transform matrix, and a Hadamard matrix.

Finally, the reconstruction method in compressed sens-
ing is briefly summarized. Due to the fact that M � N ,
solving Equation 1 in terms of x is an ill-posed problem.
However, if the signal x is sparse in terms of the dictio-
nary Ψ, and if the sensing matrix ΦΨ satisfies the RIP,
then the signal x is guaranteed to be recovered from the
measurement y. This reconstruction is implemented by
solving either of the following optimization problems:

γ̂ = arg min
γ
‖y −ΦΨγ‖2 s.t. ‖γ‖0 ≤ K (3)

γ̂ = arg min
γ
‖γ‖0 s.t. ‖y −ΦΨγ‖2 ≤ ε (4)

Equation 3 minimizes the SRE under the sparsity con-
straint, while Equation 4 minimizes the sparsity under
the SRE constraint. The most well-known solver of these
problems is the orthogonal matching pursuit (OMP) al-
gorithm. In this research, the batch-OMP algorithm [28]
is chosen because of its fast computation and well-known
stability condition.



2.2. Single-Pixel Camera

One important CS application to understand the similar-
ity with the light curve is a single-pixel camera [29]. In
compressed sensing, a signal is linearly transformed by
a sensing matrix. With a closer look at Equation 1, each
entry of the measurement vector, yi is computed as an in-
ner product between a row of the sensing matrix, φTi and
the signal x. Suppose the length of the signal x is n2, the
vectors φTi and x can be reshaped into square matrices
Φi and X respectively. The entry yi is a summation of
the element-wise product between these two matrices:

yi = φTi x =
∑

Φi �X (5)

where � denotes the element-wise product. Equation 5
suggests that the measurement vector y can be obtained
by repeating the element-wise productm times. This idea
is practiced in a single-pixel camera.

Figure 1 shows a schematic diagram of the single-pixel
camera. In this camera, a scene is focused on a digi-
tal micromirror device (DMD) by a convex lens, and a
photodiode collects the reflected light. The DMD array
is a mirror grid consisting of millions of micromirrors,
each of which reflects the light in two directions. Only
the micromirrors that are oriented in one of the directions
reflect the light toward the photodiode. One can see that
the DMD works as a binary alternative of the sensing ma-
trix, and it performs the measurement denoted by Equa-
tion 5. Therefore, the measurement is repeated m times
with different mirror patterns in DMD to get a measure-
ment vector y, and the original scene is reconstructed by
a CS solver. As a result, this camera is capable of imaging
a scene with only a single photodiode.

Figure 1: Single-pixel camera diagram

3. LIGHT CURVE SIMULATION

A light curve is a time series of the photometric intensity
of an observed object [30]. It depends on the geometric
shape, reflectance, and the relative position of the object
to the Sun and the observer. In the light curve simula-
tion, a space object is modeled as a polygon consisting
of triangular meshes. First, the visibility of each mesh
is determined by considering three possible cases where
a mesh is invisible from the observer. Figure 2 shows a
schematic of the three conditions. The first case is the
mesh local horizon condition. The Sun and the observer

must be above the local horizon of the mesh. The second
case is the self-shadowing in which the light coming into
a mesh is obstructed by another mesh. The third case is
the observer-shadowing in which the light reflected off a
mesh is obstructed by another mesh. These shadowing
conditions are analyzed by a classical ray tracing algo-
rithm [25].

(a) (b) (c)

Figure 2: Three shadowing conditions checked in the
light curve simulation. (a): mesh local horizon, (b): self-
shadowing, (c): observer-shadowing

After screening out invisible meshes, the light intensity
of each visible mesh is computed by the bi-directional
reflectance distribution function (BRDF) model that con-
sists of the Lambertian reflection term and the specular
reflection term. The light intensity at time ti is given by:

Ii = I0

n∑
j=1

µi,jAj
π(rtopo,i)2

(N̂i,j · Ŝi)

