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ABSTRACT

Information such as the shape, attitude, and rotation of
space objects is not always available through resolved ob-
servation. Two methods are outlined for estimating the
attitude and rotation of an object with a known shape and
orbit using only light curve measurements. In the first
method, multiple attitude time-histories based on the pos-
sible orientations corresponding to each measurement in
the light curve are found. Each time history is then given
a weight based on how well it matches a chosen dynamics
model. The second method uses a Probability Hypothe-
sis Density filter to find the most likely object state at the
end of the measurement time. Both methods are applied
to a simply-rotating object, and the second is applied to
an object undergoing torqueless rotation about multiple
axes.

1. INTRODUCTION

Space situational awareness (SSA) involves the tracking
and characterization of resident space objects (RSOs) in
orbit around the Earth. Much of this work focuses on es-
tablishing the orbital characteristics of RSOs, but shape
and attitude information are also required for complete
identification and characterization. In many cases, it is
impossible to obtain a resolved image either due to dis-
tance or the small size of the object being observed. In
those situations, the light curve, or the observed bright-
ness over time, of the object may be analyzed instead.
Light curve inversion is the process of retrieving shape
and attitude information from the light curve measure-
ments.

Light curve inversion has primarily been used to estimate
the shapes and rotational characteristics of natural bod-
ies such as asteroids. The method was first discussed in
1906 [28], and by the late 20th century, various meth-
ods of estimating an asteroid’s shape and rotation axis
had been developed [22, 16]. However, these methods
generally assumed that the asteroid’s shape was smooth
and approximately convex, that its reflective properties
were uniform, and that it was rotating about a single axis

[22, 17, 18, 35]. Some methods to estimate highly non-
convex shapes have been developed, but they have lim-
ited application due to the high phase angles required for
concavities to be observable [9].

None of the simplifying assumptions hold for artificial
RSOs, making the inversion problem significantly more
difficult [15]. Artificial satellites do not typically have
smooth shapes, and the presence of features such as an-
tennae means that they cannot be easily approximated
as convex. Furthermore, a satellite’s reflective proper-
ties can vary considerably from part to part, and specular
glints also need to be taken into account [15]. Finally,
while asteroids typically rotate about a single axis, Earth-
orbiting objects can have more complex rotational behav-
ior due to perturbing gravitational torques and active atti-
tude control systems [15].

Some methods have been developed for extracting shape
and attitude information from the light curves of artifi-
cial RSOs[19, 20]. Because of these cases’ complexity,
the highly-coupled shape and attitude estimation prob-
lems are often treated separately by assuming that one of
the two sets of information is already known [15, 19, 4].
This is often a reasonable assumption since, for artificial
objects, partial information about either shape or rotation
is frequently available a priori.

This paper will focus on the attitude inversion problem
for an RSO whose shape, reflective properties, and orbit
are already known. There are several existing methods
for solving this problem; however, they often require that
the object be a specific shape [32, 33] or assume that ro-
tation is torque-free over short intervals [33, 1]. Some
methods are more general but still have limitations. An
Unscented Kalman filter has been used to produce accu-
rate attitude estimates using simulated light curves, but it
requires a good angular velocity guess to converge cor-
rectly [7, 31].

2. ALGORITHM OVERVIEW

The flow chart in Figure 1 outlines a proposed method to
solve the general problem of light curve inversion for atti-
tude. A set of feasible orientations for each measurement
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(1) Receive light
curve measurements.

(2) Generate
object-Sun and
object-observer

unit vector pairs.

(3) Use the reflection
fraction to determine

feasible vector
pairs (pseudo-

measurements).

(4) Set up the
pseudo-measurement
association problem.

(5) Use PHD filter and
MEKF to solve the
association problem.

Figure 1. A flowchart for the light curve inversion method
based on the chart in Burton and Frueh [3].

in the light curve are generated from the aspect graph and
viewing sphere [13, 14]. These feasible orientations are
also referred to as pseudo-measurements. Once the sets
of pseudo-measurements at each measurement time are
found, they are used to produce attitude time-histories.
This is referred to as the “pseudo-measurement associ-
ation problem” since it involves finding which pseudo-
measurements can feasibly be associated in a sequence.
In other words, the association problem is to find which
of the feasible orientations can follow after each other
given the rotational dynamics.

