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ABSTRACT 

Micro-meteoroids can pose a risk to X-ray optics since 

the particles can enter the nested mirror system at shallow 

angles resulting in a focused cascading of fragments 

along the system towards the CCD camera, damaging the 

camera and the mirror surfaces along their path. 

Consequently, a statistical model was developed based 

on data from dedicated hypervelocity impact tests to 

characterize the fragmentation behaviour of projectiles 

impacting on a mirror surface at shallow angles. The 

predictions of the model were validated against the 

hypervelocity impact test data and a good compliance 

could be observed. Consequently, the model can be used 

to study the damage severity of the focused cascading 

effects inside X-ray optic instruments. A possible 

application example is provided. 

1 INTRODUCTION 

The environment around a spacecraft contains various 

solid particles distributed along a wide range of sizes, 

ranging from some meters (e.g. rocket bodies) to a few 

micrograms such as micro-meteoroids. Despite their 

small size, micro-particles can pose a threat to spacecraft 

surfaces and particularly to optical sensors as the 

particles can reach relative velocities of several tens of 

kilometres per second. One example of such sensors are 

Wolter telescopes which typically consist of many nested 

grazing incident mirrors to reflect the incoming X-rays at 

very shallow angles to focus them towards a common 

focal point. However, the analysis of the PN-CCD 

camera system aboard XMM-Newton indicates that the 

structure of the X-ray optics also leads to a focused 

cascading of micro-particles entering the mirror system 

at grazing impact angles [1]. In addition, the cascading 

along the mirror system may cause a degradation of the 

mirror surfaces. Thus, it reduces the efficiency of the 

telescope and damage the CCD camera. 

Therefore, an urge arises to analyse the vulnerability of 

X-ray detectors due to micro-particle focussing based on 

the mission environment and as such to determine the 

probability of instrument damage. However, currently, 

there is no model available to characterise the scattering 

of micro-particles at such grazing incident angles. The 

development of such a model and its implementation into 

micro-meteoroids and orbital space debris (MMOD) 

impact risk assessment tools such as ESABASE2/Debris 

would allow a detailed vulnerability assessment of X-ray 

optic instruments against micro-particles based on the 

instrument geometry and mission parameters (orbit, 

duration etc.) 

As a result, a series of hypervelocity impact (HVI) tests 

with micro-particles were performed on single mirror 

plates at grazing angles to observe the characteristics of 

the projectile scattering. Based on the obtained test data, 

a statistical model was developed to simulate the 

scattering and cascading of particles impacting X-ray 

mirrors with grazing angles.  

This paper describes the model development process 

including HVI data analysis, model implementation and 

model validation. Furthermore, the application feasibility 

of the model in ESA’s ESABASE2/Debris tool is 

demonstrated. Hereby, the focus is solely put on the 

mathematical explanation of the model development and 

not on the explanation of the physical findings. 

This study was performed under the ESA contract nr. 

4000170405/17/NL/LF. 

2 DATA ANALYSIS 

2.1 Data Acquisition 

In the framework of this study, several HVI tests were 

performed for two types of projectiles to simulate the 

different kind of micro-meteoroid material composition 

[2]. As typical material compositions for micro-

meteoroids, Iron and Olivine particles were applied as 

representatives of ductile and brittle materials 

respectively.  

As the focus of this paper lies on the model development, 
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the test setup is addressed briefly to highlight relevant 

factors for the test data acquisition. The simplified test 

setup is illustrated in Fig. 1. The particles stream first 

passes through a Beamline Detector in which the mass 

and velocity of the projectile are recorded. Afterwards, 

the particles are directed towards a rotatable mirror that 

can be inclined at specific angles towards the particle 

stream. The generated projectile fragments hit a 

Microchannel-Plate (MCP) where the mass and velocity 

of the fragments are determined. Lastly, the spatial 2D 

location of the fragments is determined via a Delayline 

Detector (DLD). 

 

Figure 1. Hypervelocity impact test setup consisting of a 

Beamline Detector, a rotatable mirror, a Microchannel-

Plate (MCP) and a Delayline Detector (DLD). 