·
{
Cd,j(N̂i,j · V̂i) +

πτi,jCs,j(rSun)2

(aSun,i)2

}
(6)

where the subscript i denotes the time index and j denotes
the mesh index. The constant I0 is the solar irradiance at
1 AU, n is the number of meshes, A is the mesh area,
and rtopo is the distance between the object and observer.
The coefficient µ denotes a mesh’s visibility condition
and is 1 only when the mesh is visible and otherwise 0.
The vector N̂ is the mesh normal, Ŝ is the object-to-the-
Sun vector, and V̂ is the object-to-the-observer vector.
These three vectors are normalized to unity. The param-
eter Cd is the diffuse reflection parameter, and Cs is the
specular reflection parameter. The specular reflection is
a mirror-like reflection that is concentrated in a particu-
lar direction. However, due to the finite size of the Sun,
it allows half a degree difference between the incoming
and the outgoing light. This condition is denoted by the
coefficient τ as below:

τi,j =

{
1, if arccos

{
V̂i+Ŝi

|V̂i+Ŝi|
· N̂i,j

}
≤ 0.25o

0, o.w.
(7)

In Equation 6, the finite extent of the Sun is computed by
the solar radius rSun and the solar distance aSun.

By convention, the intensity is not directly used as a mea-
sure of the brightness. Alternatively, the brightness mea-
sured in a log scale is usually used. This is called a rela-



tive magnitude, and it is given by

mag(ti) = magSun − 2.5 log10

(
Ii
I0

)
(8)

where magSun = −26.74, and I0 is the solar intensity.
Because of this definition, a brighter object has a smaller
relative magnitude.

As an example, a light curve simulation has been imple-
mented as follows. The ASTRA 1KR satellite is used as
an object model with the reflection parameters, Cd = 0.8
and Cs = 0.2, assuming that the satellite is covered
by aluminum. The satellite is propagated by SGP4 in
a geosynchronous orbit based on the TLE data from the
initial epoch, 0:00:00 AM on 1-April-2020 UTC for 1437
minutes. The observer is located in Berlin at 51.17o N,
10.45o E. Along with the light curve, the synthetic satel-
lite images are also generated by orthogonal projection of
the mesh brightness onto an image plane.

Figure 3 shows the simulated light curve and synthetic
satellite images at five points of the light curve. It can be
seen that the shadow cast on the satellite triggers a sudden
change in the brightness.

Figure 3: Simulated light curve and corresponding syn-
thetic satellite images

4. ATMOSPHERE-BASED APPROACH

4.1. Atmospheric Noise as a Sensing Matrix

In the previous work by the authors [21], the light curve
measurement is compared with a single-pixel camera.
Figure 4 shows a comparison between these two mea-
surements. In a single-pixel camera, the pixel values
of the scene are projected onto the mirror pattern of the
DMD, randomly weighted, and summed up by a photo-
diode. Similarly, in a light curve measurement, the light

rays from each part of the satellite pass through the atmo-
sphere and hence attenuated randomly before reaching
the ground station. This random attenuation due to the
atmosphere is similar to the projection onto the DMD.
Subsequently, the attenuated light rays are collected by
telescope, which is similar to the measurement by a pho-
todiode. Assuming that the satellite is observed in a short
time such that it is regarded as a still image, m measure-
ments of the satellite with m different atmospheric noise
are analogous to the m measurements with m different
mirror patterns on DMD. Therefore, the light curve mea-
surement can also be modeled by Equation 1.

Based on this similarity, the previous work has introduced
an adapted light curve model. In this model, the atmo-
spheric attenuation is considered a sensing matrix, and
the light curve is considered an image compressed by
an unknown sensing matrix. Since the atmospheric at-
tenuation is usually unknown, it has been estimated by
implementing the simultaneous observations of a known
satellite. As a result, a resolved satellite image has been
successfully reconstructed.

Figure 4: Comparison between a light curve and a single
pixel camera: (a) observation of a light curve attenuated
by atmosphere, (b) observation by a single-pixel camera

4.2. Validity of the Atmosphere-based Approach

The previous method is based on the assumption that the
light rays from each part of the satellite pass through the
different parts of the atmosphere, and they are attenuated
by different factors. This helps the sensing matrix dis-
tinguish one part of the satellite from another part in the
reconstruction process. In this research, this assumption
is tested based on atmospheric disturbance theory.