Two different methods for solving the association prob-
lem will be tested. In the first, a gating method is used to
narrow down the range of possible pseudo-measurement
sequences before finding the attitude time-histories. Each
time-history is given a weight based on how well it fits
its sequence of pseudo-measurements. In the second
method, all possible sequences of pseudo-measurements
are computed and weighted in parallel using a probabil-
ity hypothesis density (PHD) filter. To avoid exponen-
tial growth in the number of estimates, low-weight esti-
mates are dynamically pruned, and similar estimates are
merged. The most likely estimates after the final mea-
surement update are back-propagated to produce time-
histories. A more detailed discussion of the method will
elaborate on each step in the Figure 1 flowchart.

This algorithm has similarities to the multi-hypothesis
tracking (MHT) method, most notably its use of multi-
ple possible time histories with weights based on relative
likelihood [27, 2]. However, there are also significant dif-
ferences. The most fundamental is that each measure-
ment is assigned to only one target in the classical MHT
[8, 34]. That is a reasonable assumption for the multi-
target tracking problem but does not apply to light curve
inversion since there is nothing to stop multiple purely
hypothetical time histories from having the same attitude
at the same time. This means that many of the common
measurement-assignment tools for MHT will not work

when choosing pseudo-measurements in the inversion
problem. Therefore the two different methods for select-
ing pseudo-measurements, both the gating method and
the PHD filter method, use probabilistic weights rather
than hard pseudo-measurement assignments. In addition,
although the PHD filter is intended for multi-target track-
ing, it is not a true multi-hypothesis method since it uses
a probability distribution to represent possible state esti-
mates rather than having discrete hypotheses.

3. LIGHT CURVE SIMULATION

The reflection model and method of generating simulated
light curves are discussed before the inversion problem
proper is addressed. For simulated light curves, this cor-
responds to Block (1) in Figure 1. This material was pre-
viously presented at the 2020 Astrodynamics Specialist
Conference [3].

The object of interest is modeled as a set of flat surfaces
or faces [10]. For now, it is assumed that only Lambertian
reflections contribute to the light curve measurements.
The intensity of the observed light from this sort of re-
flection is taken from Frueh [11]:

IL =
I0
πr2obs

N∑
i=1

Bi(û, ŝ)AiCd,i

Bi =

{
(û · n̂i)(ŝ · n̂i) if (û · n̂i) > 0 and (ŝ · n̂i) > 0

0 otherwise
,

(1)

where I0 is the steradian integrated irradiation of the light
from the Sun at the object, approximated as the solar con-
stant; N is the total number of object faces; û and ŝ are
the object-observer and object-Sun direction unit vectors;
Ai and Cd,i are the area and reflection coefficient of the
ith face; and n̂i is the face’s normal vector. If the observer
or the Sun is below any face, that face does not contribute
to IL. This effect is accounted for by the Bi function.

To find feasible orientations for each measurement, the
reflection fraction γ will be used to represent the effect of
a particular orientation on the observed brightness. The
reflection fraction is defined as:

γ =

N∑
i=1

Bi(û, ŝ)AiCd,i, (2)

which only depends on the shape and reflective proper-
ties of the object of interest, and on the object-observer
and object-Sun unit vectors. These vectors are already
known in the space-fixed frame, so if they are known in
an object-fixed frame, the object’s orientation can be eas-
ily found. Therefore, since each û − ŝ vector pair in the



body frame corresponds to a unique orientation, the re-
flection fraction γ only depends on the object’s proper-
ties and its orientation. The reflection fraction required
for a particular measurement, γM, can be found by solv-
ing Equation (1) for the reflection fraction:

γM =
ILπr

2
obs

I0
. (3)

The reflection fraction makes finding orientations that
could feasibly correspond to a given observation more ef-
ficient by providing a measure of how orientation affects
the observed brightness that does not need to be recom-
puted for each new observation.

4. DETERMINING FEASIBLE PSEUDO-
MEASUREMENTS

Once the light curve measurements, whether real or
simulated, have been received, the sets of orientations
that could feasibly correspond to each measurement are
found. This corresponds to Block (2) through Block (3)
in Figure 1. Much of the material in this section was pre-
viously presented at the 2020 Astrodynamics Specialist
Conference [3].

4.1. Viewing Sphere

One of the primary difficulties with the light curve inver-
sion problem is its inherent ambiguity. There are many
different orientations for any diffuse measurement that
could all produce that exact measurement, and there are
multiple attitude-time histories that could have produced
any individual light curve. Before determining the fea-
sible orientations at each measurement time, candidate
orientations are generated along with their corresponding
reflection fractions using the viewing sphere. These γ
values will be compared to the measurement γM’s to find
the set of feasible orientations.

