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ABSTRACT

Knowing the exterior shape forms an important piece of
information for space debris in the near-Earth region. It
has been demonstrated in the past that the photometric
measurements, also known as the light curve, contains the
shape information. Previous work by the authors has es-
tablished a shape estimation framework that is capable of
generating high accuracy candidates for simple objects.
For this work, an alternative multi-hypothesis framework
is proposed based on a kind of particle filter using sequen-
tial importance resampling. Under realistic measurement
noise setting, the simulation result has shown that likely
candidates can be obtained up to satisfactory recognition
with quantitative measure provided.

Keywords: Light Curve; Shape Estimation; Inversion
Problem; Extended Gaussian Image; Multi-Hypothesis;
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1. INTRODUCTION

Traditionally, the orbit information (dynamic states) for
objects in space has been of interest and it is obtained by
solving the orbit determination problem. In recent years,
it has been realized that knowing the exterior shape also
forms an important piece of information, especially for
space debris. The shape is coupled with the object’s or-
bit via non-conservative forces, which is integral to or-
bital predictions as they pose a significant influence on
Earth-orbiting human-made objects. Additionally, future
missions involving close-up investigation of these objects
have also promoted the necessity of characterizing their
shapes.

Although RADAR system has been used to monitor space
debris with good potential in resolution during direct
imaging [7, 15]. Due to the relatively flexible deploy-
ment and robust operation, an effective way to observe
the space debris population is the use of ground-based
optical sensors.

Optical observation for objects in GEO has been con-

ducted by Schildknecht et al. [17, 18], which brings
awareness to the explosion events that happened in geo-
stationary transfer orbits (GTO). Silha et al. [19] con-
ducted a similar space debris survey in medium Earth
orbits (MEO) and concluded that one uncorrelated ob-
ject could be identified for every 100 minutes of obser-
vations. The National Aeronautics and Space Adminis-
tration (NASA) and the Air Force Maui Optical and Su-
percomputing Site (AMOS) together conduct the debris
measurement program focusing on the LEO and GEO re-
gion in both visible and infrared spectrum.

An information gathered during optical observation be-
yond the angular position, is the object’s brightness. The
so-called light curve refers to the change of brightness
as a function of time. When the object is not illuminat-
ing by itself, the brightness is dependent on solar activ-
ity, orbits, attitude motion, exterior shape, material, at-
mosphere, and other attenuating factors. In the past, it
has been shown that the shape information can be ex-
tracted from photometric measurements under assump-
tions [8, 10, 11, 12, 9].

At the scale of space debris, however, the measurement
can be heavily influenced by noise given their sheer size,
altitude, and reflection property. An approach that is ca-
pable of estimating shapes in this scenario is required.
The authors had previously proposed using Monte Carlo
simulation and a direct multi-hypothesis scheme to ex-
plore the solution space when assuming an object’s or-
bit and attitude motion [4]. The main advantage of a
multi-hypothesis framework is that it provides a conclu-
sive statement on shape candidate’s likelihood. In this
article, particle filtering is implemented to sequentially
update candidates while incorporating follow-up obser-
vations.

2. THEORY

This section first introduces the typical light curve inver-
sion problem described by Kaasalainen et al. [10, 11],
which takes observation data as input and produce a
shape candidate as output after going through the two-
step inversion process. The Monte Carlo noise sampling
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process which establishes the initial set of candidates, is
then briefly explained. For a more detailed description of
the method, the reader can refer to the previous publica-
tion by the authors [4]. Finally, the particle filter appli-
cation is proposed along with detailed treatment on the
Extended Gaussian Image (EGI). Part of the treatment
leverages a quantitative measure that bounds the devia-
tion among convex objects by Oliker and Frueh [16].