With the help of the adjustable mirror, the tests were 

performed for the three grazing impact angle categories: 

2°, 4° and 6°. The velocity of the spherical particles 

ranges between 4-50 km/s with masses between 10-19 kg 

to 10-14 kg. Due to the test setup and measurement 

instruments, the calibration demonstrated an uncertainty 

of less than 2 mm for fragment location and an 

uncertainty of a factor about 10 for fragment mass. 

2.2 Reference Coordinate System 

The coordinate system for describing the projectile and 

fragment trajectory is defined in Fig. 2. The reference 

frame is impact oriented, meaning that the origin of the 

coordinate system is located at the impact location on the 

target surface while the X-axis follows the down-stream 

of the projectile direction. Hereby, The X-Y-Plane 

describes the target surface and the Z-axis follows the 

target surface normal. The elevation angle of projectile 

and fragment is measured from the X-Y-plane and the 

azimuth angle is measured from the X-axis. A clockwise 

rotation is considered as positive for all angles. Lastly, 

the following condition for projectile azimuth always 

applies: 𝜑𝑝𝑟𝑜𝑗 = 0°. 

2.3 Data Content 

The HVI tests generated 2370 datasets with each dataset 

representing a detected fragment. The content of a single 

fragment dataset is summarised in Tab. 1 while 

distinguishing between fragment parameters and the 

parameters of the projectile from which the fragment is 

originated. 

 

Figure 2. Model reference coordinate system with X-Y-

plane describing the target surface, 𝜃𝑝𝑟𝑜𝑗 being 

projectile elevation and 𝜃𝑓𝑟𝑎𝑔 and 𝜑𝑓𝑟𝑎𝑔 being fragment 

elevation and azimuth respectively. 

 

Table 1. Content overview of a fragment dataset gained 

from hypervelocity impact tests. 

Originating Projectile 

Parameters 
Fragment Parameters 

Projectile ID Fragment ID 

Mass Mass 

Velocity Velocity 

Elevation Elevation 

Density Azimuth 

Material Type  

(Olivine / Iron) 

 

3 MODEL DEVELOPMENT 

3.1 Model Overview 

The core functionality of the developed model “GRIM” 

(Grazing Impact Scattering Model) is based on a 

statistical approach, meaning that each fragment property 

is determined based on a probability density function 

(PDF) from which a value is generated via a random 

number generator. The advantage of this approach is that 

a pseudo-chaotic fragmentation behaviour is introduced 

to resemble the chaotic nature of the fragmentation 

process observed in the HVI test data. The PDFs are 

derived by analysing the dependencies of the fragment 

properties with the projectile properties as well as with 

other properties of the fragment itself. 

Moreover, a parametric approach was introduced to 

consider the ductile and brittle projectile categories. The 

projectile type specific coefficients are used in the PDFs 

to predict the resulting fragment properties. 

Applying the above approaches allows GRIM to use the 

projectile properties as input parameter to predict the 

resulting fragment properties.  
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3.2 Data Correlation 

To define the model workflow and the PDFs, a 

correlation analysis was performed to determine the 

dependencies between fragment-to-projectile as well as 

fragment-to-fragment properties. For the correlation 

analysis as well as for the PDF definition, the following 

relative fragment parameters were introduced 

additionally to the dataset: 

• 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ : Ratio of fragment mass to the 

total fragment mass generated in the same 

impact event, 

• 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡 𝑚𝑝𝑟𝑜𝑗⁄ : Ratio of total fragment mass 

detected in the impact event to the projectile 

mass, 

• 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄ : Ratio of fragment velocity to 

projectile velocity, 

• 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄ : Ratio of fragment elevation to 

projectile elevation, 

• 𝑁𝑓𝑟𝑎𝑔: Number of generated fragments per impact 

event, 

• 𝐸𝑘𝑖𝑛,𝑖𝑚𝑝: Kinetic energy of the projectile 

orthogonal to target surface (see Eq. 1). 