The viewing sphere is a conceptual construct that helps
determine which faces of the object are visible to the ob-
server and the Sun. It is a unit sphere with the object of
interest at the origin. Since the Sun and observer will be
very far away compared to the size of most RSOs, the ob-
ject of interest can be approximated as a point [13]. The
observer and the Sun are on the viewing sphere at the
locations specified by û and ŝ, respectively. A viewing
event occurs whenever one face of the object goes from
being visible to hidden for either the observer or the Sun,
or vice versa. A face is said to be visible from one of
these points of view if:

û · n̂i > 0 or
ŝ · n̂i > 0,

(4)

where n̂i is the normal vector of the ith face. For convex
objects, viewing events always occur at a point on the
viewing sphere perpendicular to an n̂i, i.e., on a great
circle.

The great circles corresponding to each of the object faces
divide the viewing sphere into three types of regions: ver-
tices, where two or more circles intersect; edges, arcs of
the circles between vertices; and areas bounded on all
sides by edges. Because no viewing event occurs inside
one of these divisions, the same set of sides is visible
from every point in a region. A face must be visible to
both the observer and the Sun to contribute to the mea-
sured intensity IL. A combination of faces that could be
both visible to the observer and illuminated by the Sun
for a given phase angle is called a visibility group. The
viewing sphere will be used to numerically generate û− ŝ
pairs in such a way that every visibility group is repre-
sented by at least one pair. Skipping a visibility group
could mean missing a unique grouping of orientations.
Without a tool like the viewing sphere, a search would
possibly miss some visibility groups, and it would be im-
possible to tell whether or not they had all been found.

Orientations, represented by û − ŝ vector pairs, are gen-
erated as follows. First, at least one û vector is placed in
every region on the viewing sphere. A vector is placed di-
rectly on each vertex, and they are evenly distributed over
each edge and area. Then, a circle with angular radius
δ is drawn around each û vector, and a paired ŝ vector
is placed at each point where the drawn circle intersects
with a viewing event. This guarantees that one ŝ vec-
tor is placed in each vertex and edge that is δ away from
the original û vector. Then an extra ŝ vector is placed in
the area between each intersection so that every visibil-
ity group is accounted for. Finally, additional ŝ vectors
are created a distance δ away from û in order to have
more data points. The only way a visibility group might
be missed by this method is if two area regions are sepa-
rated by slightly less than δ at their closest point, which
is not the case for any of the objects used for the results
of this paper.

Note that since Equation (1) behaves identically if û and ŝ
are switched, each stored û− ŝ vector pair actually repre-
sents two different orientations. Generating the unit vec-
tor pairs finishes the process corresponding to Block (2)
in the Figure 1 flowchart.

4.2. Finding Feasible Pseudo-Measurements

Once the set of orientations has been generated, it is nec-
essary to find which orientations could feasibly corre-
spond to particular measurements. This is done by com-
paring the reflection fraction, γ, for the generated vector
pairs to the γM of the intensity measurements, as men-
tioned in Block (3) of Figure 1. Since the vector pairs
are generated numerically, there is no guarantee that any
γ is going to match γM exactly. To account for this, any
orientation with a γ value within some range Γ of the



measurement’s reflection coefficient is counted as feasi-
ble.

These feasible orientations are called “pseudo-
measurements” since they are treated as measurements
by the solver. One pseudo-measurements must be chosen
at each time step to estimate an attitude time-history
using a state estimator. The problem of finding feasible
time histories using sequences of associated pseudo-
measurements is referred to as the “pseudo-measurement
association problem.”

5. MULTIPLICATIVE EXTENDED KALMAN
FILTER

Before discussing two methods of solving the pseudo-
measurement association problem, the Multiplicative Ex-
tended Kalman filter (MEKF) will be discussed. This fil-
ter is used by both methods to estimate rotational states
from the pseudo-measurements [6, 26].

5.1. State Estimation

The estimated states at each time step are the orientation
error, represented by three rotation angles δαk, and the
angular velocity, ω̂:

δx̂k =
[
δα̂T

k ω̂T
]T

= [δαx δαy δαz ωx ωy ωz]
T
.