First, the required separation of the light rays is computed
in terms of the isoplanatic angle. The isoplanatic angle is
the maximum angular separation between objects such
that the turbulence-induced wavefront deformations for
these objects are reasonably similar [27]. The previous



method requires that the light rays pass through atmo-
spheric patches separated apart by this isoplanatic angle.
This angle is defined by Fried [16] as:

θ0 = 58.1× 10−3λ6/5

[∫ L

0

C2
n(z)z5/3dz

]−3/5
(9)

where λ is the optical wavelength, L is the path length
through turbulence, andC2

n(z) is the structure constant of
the turbulence that characterizes the strength of the index
of refraction fluctuations. At visible wavelengths, typi-
cal values of θ0 are 5-10 µrad. Suppose the altitude of
the top atmospheric layer is around L = 50km, then the
isoplanatic patch size is

∆x0 ≈ Lθ0 ≈ 0.5m (10)

Second, the resolution of the light rays is considered. The
Rayleigh criterion [6] states the smallest angular separa-
tion of two objects that can be resolved in a circular aper-
ture is given by

∆θ ≈ 1.22
λ

a
(11)

where a is the aperture diameter in meters. Using this
criterion, the minimum spatial separation of an observed
object is computed by

∆x ≈ R∆θ ≈ 1.22
λR

a
(12)

where R is the distance between the object and the aper-
ture. Based on this criterion, the minimum spatial sep-
aration of an object in geosynchronous orbit is com-
puted. Suppose the telescope is outside of the atmosphere
at an altitude of 1000 km, then the distance is around
R ≈ 35,000 km. Recall that the isoplanatic patch size
is 0.5 m as shown in Equation 10, it is assumed that the
telescope has an aperture of the same size: a = 0.5m.
Suppose the optical wavelength is λ = 500 nm, the mini-
mum spatial separation is computed as 42.7 m. Given that
most geosynchronous satellites are around 10 m, the light
rays from the satellites are not resolved even by the tele-
scope. This result suggests that all the light rays would
go through the same isoplanatic patch, and they would be
attenuated homogeneously.

The discussions above suggest that the light rays from
each part of the satellite are attenuated by the same fac-
tor. This corresponds to a single-pixel camera where all
the micromirrors are oriented in one particular direction,
and hence it is impossible to distinguish each light ray.
Therefore, the reconstruction of a resolved image based
on a light curve does not work for geosynchronous satel-
lites.

On the other hand, if a target satellite is in a lower orbit
such that the light rays do not converge before the atmo-
sphere, this method would work. However, a resolved or
semi-resolved image of a satellite is already available for
objects in this region, so it is not advantageous to apply
our method. Nevertheless, compressed sensing could be
beneficial to remove atmospheric distortions of such im-
ages.

5. SHADOWING-BASED APPROACH

5.1. Shadowing as a Sensing Matrix

This research proposes an alternative method to obtain
a resolved image of satellites in a high orbit. In this
method, a shadow cast on the satellite is compared with
the sensing matrix. Figure 5 shows a comparison be-
tween this model and a single-pixel camera. Without con-
sidering the visibility conditions, light rays from all the
meshes are observed by a telescope. However, as men-
tioned earlier in Section 3, some meshes are not observed
due to the mesh local horizon, observer-shadowing, and
self-shadowing. One can see that these shadowing con-
ditions attenuate the light intensity that is supposed to
be observed. Since this attenuation changes with time
and variant over the meshes, it is somewhat similar to
the compression by sensing matrix. This new approach
using shadowing as a sensing matrix is referred to as a
shadowing-based approach in this paper.

The shadowing-based approach needs an adapted image
model to accommodate the new sensing matrix. A typi-
cal method to render an image in computer graphics is an
orthogonal projection of a 3D model onto a 2D observer
plane. This rendering technique has been used in the pre-
vious method assuming a constant satellite attitude and
shadowing conditions during the observation. However,
this rendering method is not suitable in the shadowing-
based approach because various shadowing conditions
change the image over time, which is not suitable for
compressed sensing. Therefore, this research proposes
an adapted image called net image to accommodate the
various shadowing conditions.