𝐸𝑘𝑖𝑛,𝑖𝑚𝑝 =
𝑚𝑝𝑟𝑜𝑗  ∙ [𝑉𝑝𝑟𝑜𝑗 ∙ sin(𝜃𝑝𝑟𝑜𝑗)]

2

2
 

(1) 

As indicated by Fig. 3, the following correlations were 

observed: 

1. 𝑁𝑓𝑟𝑎𝑔 correlates with 𝐸𝑘𝑖𝑛,𝑖𝑚𝑝: The higher the 

kinetic impact energy, the higher the quantity of 

generated fragments 

2. Azimuth distribution of the fragments correlates 

with 𝑁𝑓𝑟𝑎𝑔: The higher the fragment quantity 

per impact, the wider the azimuth spreading 

cone 

3. 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  inversely correlates with 

𝑁𝑓𝑟𝑎𝑔: The higher the fragment quantity per 

impact, the lower the mean mass of the 

individual fragments compared to the total 

fragment mass 

4. 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  correlates with 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ : 

The higher the mass portion of a fragment 

compared to the total fragment mass, the more 

its velocity resembles the projectile velocity. 

5. 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  correlates inversely with 𝜃𝑝𝑟𝑜𝑗 and 

with 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄ : The lower the fragment 

velocity and the lower the projectile incident 

angle, the higher the relative fragment elevation. 

3.3 Probability Density Functions 

For each fragment property, a PDF was generated to 

express the distribution probability of the fragments 

detected in the HVI tests. The PDFs were defined based 

on the observed correlations. These PDFs are presented 

in the following sections. For demonstrational purpose, 

the plots hereafter only cover the distribution of Iron 

projectiles. 

 

Figure 3. Fragment properties correlations. 

3.3.1 Fragment Quantity Distribution 

PDF 

The distribution of the number of detected fragments per 

impact event 𝑁𝑓𝑟𝑎𝑔 is shown in Fig. 5 for different kinetic 

impact energy 𝐸𝑘𝑖𝑛,𝑖𝑚𝑝 bins. Hereby, an exponential PDF 

as in Eq 2 has been selected for the distribution (red 

dotted line). 

𝑓(𝑥, 𝜆𝑒𝑥𝑝𝑜𝑛) =  𝜆𝑒𝑥𝑝𝑜𝑛 ∙ 𝑒−𝜆𝑒𝑥𝑝𝑜𝑛 ∙ (𝑥−1) 
(2) 

PDF Parameters 

The resulting distribution of the log-exponential 

parameter 𝜆𝑒𝑥𝑝𝑜𝑛  as a function of 𝐸𝑘𝑖𝑛,𝑖𝑚𝑝 is shown in 

Fig.4. Additionally, a weighted logarithmic exponential 

regression (red dotted line) as in Eq. 3 is used to fit the 

distribution. The equation coefficients are listed in Tab. 

2. 

𝜆𝑒𝑥𝑝𝑜𝑛(𝐸𝑘𝑖𝑛,𝑝𝑟𝑜𝑗) = 𝑎𝑛 ∙ 𝑒−𝑏𝑛∙log(𝐸𝑘𝑖𝑛,𝑝𝑟𝑜𝑗) + 𝑐𝑛  (3) 

 

Table 2. Coefficients for 𝜆𝑒𝑥𝑝𝑜𝑛  

Parameter 𝑎𝑛 𝑏𝑛 𝑐𝑛 

Brittle (Olivine) 0.00038 0.3 0.03 

Ductile (Iron) 1.1e-6 0.45 0.094 
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Figure 4. Distribution of 𝜆𝑒𝑥𝑝𝑜𝑛  as a function of 

𝐸𝑘𝑖𝑛,𝑖𝑚𝑝 for Iron HVI data (blue) with a weighted log-

exponential fit (red line). 

3.3.2 Fragment Mass Distribution 

PDF 

The distribution of relative fragment mass 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  is shown in Fig. 6 for impact events in 

which 2, 3, 4 and 5 fragments have been detected only 

(blue bars). For the PDF, a Weibull distribution as in Eq. 

4 has been selected (red dotted line).  