(5)

A quaternion q̂ is used to represent the estimated or “ref-
erence” attitude of the object. At each measurement up-
date the error in q̂ is estimated in terms of three small
rotation angles δα̂. During the update step, the quater-
nion only stays at unit length to the first order, so it must
be normalized after each update [25, 6].

The angular velocity estimate ω̂ also needs to be found.
This is done using a modified form of the MEKF de-
scribed by Crassidis and Junkins [6]. Their MEKF uses
vector measurements to estimate orientation and the bias
in gyroscope angular velocity measurements. Estimating
angular velocity instead results in slightly different co-
variance propagation equations:

Ṗ = FP + PF T +GQGT (6)

F =

[
− [ω̂×] I3×3

03×3 03×3

]
G =

[
−I3×3 03×3

03×3 I3×3

]
, (7)

where P is the state covariance andQ is the process noise
matrix. The filter takes the pseudo-measurements from

each sequence as its measurements. The û and ŝ vec-
tors in the pseudo-measurements are assumed to be gen-
erated by multiplying the space-fixed object-observer and
object-Sun unit vectors by a rotation matrix:

yk =

[
ûM
k

ŝM
k

]
=

[
A(qk)TûI

k

A(qk)TŝI
k

]
, (8)

where yk is the measurement vector for time tk, ûI
k and

ŝI
k are the object-observer and object-Sun directions in

the space-fixed frame, ûM
k and ŝM

k are the unit vector from
the pseudo-measurement, and A(qk) is the rotation ma-
trix corresponding to the true orientation qk. The space-
fixed vectors are known from the problem geometry. The
measurement matrix before an update is then:

Hk =

[[
A(q̂−

k )TûI
k×
][

A(q̂−
k )TŝI

k×
]] , (9)

where q̂−
k is the a priori orientation estimate. The rest of

the filter is as in Crassidis and Junkins [6]. The two meth-
ods of solving the association problem both have differ-
ent ways of generating initial state guesses. As such, the
discussion of filter initialization is saved until after each
method has been outlined.

5.2. Pseudo-Measurement Ambiguity

Pseudo-measurements store information about the ob-
ject’s attitude in the form of û− ŝ vector pairs. Due to the
nature of the reflection model, each pseudo-measurement
corresponds to two different orientations: one where the
object-observer and object-Sun vectors are assigned as
listed, and one where their directions are swapped. This
introduces additional ambiguity into the state estimation
problem, which the MEKF is not capable of addressing
as-is.

The ambiguity is addressed by comparing the MEKF’s
propagated orientation to the unit vectors in the pseudo-
measurement using a distance measure:

D = 2− (ûP · ûM)− (ŝP · ŝM), (10)

where the superscript P indicates the unit vector for the
propagated orientation, and the superscript M indicates
the pseudo-measurement unit vectors. The MEKF is
then updated using whichever orientation is closest to the
propagated orientation.

6. PSEUDO-MEASUREMENT ASSOCIATION
PROBLEM

It is practically impossible to try every possible combina-
tion of pseudo-measurements for the different time steps;



even for a light curve with less than two dozen measure-
ments, the number of possible combinations can be on the
order of 1052. Therefore, there needs to be some method
of limiting the number of combinations to be tried. Two
methods for limiting the number of combinations are dis-
cussed. This corresponds to Block (4) and Block (5) in
Figure 1.

6.1. Method 1: Finding Feasible Sequences

The first method is to use a simple gating test to rule out
unlikely sequences of pseudo-measurements. Assuming
that there is no sudden change to the object’s dynam-
ics during the period of observation, then the pseudo-
measurement chosen for one time step should be consis-
tent with the pseudo-measurements that came before it.

Consider two candidate pseudo-measurements for time ti
and time ti+1. The object’s motion from the orientation
corresponding to a particular ti pseudo-measurement to
the orientation described by a ti+1 pseudo-measurement
is referred to as a transition. The transition can be
found using a quaternion representation of orientation. A
quaternion is defined in terms of rotation as:

q =

[
sin θ

2 ê
cos θ2

]
=

[
%
q4

]
, (11)

where θ is the rotation angle and ê is the rotation
axis. The quaternions representing the candidate pseudo-
measurements are q̃i and q̃i+1. The tilde indicates that
the quaternion corresponds to a pseudo-measurement.
The rotation for the transition from q̃i to q̃i+1 is:

