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ABSTRACT

Surveillance of resident space objects (RSOs) is
essential for detection, tracking, and cataloguing them to
keep active satellites safe from hazards. High altitude
space objects are observed using optical telescopes due
to their efficiency. However, it is labour-intensive to
detect space objects in the images captured by
telescopes, and automation is desired. The proposed
framework leverages the Feature Pyramid Network
(FPN), a convolutional neural network for image
segmentation, to automate RSO detection in the
telescope images. The backbone used for detecting
low-level patterns from images is the pre-trained
EfficientNet-B7 on ImageNet. A simple preprocessing is
applied to images that are overexposed to scale the input
image pixel values, and this thresholding is only
conducted using the statistics of the training data. A
custom deterministic post-processing method based on
vector mathematics is developed to clean the false
detections. F1 score of the proposed machine learning
framework is 92%, and this performance shows that the
convolutional neural networks can be utilised for
automating RSO detection from telescope images.

1 INTRODUCTION

Satellites are an integral part of modern society, and
many industries depend on them to function every day.
It is essential to detect, track, and catalog resident space
objects for keeping operational satellites safe from
probable collisions. Space Domain Awareness (SDA) is
concerned with detecting threats to operational satellites
by utilising space surveillance sensors [1]. Due to the
improved SDA sensors and the accessibility of cheaper
electronics, the number of trackable objects is
increasing, and some level of automation is essential to
keep pace with the number of resident space objects

(RSOs) [2,5]. The most widely used sensor types for
space surveillance are optical telescopes and radars. Due
to the efficiency of the optical sensors for higher
altitudes, RSOs in geostationary (GEO) and
near-geostationary (near-GEO) orbits are observed with
the optical telescopes [3, 4]. The automation in detecting
the space objects in the optical images can decrease the
manpower needed for the task, and reduce the false
detections.

In the literature, there are two different approaches to
detect space objects from optical telescope images,
namely stacking methods and line-fitting methods. The
stacking methods enable detecting faint objects by
stacking multiple images together and using filters such
as median filter [6,7,8]. Although the stacking method is
effective in detecting faint signals in the images, its
downside is the time required to conduct analysis for an
object whose movement is not known, and its
implementation on accelerated hardware is required [8].
Line-fitting methods search for possible tracks to
determine the space objects in the sequences of images
[8, 9, 10]. They are suitable for online data processing,
and they do not require the speed and the motion
direction of space objects detected. However, it is not
always possible to detect faint objects in a single image
[10]. Recently, the application of data-driven approaches
for the optical detection of GEO objects has attracted
attention [11]. Gaussian process regression (GPR) with
line-fitting and topological sweep have shown
promising results in detecting faint objects in the
telescope images [11,12]. GPR has been developed for
removing the background in the images [11,12], and it
can adapt to data better than hand-crafted methods [10].
However, it is desired to develop learning-based
algorithms that directly learn from data, and can be
trained end-to-end to reduce the false detections.
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Therefore, this research investigates the feasibility of
using machine learning, namely convolutional neural
networks, to detect RSOs by training end-to-end on
low-cost telescope images.

The outline of the rest of the proposed work is : Section
2 introduces the data and the data preprocessing
processes used to prepare data for the proposed machine
learning framework. Section 3 explains the proposed
convolutional neural network framework to segment
space objects in the images and the proposed
post-processing method that conducts multi-model
fitting of objects detected in the sequences of frames.
Section 4 presents the performance of the proposed
solution and hard samples that challenge it. Section 5
provides conclusion and future work.

2 DATA

In 2020, ESA and University of Adelaide organised a
challenge that invited experts around the World to
develop computer vision algorithms for detecting faint
space objects in the low-cost telescope images [13]. The
proposed problem is detecting GEO and near-GEO
satellites in the sequences of 5 frames without any
associated orbital information regarding the space
objects in the frames. The images are taken by a
low-cost telescope located in Adelaide and saved in the
PNG format. All objects are captured in all 5 frames.
The camera is kept fixed for 40 seconds exposure time,
and a fixed angle is used for tracking the space objects
for each event. There are 1280 grayscale image
sequences in the training dataset. The main challenge
associated with the problem is the distance between the
telescope and the space objects at high altitudes
(35000-36000 km), and this leads to faint signals of the
objects that are sometimes smeared in a couple of pixels
in the image. In addition, atmospheric/weather
conditions, light pollution, sensor noise/defects, and star
occlusion are factors that make foreground and
background segmentation a challenging task.