𝑓(𝑥, 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙 , 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙) =  
𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙
∙

(
𝑥

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙
)

𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 −1

∙ 𝑒
−(

𝑥

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙
)

𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 

  
(4) 

PDF Parameters 

The resulting distribution of the Weibull parameters 

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 𝑁𝑓𝑟𝑎𝑔 is shown in Fig. 7 with a 

weighted exponential regression (red dotted line). 

Additionally, the distribution of the Weibull parameters 

𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 𝑁𝑓𝑟𝑎𝑔 is shown in Fig. 8 with a 

weighted linear regression (red dotted line). 

 

 

 

 

Figure 5. Distributions of 𝑁𝑓𝑟𝑎𝑔 for different kinetic impact energy 𝐸𝑘𝑖𝑛,𝑖𝑚𝑝 bins. Blue: distribution of the Iron HVI 

data, red dotted line: Exponential PDF fit of the data. 

 

 

 

Figure 6. Distributions of 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  for impact events which generated 2, 3, 4, 5, 6 and 7 total fragments. Blue: 

distribution of the Iron HVI data, red dotted line: Weibull PDF fit of the data.
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Figure 7. Distribution of 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 

𝑁𝑓𝑟𝑎𝑔 > 2 for Iron HVI data (blue) with a weighted 

exponential fit (red line). 

 

Figure 8. Distribution of 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 as a function of 

𝑁𝑓𝑟𝑎𝑔 > 2 for Iron HVI data (blue) with a weighted 

linear fit (red line). 

As indicated by Fig. 6, for the case of only 2 fragments 

generated, a symmetrical distribution around 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  = 0.5 can be observed. Consequently, 

the parameters 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  and 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 are calculated as with 

respect to the number of generated fragments. In case of  

𝑁𝑓𝑟𝑎𝑔 = 2, the values in Tab. 3 are applied for λweibull 

and kweibull. 

Table 3. Parameters 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  and 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 for 𝑁𝑓𝑟𝑎𝑔 = 2. 

 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  

Brittle (Olivine) 0.234 1.68 

Ductile (Iron) 0.233 1.76 

 

In case of 𝑁𝑓𝑟𝑎𝑔 > 2, the coefficients 𝑎, 𝑏 and 𝑐 are 

applied as follows and in accordance with Tab. 4 and 

Tab. 5. 

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝑁𝑓𝑟𝑎𝑔) = 𝑎𝑚1 ∙ 𝑒−𝑏𝑚1 ∙ 𝑁𝑓𝑟𝑎𝑔 + 𝑐𝑚 (5) 

𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝑁𝑓𝑟𝑎𝑔) = 𝑎𝑚2 ∙ 𝑁𝑓𝑟𝑎𝑔 + 𝑏𝑚2 (6) 

 

Table 4. Coefficients for 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  for 𝑁𝑓𝑟𝑎𝑔 > 2. 

 

Table 5. Coefficients for 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙 for 𝑁𝑓𝑟𝑎𝑔 > 2. 

Parameter 𝑎𝑚2 𝑏𝑚2 

Brittle (Olivine) 0.1 1.2 

Ductile (Iron) 0.025 1.6 

 

Total Fragment Mass 

Due to uncertainty for fragment mass, a high range of 

𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡 𝑚𝑝𝑟𝑜𝑗⁄  distribution was detected as illustrated 

in Fig. 9. Therefore, the most probable value of  

𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡 𝑚𝑝𝑟𝑜𝑗⁄ = 0.95 (7) 

was assumed for the model, meaning that 95% of the 

projectile mass is converted to fragment mass. It is 

assumed that a small portion of the mass is converted to 

heat, absorbed by target and/or was not detected due to 

detector sensitivity. 

 

Figure 9. Distribution of 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡 𝑚𝑝𝑟𝑜𝑗⁄  for Iron HVI 

data (blue) with highest peak at 0.95. 

3.4 Density Distribution 

It is assumed, that all the fragments are originated from 

the projectile and none from target. This assumption is 

also indicated by Smoothed Particle Hydrodynamics 

method (SPH) analysis done in prior to the HVI tests. 