∆q̃i,i+1 = q̃i ⊗ q̃∗
i+1, (12)

where⊗ represents quaternion multiplication and q̃∗
i+1 is

the conjugate of q̃i+1. The rotation ∆q̃ is compared to
a reference rotation from ti to ti+1 to determine whether
the transition from from q̃i to q̃i+1 is feasible. For ex-
ample, under constant, single-axis rotation, the reference
rotation is the first rotation in the sequence from the
t1 pseudo-measurement to the t2 pseudo-measurement.
Since the rotation is constant, every other transition in the
sequence must be similar to the first. Similarity is mea-
sured by finding the rotation between the transition under
consideration and the first transition:

∆qt,i = ∆q̃1,2 ⊗∆q̃i,i+1, (13)

where ∆q̃1,2 is the rotation for the first transition in the
sequence. The rotation angle θ for ∆qt can be found from
(11):

θt,i = 2 cos−1 (∆qt,i,4). (14)

If θt,i is above some upper bound, then the transition is
counted as infeasible. A transition may also be counted
as infeasible if its absolute rotation angle is greater than
some set maximum. Depending on the exact gating con-
dition, this selection process can have a bias towards se-
lecting high-energy rotations. Setting a limit to the ro-
tation angle between pseudo-measurements is a way of
countering that bias and restricting the search to lower-
energy rotations. The set of all feasible transitions for
a given reference transition is referred to as T . How-
ever, just because a particular transition is feasible does
not mean that it can be reached using only other feasi-
ble transitions. To eliminate those cases, all transitions
that cannot be reached without using some transition out-
side of T are discarded. “Dead end” transitions that could
not reach the final measurement time without leaving T
are also eliminated. The process is repeated using each
unique transition from t1 to t2 in turn as the reference.
This leaves a smaller set of feasible sequences of pseudo-
measurements and reduces the number of attitude-time
histories that need to be generated.

The above discussion assumed that each pseudo-
measurement corresponds to a single orientation. In real-
ity, each pseudo-measurement could correspond to two
different orientations, so that four different transitions
need to be considered. Two of those transitions will be
duplicates in practice, so only two unique transitions need
to be considered for each pair. These additional possi-
bilities are dealt with in two ways. First, each t1 − t2
set of pseudo-measurements will be used to find feasible
sequences twice, once for each possible transition. Sec-
ond, each subsequent transition is considered feasible if
at least one of its possible rotations is a close match for
the initial transition according to the gating criteria for
θt,i.

6.2. Initial State Estimate for Method 1

Since the MEKF is a nonlinear state estimator, it needs
a guess for the initial orientation and angular velocity
states. The initial guess for the orientation is taken from
the first pseudo-measurement in the sequence that the
MEKF is processing. As each pseudo-measurement cor-
responds to two different orientations, each sequence will
need to be initialized twice. The two filters will then be
run in parallel on the pseudo-measurements in the se-
quence. At each step, the filters will pick between the
orientations represented by the pseudo-measurement as
discussed in Section 5.2. While both filters could, in
theory, choose to use the same orientation for a particu-
lar pseudo-measurement, they always choose differently
in practice. The paired MEKFs produce two separate
attitude time-histories based on the same sequence of
pseudo-measurements.

The initial angular velocity estimate can be found multi-
ple ways. The simplest method is to use the first transition
in the pseudo-measurement sequence:



ω̂1 =
θ1,2
∆t

ê1,2, (15)

where θ1,2 and ê1,2 are the rotation angle and axis for
the first transition in the sequence, and ∆t is the time
between measurements.

Other estimates are possible, however. If angular velocity
is either constant or only varying slowly for the first few
time steps, then a linear least-squares fit can be used to
find the angular velocity from the first several pseudo-
measurements [5, 21]. For a pseudo-measurement se-
quence, the second-order central limit estimate is:

ω̂ = − 1

∆t

([
ûM
k ×
]T [

ûM
k ×
]

+
[
ŝM
k ×
]T [

ŝM
k ×
])−1

([
ûM
k ×
]T [

ûM
k+1 − ûM

k−1

]
+
[
ŝM
k ×
]T [

ŝM
k+1 − ŝM

k−1

])
,

(16)

where ûM
k and ŝM

k are the pseudo-measured vectors at
time tk and ∆t is the time between measurements. Since
Equation (16) assumes that angular velocity is approxi-
mately constant between measurements, the central limit
method can be used to estimate the initial angular velocity
even though it relies on measurements from before time
tk.