Figure 5: Comparison between a light curve and a single
pixel camera: (a) observation of a light curve attenuated
by shadow, (b) observation by a single-pixel camera



Figure 6: Die and its net

(a) Generic satellite model

(b) Net of the satellite model

(c) Net image of the satellite model

Figure 7: Generic satellite model and corresponding net
and net image

A net is a 2D figure that can be folded into its original
3D figure. Figure 6 shows one example of the net. Its
biggest advantage is that all meshes are visible regardless
of the satellite attitude and shadowing conditions. In this
research, a generic box-wing satellite model as shown in
Figure 7a is considered. This satellite model consists of a
bus, two solar panels, and two supporting rods connecting
the panels and the bus. All these components are sim-
plified as cuboids made up of nil thickness rectangular
facets. In each component, the facets are unfolded along
the crease so that all the facets are on the zx-plane. The
resultant nets of the components are then located so that
they have no overlaps. Figure 7b shows the generated net
of the satellite. Several meshes of the net marked in red

correspond to the red meshes in the satellite model. Fi-
nally, the net is converted to an image by sampling each
mesh center by image grid. The coordinates of the net are
stretched to fit into the image of size 100× 256, and then
mesh center positions are rounded and assigned to pixels.
The pixel value is 1 if a mesh is assigned but otherwise
0. This binary image is referred to as a net image in this
paper. Figure 7c shows the net image of the satellite ob-
tained from Figure 7b.

In the conversion from the net to the net image, the map-
ping between the meshes and pixels needs to be recorded
carefully. Some meshes on the net are very close to each
other, and hence they are mapped to the same pixel on
the net image. This correspondence relationship will be
used in the computation of the sensing matrix in a later
section.

5.2. Assumptions in Shadowing-Based Approach

In this research, the net image of the satellite is estimated
by a compressed sensing scheme. Let X denote the net
image, and then it is reshaped into a vector x. The light
curve measurement at m time steps is given by

y = Φx (13)

where the (i, j)-th entry of the sensing matrix Φ is

Φi,j =

{
0 if j-th mesh is invisible at time ti
φi,j if j-th mesh is visible at time ti

(14)

where φi,j corresponds to the brightness of the j-th mesh
at time ti:

φi,j =
Aj

π(rtopo,i)2
(N̂i,j · Ŝi)

·
{
Cd,j(N̂i,j · V̂i) +

πτi,jCs,j(rSun)2

(aSun,i)2

}
(15)

Note that the expressions above are directly obtained
from Equation 6.

The sensing matrix in this model characterizes the shad-
owing condition on the meshes at each time step. In this
study, two assumptions are made about the sensing ma-
trix. First, the positions of the Sun, observer, and the
satellite are assumed to be known. Since most character-
ization methods start from tracking the object, this would
be a fair assumption. Therefore, in Equation 15, the vari-
ables rtopo,i, Ŝi, V̂i, and aSun,i are known.

Second, the shape-dependent parameters: Aj , N̂i,j , Cd,j ,
Cs,j are also assumed. In reality, they are not avail-
able because it is the information of interest. Thus, there
seems to be no straightforward way to know the sensing
matrix beforehand, even though compressed sensing ne-
cessitates it. However, the focus of this research is placed
on validating this shadowing-based approach. In the first
place, it is not yet validated whether the shadowing works



as a sensing matrix. Therefore, this research investigates
the feasibility of this model given a sensing matrix. The
unavailability of the sensing matrix will be handled in
future work by a simultaneous estimation of the sensing
matrix and the net image.

6. SIMULATION

In the following, the reconstruction of a net image of a
satellite by compressed sensing is simulated under two
scenarios. The first scenario is an idealized simulation
where the sensing matrix is designed to follow the RIP
condition strictly. The second scenario tests a more real-
istic case where the sensing matrix is computed based on
the light curve simulation. Figure 8 shows the procedure
for the simulations.

In both cases, given the light curve and sensing matrix,
the following compressed sensing problem is solved by
batch-OMP algorithm:

x̂ = arg min
x
‖x‖0 s.t. ‖y −Φx‖2 ≤ ε (16)

Note that a dictionary is not used because the image sig-
nal itself is sparse. The error bound ε is set to be 0.1
based on several experiments. The solution of Equation
16 is then binarized to get a net image. The threshold is
determined by an iterative way such that the number of
pixels above the threshold does not exceed 3,000.

Figure 8: Flowchart of the simulations

6.1. Sensing Matrix with Random Binary Entries

In this simulation, the idea of the shadowing-based ap-
proach is tested under idealized conditions. The sensing
matrix is generated by choosing either 0 or 1 randomly.
In each row, the number of zeros is restricted so that the
sensing matrix does not hide more than 80% of the non-
zeros of the original net image. Note that the size of the

original net image is 100 × 256, and it has K(= 1,684)
non-zero entries. The number of rows of the sensing ma-
trix is M(= 1,800).