Consequently, the following applies for all fragments: 

𝜌𝑓𝑟𝑎𝑔 =  𝜌𝑝𝑟𝑜𝑗 (8) 

Velocity Distribution 

PDF 

The relative velocity distribution 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  is shown in 

Fig. 12 for different 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  bins. Hereby, a 

Gaussian PDF has been selected for the distribution (red 

dotted line). 

PDF Parameters 

The resulting distribution of the Gaussian parameters 

𝜇
𝑔𝑎𝑢𝑠𝑠

 as a function of 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  is shown in Fig. 

10 with a weighted linear regression (red dotted line). 

Additionally, the distribution of the Weibull parameters 

𝜎𝑔𝑎𝑢𝑠𝑠 as a function of 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  is shown in  

Parameter 𝑎𝑚1 𝑏𝑚1 𝑐𝑚 

Brittle (Olivine) 1 0.42 0.084 

Ductile (Iron) 0.51 0.23 0.05 
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Fig. 11 with a weighted linear regression (red dotted 

line). 

 

Figure 10. Distribution of 𝜇
𝑔𝑎𝑢𝑠𝑠

 as a function of 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  for Iron HVI data (blue) with a 

weighted linear fit (red line). 

 

Figure 11. Distribution of 𝜎𝑔𝑎𝑢𝑠𝑠 as a function of 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  for Iron HVI data (blue) with a 

weighted linear fit (red line). 

The parameters 𝜇
𝑔𝑎𝑢𝑠𝑠

 and 𝜎𝑔𝑎𝑢𝑠𝑠 are calculated as 

follows: 

𝜇𝑔𝑎𝑢𝑠𝑠(𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ ) = 𝑎𝑣1 ∙

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ + 𝑏𝑣1  
(9) 

𝜎𝑔𝑎𝑢𝑠𝑠(𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ ) = 𝑎𝑣2 ∙

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄ + 𝑏𝑣2  
(10) 

with the parameters 𝑎 and 𝑏 taken from Tab. 6 and Tab. 

7. 

Table 6. Coefficients for 𝜇
𝑔𝑎𝑢𝑠𝑠

. 

Parameter 𝑎𝑣1 𝑏𝑣1 

Brittle (Olivine) -0.029 0.96 

Ductile (Iron) 0.073 0.88 

 

Table 7. Coefficients for𝜎𝑔𝑎𝑢𝑠𝑠. 

Parameter 𝑎𝑣2 𝑏𝑣2 

Brittle (Olivine) -0.011 0.076 

Ductile (Iron) -0.055 0.13 

3.5 Elevation Distribution 

PDF 

The relative elevation distributions 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  is 

dependent for relative velocity of the fragments and the 

incident angle of the projectile. Consequently, the 

distribution of 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  for different 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  

bins. for 𝜃𝑝𝑟𝑜𝑗 = 2°, 𝜃𝑝𝑟𝑜𝑗 = 4° and 𝜃𝑝𝑟𝑜𝑗 = 6° are 

shown in Fig. 13, 14 and 15 respectively. Hereby, a 

Weibull PDF (see Eq. 4) has been selected for the 

distribution (red dotted line). 

As indicated by Fig. 13, particularly for the case of 

𝜃𝑝𝑟𝑜𝑗 = 2°, the low amount of available statistical data 

provides a challenge for deriving a sophisticated 

distribution. Consequently, the fragment elevation 

distribution of the model must be further refined and 

validated based on more statistical data obtained by 

further HVI tests.  

 

 

 

Figure 12. Distributions of 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  for different 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  bins. Blue: distribution of the Iron HVI data, red 

dotted line: Gaussian PDF fit of the data. 
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Figure 13. Distributions of 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  for different 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  bins and 𝜃𝑝𝑟𝑜𝑗 = 2°. Blue: distribution of the Iron 

HVI data, red dotted line: Weibull PDF fit of the data. 

 

Figure 14. Distributions of 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  for different 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  bins and 𝜃𝑝𝑟𝑜𝑗 = 4°. Blue: distribution of the Iron 

HVI data, red dotted line: Weibull PDF fit of the data. 