Training data is split using a stratified 5-fold
cross-validation approach based on the number of
objects in the images. Each image is renamed using
image hashing, and a new data frame is generated that
includes image names, sequence id, frame number, and
the details regarding the split. Note that an additional
algorithm based on image hashing verifies that no
image that has a very similar distribution ends up in the
same split to avoid probable data leakage. The image
similarity step is added due to the fact that there is one
ground location that the images are taken, and it can
conduct surveillance of some specific region of the
geostationary orbit regime. The histogram of the mean
of pixel values for training images indicates that the
number of overexposed images is relatively small
(Figure 1). Therefore, the mean of pixel values of
training images without including validation or test data
are computed, and they are used to scale the
overexposed images.

Figure 1. The distribution of mean pixel values of
training images (left: original distribution and right:
adjusted distribution).

The labels for space objects are indifferent to the fact
that some labels have no corresponding signal in the
image due to cloud cover, atmospheric/weather effects,
light pollution, sensor noise/defects, and star occlusions.
Since the proposed approach is a data-driven model,
such noisy labels should be addressed. However, this
requires some manual effort to do robust label
denoising. Instead, the authors leveraged a mask
generation approach that takes the point in a bounding
box of size 4 by 4, and normalises pixel values within
the bounding box and thresholds with 0.5, finally dilutes

https://docs.google.com/document/d/1SP3qaPBYqcTESRf1bieacYvNhRLAS8uqvZdnVmQ9YoU/edit#smartreference=g3m97uqig8o9
https://docs.google.com/document/d/1SP3qaPBYqcTESRf1bieacYvNhRLAS8uqvZdnVmQ9YoU/edit#smartreference=1w6djcyrngdw
https://docs.google.com/document/d/1SP3qaPBYqcTESRf1bieacYvNhRLAS8uqvZdnVmQ9YoU/edit#smartreference=jgz0bku0rct2


the point with a kernel of 1 and uses 2 by 2 window
only. This approach is intended to generate a mask for
the region of interest that is noticeable within the
object's close vicinity (Figure 2).

Figure 2. The mask generated for an object of interest
using the proposed masking approach (left: object mask
and right: object image).

3 METHODOLOGY

3.1 Feature Pyramid Network (FPN) for Object
Detection

Feature Pyramid Network (FPN) is a feature extractor
that can be leveraged for image segmentation and object
detection. It converts a single image to feature maps that
are proportionally sized at different levels. Data flows in
two different directions, namely bottom-up and
top-down. In the bottom-top pathway, resolution
decreases and feature value for each layer increases
(Figure 3). In addition, the bottom-top part can utilise
feature extractors such as EfficientNet [15]. The
proposed FPN uses EfficientNet-B7 that is pre-trained
on ImageNet dataset. In the top-down pathway, feature
value for each layer decreases and resolution increases.
For better spatial awareness of the feature maps, FPN
leverages lateral skip connections [14].

Figure 3. The visual representation of Feature Pyramid
Networks.

The loss function utilised is dice loss for the proposed
framework. Dice loss is a region-based loss, and it
intends to maximize the overlapping between the
ground truth and predicted segmentation. The metric for
training is intersection over union (IOU) with a
threshold of 0.5. Learning rate is 0.0001, and the
optimizer is Adam for faster convergence. Batch size is
2 and the number of training epochs is 100 for each fold.
Majority vote is used to ensemble the predictions. The
hardware used for training is two NVIDIA RTX 2080
Ti.

.𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 − 2|𝐺⋂𝑆|
|𝐺|+|𝑆|

(1)

3.2 Post-Processing for the Predictions of the
Proposed Model

Some objects can not be detected in frames due to cloud
cover, atmospheric/weather effects, light pollution,
sensor noise/defects, and star occlusions. Since space
objects in the images are captured in all 5 frames, it is
possible to conduct multi-model fitting for masks
generated by FPN. Due to the nature of GEO and
near-GEO orbits, fitting a line on the detected masks
reveals objects in the image sequences. In addition, the
movement of objects in the images are perpendicularly
constrained and the distance between each mask
detected for the same object should be equally spaced in
subsequent frames (Note that the movement of camera
between exposures is kept fixed for each event). A
visual representation of the proposed post-processing
method is presented in Figure 4.



Figure 4. The proposed post-processing method based
on vector mathematics.

4 RESULTS

4.1 Performance of GEO-FPN for RSO Detection

The proposed GEO-FPN model detects RSOs by
generating masks for them. The following images show
the visual performance of our model (Figure 5). The
ground truth masks denote the true location of the
objects in the input image, while the predicted masks are
the outputs of the model.

It is evident from the examples in Figure 5 that the
proposed model is capable of detecting very faint
objects in images impacted by noise, and some of which
are difficult to see through human eyes. In addition, the
model also detects objects that appear very close to each
other. Overall, the F1 score of the GEO-FPN model is
88% in detecting RSOs in the images. Further
improvement is achieved by using a custom
post-processing algorithm, which is described in the
following section.

Figure 5a

Figure 5b

Figure 5c

Figure 5. Results of GEO-FPN model: (a) for extremely
faint objects (b) for noisy input image (c) for crowded
scenes

4.2 Improvement in Predictions using
Post-Processing

In Fig 5(b), it can be seen that the model misses one of
the objects in the image, likely due to overexposure of
the image. Moreover, atmospheric effects and other
noise cause the model to miss some faint objects, and
make false predictions. We deal with these cases by
using our post-processing algorithm which cleans false
detections as well as recovers the missed objects. The
results after post-processing are shown below. The plots
show the RSOs as it moves through the sequence of
frames by stacking the outputs of the model for each

frame in the sequence. “+” symbols mark the true
locations of objects in each frame, coloured circles
denote the predicted locations of the objects in each of

the five frames, and “×” symbols mark the predicted
locations of the objects after post-processing has been
applied.



Figure 6a

Figure 6b

Figure 6c

Figure 6: Final results of ML framework in the presence
of crowded scenes with both false positives and missed

detections (false negatives)

The post-processing boosts the F1 score of the proposed
model to 92%, which is a significant improvement (4%)
over the base FPN model. However, there are still a few
challenging examples which prove to be difficult for the
proposed framework. These are analysed in the
following section.

4.3 Analysis of challenging samples

A few examples for which the proposed GEO-FPN
model is challenged are shown below.

Figure 7a contains 7 objects in total, and 6 of which are
detected by the FPN model. One object can not be
detected in any of the five frames, which can be due to
the overlap with one of the several star trails in the
background.

In Figure 7b, all frames in the sequence are
overexposed, and this leads to extremely low
signal-to-noise ratio for 3 out of 4 objects.

In Figure 7c, all frames in the sequence are impacted by
the blurring due to the atmospheric effects, and this
reduces the amplitude of the signal.

Figure 7a: Sample with overlaps with background stars



Figure 7b: Sample with overexposed frames

Figure 7c: Sample with blurred frames

Figure 7: Challenging examples in the dataset

5 CONCLUSION AND FUTURE WORK

The proliferation of resident space objects in the last
decades requires the automation of space surveillance
operations to keep pace with the increasing number of
trackable space objects. The proposed work shows that
it is feasible to use advanced Computer Vision
algorithms that can be trained end-to-end for space

object detection in the telescope images. With an overall
accuracy of 92%, our model is robust to many
problematic effects such as atmospheric conditions,
sensor defects and star occultations.

For future work, denoising labels, increasing the size of
the dataset, and augmenting the dataset using simulated
data are data-centric improvements that the authors will
investigate for the problem. In addition, the dataset is
not balanced regarding over-exposed images and
crowded scenes, and the authors will incorporate data
similar to the minority classes to balance the dataset.
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