2.1. Light Curve Simulation

All light curves used in this article are simulated mea-
surement. The simulation framework is proposed by the
authors. The derivation and operation detail is described
in [3]. A brief overview is provided here.
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The unit of relative magnitude is used in this study and
the absolute magnitude of the Sun mgy, is taken to be -
26.74. A is referred to as the phase function which refers
to the ratio of brightness (in irradiation) between the ob-
ject and the Sun. The phase function function can be
computed in an finite-element fashion for convex objects
as Equation 2.
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Equation 2 sums through the surface of convex object and
wavelength ), at each time index j. The convex object is
consisted of n number of facets, each with area A; and
unit normal vector N;. The Lambertian and specular re-
flection coefficient is denoted by C; and C,. The vector
Sand O points towards the Sun and the observer respec-
tively. Coefficient 5 refers to the ratio of the Sun disk
to the reflective surface. The distance between facet and
the Sun is dgyy,, and Solar radius is agy,. The topolog-
ical distance is given by 7,p,. Lastly, the parameter pj,
and 7y refers to the illumination and specular reflection
condition for each facet per time.

2.2. Two-Step Inversion Process

The basic light curve inversion problem starts with a least
square minimization problem as Equation 5.

Min  J=|L— Gal?
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Column vector L refers to the series of photometric mea-
surements of the size [-by-1. It is also the input of the
equation. The output of the problem is the column vec-
tor a of the size m-by-1. Each element of a represents
the albedo-area value associated with a certain normal-
facing direction, where the list of normal directions is
pre-sampled thus known. When assuming full knowledge
on orbits and attitude motion, G matrix (size I-by-m) can
be computed with known normal facing directions. A
minor assumption here is that the distance between the
object center of mass and support location, is ignored as
they form part of the shape information.

An important remark here lies on the observability, or the
rank condition on the matrix G. A full rank matrix guar-
antees a unique answer to the least square problem. For
the shape estimation problem, however, the rank condi-
tion is dependent on the observation geometry, namely,
the orbit and the attitude motion. If a side of the object is
not observed, the albedo-area associated is subsequently
not subject to data but other conditions (like constraints
for example). Friedman et al. [5] has shown that it is
possible to arrange an observation plan for the purpose of
shape estimation such that it guarantees full observabil-
ity. For preliminary studies using computer simulations,
implementing torque-free motion often suffice.

After obtaining the albedo-area vector a and associating it
with the list of pre-sampled normal vectors, it forms the
so-called Extended Gaussian Image (EGI). The EGI is
referred to as a shape descriptor, which describes a closed
three-dimensional surface in an alternative space. In our
case where a numerical process is performed and data is
discrete, a discrete EGI is used to represent a polyhedron
or a 3-dimensional polytope.

Under the assumption of uniformity, a convex object is
represented uniquely by an EGI. Assuming an object to
be convex, to obtain the shape in three-dimensional Eu-
clidean space from the EGI input is referred to as the
shape reconstruction process. The process can be sum-
marized as first solving the EGI optimization problem to
obtain the support, and perform half-space intersection to
bound the dual object. The shape is finally retrieved after
applying the dual transform. An important note here is its
sensitivity. Theoretically, the EGI input has to satisfy the
condition of closeness and convexity. If a small distur-
bance is present in the input, the reconstruction process
will be forced to add a small piece of non-zero area fac-
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Figure 1. Demonstration of the noise sampling process,
red dots: reference light curve simulated using setup from
Section 3 on July-1-2018; black dots: 100 noisy light
curves sampled at a signal-to-noise ratio of 5.

ing some direction and causes skewness to the result. A
thresholding and smoothing stage can be added prior to
this stage in order to reduce the problem’s stiffness. They
can are discussed in Section 2.4.

2.3. Monte Carlo Noise Sampling

When treating light curve data L as reference, noise can
be sampled on top of the given data as the following.

L=L+v (7)

For the scope of this article, noise v is modeled as Gaus-
sian noise with zero mean and constant standard devia-
tion over all exposures. In reality, the noise will vary and
is dependent on the signal itself. As noise is sampled and
arbitrary number of noisy light curves are obtained, an
equal number of EGIs are output by solving Equation 5.
The noise sampling process is demonstrated in Figure 1

2.4. EGI Thresholding and Smoothing

For the least square problem (Equation 5) to be linearly
independent, a full rank G matrix is ideal and the number
of rows is greater than the number of columns, i.e. [ < m.
For non-trivial objects, one would expect there is a suf-
ficient number of pre-sampled normal vectors such that
the resolution of shape outcomes can be guaranteed. In
practice, due to the discrete nature of the problem setup
as well as different sources of noise, vector a will be ob-
tained in a fashion that hardly has any zero entry. This
poses a challenge for shape reconstruction as the process
is highly sensitive to input.