6.3. Weighing History

For the attitude time-histories to be useful, there needs
to be some way of sorting the “better” or “more likely”
time histories from those that are less likely to correspond
to the true motion of the object. This sorting is done by
assigning each of the time histories a weight based on
how the filter converges. Similar material was previously
presented at the 2020 Astrodynamics Specialist Confer-
ence [3]; only the measurement matrix definition is dif-
ferent. As is sometimes the case in MHT applications, the
weight will be probabilistic [27]. To compute the weight,
the variance of the distance measure D between the esti-
mated orientation and the pseudo-measured orientation at
each time is found. This variance is equal to the a posteri-
ori state covariance P+

k for the estimate multiplied before
and after by the measurement matrix:

HD,k =
[
∂Dk

∂δαx

∂Dk

∂δαy

∂Dk

∂δαz
0 0 0

]
, (17)

where the measurement time is tk. Note that angular ve-
locity has no effect on the variance since it does not ap-
pear in (10). The variance of D at tk is then:

σ2
D,k = HD,kP

+
k H

T
D,k, (18)

The sequence of distance measures Dk are then assem-
bled into a multivariate normal distribution with mean µD
and covariance PD:

µD = [D1 D2 . . .]
T (19)

PD =

σ
2
D,1 0 0 . . .
0 σ2

D,2 0 . . .
...

. . .

 . (20)

The weight assigned to the path is equal to the value of
the probability density function when all Dk are equal to
zero. The weight is relative and used only to compare
different paths; there is no absolute cutoff for a path to be
considered “likely” or “unlikely”. Once the weight has
been computed, the path and its weight are stored, and
the next sequence of pseudo-measurements is processed.

6.4. Method 2: PHD Filter

The method of pre-selecting feasible sequences of
pseudo-measurements was tested for an object under con-
stant rotation, as discussed in Section 7.1. This gave
promising results, but it was difficult to tune the upper
bound on θt,i even for simple dynamics. To extend the
solver to more complex dynamics, a new method based
on a probability hypothesis density (PHD) filter was de-
veloped. A PHD filter is a multi-target tracking filter that
estimates the states of objects using a probability func-
tion over the state space [29, 23, 30]. The filter used
for this method approximates the distribution as a sum
of Gaussian distributions, referred to as Gaussian com-
ponents [30].

At each update step, every component is updated with
a Kalman filter. For the orientation estimation problem,
the standard Extended Kalman filter is replaced with an
MEKF. As discussed in Section 5.2, the pseudo-measured
orientation closest to the propagated estimate is used in
the MEKF update step. If there are multiple measure-
ments at a particular time step, then each propagated
component is updated using each measurement individ-
ually, producing a separate a posteriori component for
each one. For example, if there are two Gaussian com-
ponents prior to an update step with three measurements,
the probability distribution will have six components af-
ter the update is done.

Pruning and merging are used at each time step to keep
the number of Gaussian components from growing ex-
ponentially. Each Gaussian component has an assigned
weight to represent the relative likelihood of its mean
representing the true state. When using the PHD filter
for multi-target tracking, weight calculations take into
account the probability of detection for each target, the
likelihood of a new target appearing or an existing target
disappearing (i.e., births and deaths), and the presence of



clutter. However, for the light curve inversion problem
there is known to be only one object underlying the light
curve. As such, probability of detection is 1, there are no
births or deaths, and there are no clutter measurements.
This makes the weight calculations at time tk as follows
[30, 12, 24]:

wij,k =
wi,kN (zj − ẑi|H−

i,kP
−
i,k(H−

i,k)T +R)∑nk

l=1 wl,kN (zj − ẑl|H−
l,kP

−
l,k(H−

l,k)T +R)
(21)

where wij,k is the weight computed using the a priori
weight corresponding to the ith component, wi,k, and the
jth measurement zj ; ẑi is the expected measurement from
the ith component; H−

i,k is the measurement matrix from
the propagated component mean; P−

i,k is the propagated
component covarianace; R is the measurement covari-
ance; and nk is the number of components at tk.

To keep down the number of components, any Gaus-
sian with a weight less than some threshold is discarded.
Similarly, any components which are close according to
Mahalanobis distance are merged together. The weight,
state, and covariance of a merged component are [12, 24]:

wil,k = wi,k + wl,k (22)

x̂il,k =
wi,kx̂i,k + wl,kx̂l,k

wi,k + wl,k
(23)

Pil,k =
wi,kPi,k + wl,kPl,k

wi,k + wl,k
+ (δx̂il,k)(δx̂il,k)T (24)

where δx̂il,k is the length six vector as in Equation (5)
giving the difference between the two components’ state
estimates.