This simulation does not consider any physical restric-
tions on the shadow due to the 3D structure of the satel-
lite. In other words, φi,j is restricted to 1 in Equation 14,
and the visibility condition is not also considered. Each
measurement corresponds to the random pixel hiding of
the original net image. The pixel summation of the cor-
rupted net image is computed as the intensity of the light
curve.

(a) Simulated light curve

(b) Examples of corrupted net image

Figure 9: Simulated light curve and two sample net im-
ages in the first simulation

Figure 9a shows the light curve obtained in this simula-
tion. The horizontal axis shows the indices of the sam-
ples, and the vertical axis shows the pseudo-intensity,
which is equal to the pixel sum of the corrupted net im-
age in each measurement. Figure 9b shows the corrupted
net images of the 500th and 1000th sample. As can be
seen, the pixel values are randomly hidden by the sensing
matrix. The hidden pixels are located uniformly through-
out the images, and they do not reflect the actual shadow



pattern.

Figure 10 shows the result of this simulation. The re-
constructed net image has all the non-zero entries of the
original net image, although it has one redundant non-
zero element. The result is almost perfect because the
sensing matrix follows the RIP condition strictly because
of its randomness.

Figure 10: Comparison of true net image and result of the
first simulation with sensing matrix with random binary
entries

6.2. Sensing Matrix by Ray Tracing

In this simulation, the shadowing-based approach is
tested by actual shadowing conditions. The entries of the
sensing matrix are determined so that it follows Equation
14 and 15. In the following, the procedures for comput-
ing the sensing matrix are explained.

First, the light intensity of all the meshes of the 3D satel-
lite model is computed. The satellite model in Figure 7a
is observed from a random direction with a random sun-
light direction while the range is fixed to 100 km. Note
that the intensity of the meshes invisible due to mesh lo-
cal horizon, observer-shadowing, and self-shadowing is
computed as 0. This computation gives an intensity vec-
tor of length n that stores the intensity of all the n facets
of the satellite at time ti. The summation of the entries,
yi is the light intensity at this time step.

Second, the i-th row of a sensing matrix, φTi ∈ RN is
computed based on the intensity vector where N is the
total number of pixels of the net image. First, the vector
φTi is initialized by zeros. As mentioned in the analogy
with a single-pixel camera, each entry of φTi attenuates
the net image in a pixel-wise way. Suppose the net image
has non-zero entries in the pixels indexed by I, then the

entries of the intensity vector are assigned to the indices
I of φTi . It is important to note that some intensity values
are mapped to the same entry of φTi . In this case, the sum
of all the intensity values corresponding to that pixel is
assigned to the entry of φTi .

Subsequently, the entries of the vector φTi outside of the
indices I are considered. Let φbg denote the correspond-
ing entries. In the measurement y = Φx, these entries
are multiplied by the background entries of the net image
x, which are zero. Thus, the entries of the vector φbg are
canceled by multiplication and they do not affect the light
curve intensity y. However, to avoid the all-zeros column
in the sensing matrix, arbitrary non-zero values need to be
assigned to those entries. In this research, the Gaussian
entries of mean 0 and standard deviation 1 × 10−10 are
generated and assigned to φbg.

These procedures are repeated for M(= 7,000) times to
obtain the light curve y ∈ RM and sensing matrix Φ ∈
RM×N .

This simulation considers the shadow in a physically
more accurate way than the first simulation. However,
this leads to the less random entries of the sensing ma-
trix. Since randomness is one requirement to satisfy the
RIP condition, it may result in the worse performance of
compressed sensing.

Figure 11a shows the light curve obtained in this sim-
ulation. The horizontal axis shows the indices of the
samples, and the vertical axis shows the magnitude of
the light curve computed by Equation 8. Figure 11b
shows the satellite model corresponding to the 2001st and
5213th sample, respectively. In both cases, the red arrow
shows the direction of the light, and four different colors
display the visibility of each facet. The direction of the
observer is oriented out of the paper. Figure 11c shows
the corresponding nets of these two samples. Similarly,
the visibility of each facet is displayed by four different
colors. Clearly, the shadow patterns are totally different
from that of Figure 9b. The shadow tends to be less vari-
ant and less random because of the more realistic setup,
especially on the solar panels. However, the shadow on
the side panels of the bus component tends to be variant
because of the self-shadowing and observer-shadowing
cast by the supporting rods.