Thresholding refers to the operation of discarding entries
if they are below some fixed level. It is an effective way
to suppress an overwhelming number of shape outcomes
by focusing on the significant entries in vector a. It has
to be emphasized that thresholding can be exercised at

different levels of stringency during different operations.
During the sequential importance resampling where the
EGI is being constantly updated at each step according
to new observations, the thresholding can be applied to
include only the top 20 to 30 significant peaks for exam-
ple. Whereas if there is a most likely EGI, a wider search
would be more reasonable.

As mentioned in Section 2.2, the closeness and convex-
ity condition is required for perfectly honest shape recon-
struction. Since EGI lacks the information on support,
it is difficult to perform a thorough check on the neces-
sary conditions as far as the authors know. To reduce the
stiffness when subject to input error, a smoothing stage is
proposed as Equation 8 which aims to satisfy the neces-
sary condition for closeness.

Min J = || Zﬁi(ai + dZ)H ®)
i=1
Subject to 0<d; <wu;, i=1,...m (9

Equation 8 seeks the appropriate change in entries of vec-
tor a such that the expression is close to 0. The change in
each entry is represented by d; and it is bounded by upper
limit u;. The problem remains, as to if the post smooth-
ing EGI is closer to the true EGI. However, the primary
objective here is to let the reconstructed result honestly
reflects the EGI input, at the cost of possibly losing some
accuracy in terms of EGIL.

25. Oy

Oliker and Frueh [16] proposed the following inequality
to bound the deviation between two convex objects T
and 7T;.
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The volume of Ty is represented by V(Tp) and
V1 (To, T ) refers to the mixed volume of the two objects.
R is the radius of smallest sphere that can enclose the
object, and r is the radius of the largest sphere respec-
tively. Here, the overall number on the right hand side is
denoted by C5. The quantity only bounds the difference
and therefore should only be viewed as a general guide-
line.

2.6. Sequential Importance Resampling

From previous work [4], it has been established that
shape estimation is possible for simpler objects with a



relatively lower number of EGI directions, thus observa-
tions. For more complex objects, as to be seen in Sec-
tion 3, the size of vector a is required to be at least on the
level of thousands. When examining the problem from
an estimation point of view, particle filtering [2] was rec-
ognized as an option.

Conventional estimation filters like Kalman filter and
Markov model, has the advantage of mathematical
tractability when applying assumptions [20]. When the
noise is non-Gaussian and the analytical model is not
possible with high dimensionality, different estimation
schemes were proposed. A class of method is called Se-
quential Monte Carlo (SMC) method [14]. The center
idea is to draw samples from a predicted distribution be-
fore new observations become available. It is sometimes
called a simulated-based method which has flexible im-
plementation.

When it is not convenient to draw such samples, a clas-
sical method called the importance sampling can be used
[6] which aims to translate between the so-called impor-
tance distribution and the posterior distribution. Lastly,
resampling stage is often mentioned to avoid degeneracy
and improve efficiency [14, 13, 1].

In this work, the method of sequential importance re-
sampling is thought to be viable for two main reasons.
The first is the problem’s dimension. For arguably com-
plex objects, thousands of albedo-area entries are to be
found as mentioned above. Limited by the computation
resources today, to directly sample these entries will not
be possible. The second is the sheer complexity when
creating samples of vector a directly.

In fact, the Monte Carlo noise sampling process already
solves part of the problem by operating on the light curve
and then optimize for the albedo-area vector. The white
noise in Equation 7 can be viewed as equal likely per-
turbed light curves, and the EGI obtained will be of equal
importance as well. This has to do with the difficulty of
inverting the G matrix in essence, where the observation
matrix is basically of inclusion.

Particle filtering is also capable of incorporating new ob-
servations and updating particles. Both features are im-
portant for the light curve inversion problem. The oper-
ation with particle filtering application is summarized in
Figure 2.