Once all of the measurement time steps have been pro-
cessed, the means of the highest-weighted components
are used as probable estimates of the object’s orientation
and angular velocity at the final time step. The PHD fil-
ter, as implemented, does not associate components at
one time step with those at previous times, so the atti-
tude time-histories are found by back-propagating from
the final time step.

6.5. Initial State Estimate for Method 2

The PHD filter is initialized in a similar way to the
various sequences found for the first method. First,
a number of orientations corresponding to the pseudo-
measurements at the first time step are generated. Since
each pseudo-measurement corresponds to two different

orientations, there will be two orientations per pseudo-
measurement at the initial time. These orientations are
all equally weighted, and any that are sufficiently close to
each other are merged per Equation (22) through Equa-
tion (24). Second, each initial orientation’s possible an-
gular velocities are found by comparing the orientations
to the pseudo-measurements at the second time step. The
angular velocities are calculated using Equation (15), and
a separate component is generated for each angular ve-
locity at its corresponding initial orientation. Finally, any
components nearby to each other are merged. This pro-
cess gives the set of Gaussian components at the initial
time step.

7. RESULTS

7.1. Simply-Rotating Results

The light curve inversion method is applied to the case of
a regular tetrahedron rotating at a constant rate ω̂ex:

ω̂ex = [1 1 0]
T rad/s. (25)

A measurement is taken every 0.25 seconds for five sec-
onds, producing the light curve from Figure 2. This is a
difficult case since the object is highly symmetrical, each
side reflects light in the same manner, and there are no
specular glints. The possible orientations for each visibil-
ity group were found using the viewing sphere, as shown
in Figure 3. After searching the viewing sphere, between
106 and 1241 possible pseudo-measurements were found
for each time step. A total of 17,280 feasible sequences
were found out of 1.8 · 1052 possible sequences of these
pseudo-measurements. The feasible sequences were run
through the MEKF using the angular velocity from Equa-
tion (15) as the initial guess.

The solutions found using the MEKF have weights up
to 3.6 · 1024. The estimated body-frame û and ŝ vec-
tors for the estimated path are compared to the true body-
frame unit vectors in Figure 4. The paths of the true body

Figure 2. The measured light curve for the simply-
rotating tetrahedron.



Figure 3. These images show the regular tetrahedron
(left) and the û and ŝ locations on the viewing sphere
for one visibility group (right). The blue lines indicate
viewing events, and the color of the ŝ vectors indicate the
reflection fraction of each vector pair. See Burton and
Frueh [3].

Figure 4. A plot comparing the true body-frame û and
ŝ directions (solid) with the highest-weighted estimated
vectors (dashed) over the course of the measurement pe-
riod.

Figure 5. This plot compares the true body-frame û and ŝ
directions (solid) with the lowest-weighted attitude time-
history (dashed).

frame vectors form circles with a common axis parallel to
ω̂ex. The estimated path’s average angular velocity has a
magnitude of 1.29 rad/s, compared to the 1.41 rad/s true
angular velocity. However, the direction of the rotation
is different, most likely because of the highly symmetric
nature of the regular tetrahedron.

The lowest-weight path had a weight of 1.5 · 1018. In
previous work [3], weights as low as 3.3 · 10−21 have
been found for certain time histories, so this is still rel-
atively high thanks to the pseudo-measurement selection
process. The large differences in weights are because a
path’s weight increases exponentially as the time-history
better fits the pseudo-measurements. The average angular
velocity for the low-weight case has a magnitude of 7.09
rad/s, compared to the true magnitude of 1.41 rad/s and
1.3 rad/s magnitude for the high-weight estimate. The
larger mismatch between the true and estimated angu-
lar velocity magnitudes helps explain the lower weight
for this estimate compared to the high-weight path. The
paths of the estimated unit vectors for this case are com-
pared to the truth in Figure 5.