Figure 12 shows the result of this simulation. The number
of non-zero pixels of the result is only 322, about 19% of
the correct net image’s total non-zero entries. However,
even this incomplete result gives enough implication for
characterizing the shape of an unknown satellite. With
a closer look, the side panels of the bus part are recon-
structed better than the other parts. On the other hand,
the solar panels are reconstructed less accurately. These
results imply that the randomness of the shadowing im-
proves the performance of the sensing matrix. This re-
sult is reasonable because the randomness gives the better
RIP condition. Therefore, surprisingly, the shadowing-
based approach would give a better reconstruction result
for a more complex satellite model due to the increased



randomness in the shadow. This characteristic of the
shadowing-based approach is counter-intuitive and differ-
ent from the most previous light curve inversion schemes.

(a) Simulated light curve

(b) Appearance of satellite models in the 2001st and 5213th samples

(c) Satellite nets of the 2001st and 5213th samples

Figure 11: Simulated light curve and two samples in the
second simulation. (a): simulated light curve, (b): light
directions and attitudes of satellite models corresponding
to two samples, where the observer’s direction is oriented
out of the paper, (c) satellite nets of the two samples

Figure 12: Comparison of true net image and result ob-
tained with sensing matrix by Ray Tracing

7. CONCLUSIONS AND FUTURE WORK

This research has discussed a potential application of
compressed sensing to characterize an unknown stabi-
lized satellite in a known orbit from its non-resolved light
curve. Compressed sensing is a mathematical theory for
efficient signal compression and reconstruction. The sig-
nal is compressed by a linear transformation by a random
matrix, which is referred to as a sensing matrix. In this
research, it has been compared with light curve measure-
ments from two perspectives.

The first model considers the atmospheric turbulence as
a pseudo-sensing matrix, and the light curve is consid-
ered an image compressed by the unknown sensing ma-
trix. This approach gives a resolved image of an unknown
satellite, which is detailed in the authors’ previous work.
This research has discussed the validity of this model in
terms of the isoplanatic patch size and the Rayleigh cri-
terion. It has been found that the light rays from geosyn-
chronous satellites converge to one light ray before reach-
ing the atmosphere, and they are not distinguishable in
the reconstruction process. Therefore, this atmosphere-
based approach works only for satellites in low Earth or-
bits where a resolved or semi-resolved image is already
available by telescope observation.

This research has proposed an alternative method to re-
construct a net of a target satellite. This model considers
a shadow on a satellite as a sensing matrix because each
facet’s light intensity is attenuated by the shadow some-
what randomly. This model is tested in two scenarios
assuming that the sensing matrix is known. In the first
case, the sensing matrix has random binary entries that
hide random parts of the satellite net. In this case, the



satellite net has been reconstructed almost perfectly be-
cause the sensing matrix has perfectly random entries. In
the second case, the sensing matrix has been generated
based on a light-curve simulation. The light curve is sim-
ulated by observing a 3D satellite model with 7,000 ran-
dom sets of viewing direction and light direction. This
brings some randomness in the sensing matrix, but the
shadow pattern is less varied than in the first case. There-
fore, the result gets worse than that of the first simula-
tion, and only 19% of the non-zero entries are recovered.
However, the result gives enough insight into the original
satellite shape. Moreover, the poor performance of the
reconstruction is due to a simple structure of the generic
satellite model used in the simulation, which does not cast
a variety of shadow patterns. This suggests a surpris-
ing and counter-intuitive implication that the proposed
method would work better for a satellite with a complex
structure that causes more random shadow patterns.

Future work will focus on relaxing the assumptions in the
shadowing-based approach. The light curve will be sim-
ulated under more realistic conditions by assuming a spe-
cific orbit of the satellite. Furthermore, a co-estimation
method of the sensing matrix and the satellite net will be
investigated to eliminate the need for prior knowledge of
the sensing matrix. Moreover, reconstruction of an image
or a more user-friendly alternative to the net image will
also be considered.
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