The process is initialized with the same Monte Carlo
noise sampling process described in Section 2.3 as step 1,
where N candidate shapes (particles) with equal impor-
tance are produced. Note that one shape is constructed
from one EGI and a corresponding threshold, this num-
ber is therefore caused by both the number of EGI from
light curve optimization as well as the thresholding pro-
cess. In case of new observation, full knowledge of the
orbit and attitude motion is also assumed. The light curve
can be predicted for each particle at the time and location
of y2. Then the sequential process can start to incorporate
further follow-up observation. The operation is outlined
as the following:

Two-Step Inversion

1
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Figure 2. Sequential Importance Resampling Flow Chart

1. Particles from Monte Carlo noise sampling process,
1 N
T1, .27

2. Predict light curve at follow-up location for previous
particles, ya, ..., y&.

3. Compare predicted light curve with the given
follow-up light curve (y2) and produce residue

€3y .nns €3 .

4. Compute residue distribution and fit non-parametric
probability distribution function, and compute im-
portance (likelihood) of each particle based on their
residue in the distribution.

wy(zy) = Plelry) (13)
N

wy = Y wa(}) (14)
=1

5. After applying normalizing factor w9, a single EGI
candidate (z5) will be formed through a weighted
mean of all previous particles and their updated im-
portance.

N

1 o
Ty = meg(:ﬂl)xﬁ (15)
2 =1

6. Re-sample x5 in each of the EGI direction by adding
Gaussian noise (with some standard deviation up to
user specification), and create a new set of particles,

1 M
Ty, .25 .

7. Predict light curve at follow-up location for new par-

ticles, y3, ..., y3L.

8. Go to step 3 and repeat the process for next follow-
up observations ys, Y4, ..., where M does not neces-
sarily equal to /V and varies at each iteration.

3. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed method,
a simulation scenario is established. An object is placed
in orbit. Its light curve is simulated for the duration of
the proposed observation period. The noise-affected light



Figure 3. Icosahedron used for simulation, edge length:
2 m, surface area: 34.6 m?

curve act as input to the inversion framework and the
methodology is then carried out to examine the output.

A regular polyhedron of icosahedron is used which
means the three-dimensional object consists of 20 iden-
tical faces. Each edge has a length of 2 m, and the total
volume is 34.6 m?2. The object is assumed to have a uni-
form Lambertian reflection coefficient of 0.7 with specu-
lar component ignored.

A 60-degree inclined medium Earth orbit (MEO) at
20,000 km altitude is propagated. The first observation
period is from June-1-2018 0 AM for 24 hours, 1350
evenly-spaced observations at a constant signal-to-noise
(SNR) of 10 are assumed. The follow-up observation is
set to take place a month later from July-1-2018 0 AM
and lasts for 123 minutes. During this period, there are
5 sets of observations at a 10-minute separation from
each other. Each set has 100 observations with a con-
stant SNR of 5. A torque-free attitude motion is assumed
which guarantees full observability. The ground observer
is placed at the Purdue Optical Ground Station (POGS)
located in New Mexico, USA.

Before demonstrating particle filtering, Figure 4 shows a
collection of most likely EGIs. The reference EGI is plot-
ted in red arrows. The 8 most likely EGIs are obtained by
directly comparing with a noise sampled follow-up light
curve (100 measurements at similar spacing) and the top
8 candidates with the least error are selected. Thus, all
candidates are straight from the light curve optimization
using the identical initial observation without any updat-
ing process.

It can be seen that only partial agreement is possible be-
tween candidate EGIs and the truth in terms of the density
of arrows. Even with multiple follow-up noisy observa-
tions, the quality of individual candidate does not abet the
characterization unless the information is combined in a
meaningful way. Next, the update process with particle
filtering is examined.

Figure 5 and Figure 6 shows candidates obtained after in-

Figure 4. Simulation result after incorporating the first
set of follow-up observation, 8 candidates (due to thresh-
olding) are shown. Cs value is computed with respect to
the truth.