The PHD filter was also used to analyze the light curve
in Figure 2. At the final time step, it had 4684 Gaus-
sian components with weights ranging from 22.6 to 0.01.
Note that the PHD filter weights are calculated differ-
ently than the weights for the feasible paths method, so
these are not directly comparable to the weights discussed
above. Since the second-highest weight is 21.4, com-
pared to 6.5 for the third highest, the top two components
will be discussed. Back-propagating from the final time
step gives time-histories for the body-frame û and ŝ over
time. These are plotted against the true body-frame vec-
tors in Figure 6. As in the first method, the angular veloc-
ity estimates are in different directions than the truth but
have similar magnitude: 1.9 rad/s for the highest-weight
case and 1.6 rad/s for the second-highest weight. Com-
pare to the true angular velocity magnitude of 1.4 rad/s.

Both methods gave comparable results for the single-axis
rotation problem. However, the number of feasible se-



Figure 6. This plot shows the two highest-weighted body-
frame û and ŝ directions (dashed) for the PHD filter
method along with the true body-frame vectors (solid).

quences found by the first method is extremely sensitive
to the gating criteria for θt,i. By contrast, the second
method, using the PHD filter, required significantly less
tuning and is more suitable for use on objects with more
complex rotation.

7.2. Non-Constant Rotation

The PHD filter was tested on a second light curve pro-
duced by an object undergoing non-constant torqueless
rotation. Once again a regular tetrahedron was used, but
to reduce the symmetry of the problem each side was set
to have a different reflection coefficient. The object began
rotating with angular velocity ω̂ex:

ω̂ex = [1 1 0]
T rad/s (26)

and was allowed to tumble freely. A total of 21 light
curve measurements were taken at a rate of one per sec-
ond, plotted as the solid line in Figure 7. Between one
and seventy-three pseudo-measurements were found for
each measurement time. After running the filter, the com-
ponent with the highest weight was back-propagated to
find an attitude time-history. Since the tumbling motion
makes visually comparing the true and estimated body-
frame unit vectors difficult, the resulting light curve is in-
stead compared to the actual measurements in Figure 7.
From that plot, it can be seen that the light curve for the
estimated time-history follows similar trends to the true
light curve while being phase-shifted to the left by two to
three seconds.

The merging and pruning cutoffs for the PHD filter were
not carefully tuned for this test run, so it is likely that bet-
ter results could be obtained by altering the filter param-
eters. Furthermore, the set of pseudo-measurements was
extremely small; recall that one update step had only a

Figure 7. The measured light curve (solid) for the free-
tumbling regular tetrahedron is compared to the light
curve for the highest-weighted estimate (dashed).

single pseudo-measurement. Loosening the requirements
for an orientation to be considered a feasible pseudo-
measurement would give the filter a larger set of data and
likely lead to a better estimate.

7.3. Extended Data Set

To confirm that the PHD filter with the MEKF would
produce an accurate estimate when given good pseudo-
measurement data, the tumbling object case was run with
a slightly modified set of pseudo-measurements: in ad-
dition to those generated using the viewing sphere, the
true body-frame û and ŝ unit vectors were added to the
pseudo-measurement list at each time step. The light
curve for the highest-weighted estimate from this run is
shown in Figure 8.



Figure 8. The measured light curve (solid) for the tum-
bling tetrahedron is compared to the light curve for the
highest weighted estimate (dashed) when the pseudo-
measurement sets are supplemented with the true body-
frame û and ŝ vectors.

8. CONCLUSIONS

When no resolved image of a space object can be ob-
tained, light curve inversion is a useful tool for estimating
its attitude and rotational characteristics. To avoid mak-
ing assumptions about the object’s dynamics, orientations
of the object are generated with knowledge of its ge-
ometry and reflective properties alone using the viewing
sphere. The orientations are compared to the light curve
measurements to find feasible orientations, or pseudo-
measurements, at each time step. The number of pos-
sible time-histories based on these pseudo-measurements
is large, so two methods to process them efficiently were
tested. In the first method, the set of possible pseudo-
measurement sequences is narrowed down using a gating
criteria. The time-histories for each sequence are given
weights based on how well the estimated orientations fit
the pseudo-measurements. The number of feasible se-
quences was found to be extremely sensitive to the gating
criteria chosen.

The second method uses a probability hypothesis den-
sity filter to create a Gaussian-mixture density function
of the object’s state at each measurement time. To avoid
an exponential growth in the number of Gaussian compo-
nents, components are pruned and merged after each up-
date step. This method was applied successfully to both a
simply-rotating object and an object undergoing torque-
less multi-axis rotation. Tuning the filter should further
improve the results.
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