Candidate 1 Candidate 2 Candidate 3 Candidate 4
C2 with ref: 16.1 C2 with ref: 18.68 C2 with ref: 17.99 C2 with ref: 5.865

Step 1
Candidate 8
C2 with ref: 15.61

Candidate 5 Candidate 6 Candidate 7
C2 with ref: 31.93 C2 with ref: 5.827 C2 with ref: 6.085

Figure 5. Simulation result after incorporating the first
set of follow-up observation, 8 candidates (due to thresh-
olding) are shown. Cs value is computed with respect to
the truth.

corporating the first and the fifth follow-up observation.
Within the same figure, different shape candidates are
constructed according to the same EGI at different thresh-
olds, where the EGI leverages the proposed sequential
importance resampling technique and therefore contains
all the information up to the specific iteration.

Since Cs is computed with respect to the truth, the quality
of results is thus directly implied. Figure 6 shows that the
list of candidates obtained in the last step is more likely
to be closer to the truth. Several candidates also appear
to be in the better aspect via visual inspection. In a real
application, the knowledge about the truth can not be as-
sumed. An alternative method is proposed here. That is
for a specific likely EGI, to compute the C value for each
candidate with respect to all other candidates and form a
matrix of Cy values.

Table 1 prints an example Cy table for all candidates
shown in Figure 6. Note that candidate 3, 6, 7, and 8 coin-
cide with the four shapes that have the lowest C» with re-
spect to the reference. Here, a hypothesis which remains



Table 1. Example cross Cy matrix printed according to the 8 candidates in Figure 6, rounding to decimal, colored column

indicate likely candidates.

CQ T1 TQ T3 T4 T5 T6 T7 TS
Ty | 0.0 80.5 201.5 | 303.6 | 421.5 | 209.0 | 213.0 | 217.5
T> | 38.7 0.0 193.5 | 293.3 | 408.5 | 200.8 | 204.7 | 209.1
T3 | 34.1 34.5 0.0 29.8 45.5 12.7 13.8 14.8
Ty | 2185 | 220.1 | 123.8 | 0.0 159.2 | 128.8 | 132.0 | 1356
Ts | 662.1 | 666.2 | 393.7 | 342.7 | 0.0 408.6 | 416.8 | 426.0
Te | 29.8 30.2 3.8 252 39.9 0.0 6.8 8.8
T | 314 31.8 4.8 26.5 42.1 33 0.0 7.5
Ts | 33.7 342 5.7 28.4 45.5 4.5 3.6 0.0
) ) cz‘i;;‘: ::7:‘:.:;93 Candidate 6
N O /,’“\\‘i N O x‘/ﬁ\\'\‘\ N @ N {; L/// //f)// v 1.5+
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Candidate 6
C2 with ref: 5.105

Candidate 7
C2 with ref: 5.369

Candidate 8
C2 with ref: 5.665

Candidate 5
C2 with ref: 16.98
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Figure 6. Simulation result after incorporating the fifth
set of follow-up observation, 8 candidates (due to thresh-
olding) are shown. Cs value is computed with respect to
the truth.

to be verified is that, a specific candidate that resembles
closely to all other candidates is also the shape closest to
the truth. For a more thorough investigation of a most
likely candidate, the search is expanded to a wider range
of thresholds. The final candidate is shown in Figure 7.

Since the order of convex objects does not commute for
C5 computation, the lower value should be used when
comparing C5 values between two objects. Among the
four likely candidates, candidate 6 appears to be closer to
all other candidates and is therefore selected as the win-
ner.

4. CONCLUSION

A new light curve inversion method is proposed by ap-
plying particle filtering technique to the problem. Simi-
lar to the previous method proposed by the authors, the
framework assumes no additional information on the ob-
ject’s shape beyond its orbit and attitude motion, and is
capable of offering a quantitative conclusion on the can-
didate’s likelihood. The new method, however, has the
advantage of being sequential and updating candidates as
new observations are being taken in. Based on the simu-
lation results, the method is capable of outputting shape
candidates up to satisfactory recognition, subject to noisy

Figure 7. Best shape candidate after incorporating the
fifth set of follow-up observation, selection according to
Cy matrix.

observations. Additionally, a selection criterion based on
(Y is proposed to further differentiate among candidates
due to different thresholds.
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