 

Figure 15. Distributions of 𝜃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗⁄  for different 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄  bins and 𝜃𝑝𝑟𝑜𝑗 = 6°. Blue: distribution of the Iron 

HVI data, red dotted line: Weibull PDF fit of the data

PDF Parameters 

Based on the available data, the resulting distribution of 

the Weibull parameters 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  is shown in Fig. 16 with a weighted 

linear regression (red dotted line). Additionally, the 

distribution of the Weibull parameters 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a 

function of 𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  is shown in Fig. 17 with a 

weighted linear regression (red dotted line). As indicated 

in Fig. 17, a different fragmentation characteristic can be 

observed for very shallow projectile incident angle (2°) 

compared to higher incident angle. Consequently, the 

critical impact angle of 2° was introduced for simulating 

the fragment elevation distribution. 
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Figure 16. Distributions of 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  and impact incident angle for Iron 

HVI data (blue) with a weighted linear fit (red line). 

 

Figure 17. Distributions of 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  as a function of 

𝑚𝑓𝑟𝑎𝑔 𝑚𝑓𝑟𝑎𝑔,𝑡𝑜𝑡⁄  and impact incident angle for Iron 

HVI data (blue) with a weighted linear fit (red line). 

The Weibull PDF parameters 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  and 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  are 

expressed as linear equations with two independent 

variables: 

𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝜃𝑝𝑟𝑜𝑗, 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄ ) = 𝑎𝑒𝑙1 + 𝑏𝑒𝑙1 ∙

𝜃𝑝𝑟𝑜𝑗 + 𝑐𝑒𝑙1 ∙ 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄   (11) 

𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝜃𝑝𝑟𝑜𝑗, 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄ ) = 𝑎𝑒𝑙2 + 𝑏𝑒𝑙2 ∙

𝜃𝑝𝑟𝑜𝑗 + 𝑐𝑒𝑙2 ∙ 𝑉𝑓𝑟𝑎𝑔 𝑉𝑝𝑟𝑜𝑗⁄   (12) 

The parameters 𝑎 and 𝑏 can be taken from Tab. 8 and 

Tab. 9 for the case 𝜃𝑝𝑟𝑜𝑗 > 2 and from Tab. 10 and Tab. 

11 for the case 𝜃𝑝𝑟𝑜𝑗 ≤ 2. 

 

Table 8. Coefficients for 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  for 𝜃𝑝𝑟𝑜𝑗 > 2. 

Parameter 𝑎𝑒𝑙1 𝑏𝑒𝑙1 𝑐𝑒𝑙1 

Brittle (Olivine) 1.44 -0.0986 0.37 

Ductile (Iron) 3.75 -0.253 -1.45 

 

Table 9. Coefficients for 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  for 𝜃𝑝𝑟𝑜𝑗 > 2. 

Parameter 𝑎𝑒𝑙2 𝑏𝑒𝑙2 𝑐𝑒𝑙2 

Brittle (Olivine) -7.47 1.12 5.28 

Ductile (Iron) 5.24 0.141 -3.11 

 

 

Table 10. Coefficients for 𝜆𝑤𝑒𝑖𝑏𝑢𝑙𝑙  for 𝜃𝑝𝑟𝑜𝑗 ≤ 2. 

Parameter 𝑎𝑒𝑙1  𝑏𝑒𝑙1 𝑐𝑒𝑙1 

Brittle (Olivine) 2.58 0 -1.59 

Ductile (Iron) 9.08 0 -8.29 

 

Table 11. Coefficients for 𝑘𝑤𝑒𝑖𝑏𝑢𝑙𝑙  for 𝜃𝑝𝑟𝑜𝑗 ≤ 2. 

Parameter 𝑎𝑒𝑙2  𝑏𝑒𝑙2 𝑐𝑒𝑙2 

Brittle (Olivine) 14.8 0 -13.7 

Ductile (Iron) 5.33 0 -4.07 

3.6 Azimuth Distribution 

PDF 

The fragment azimuth distribution is shown in Fig. 19 for 

impact events in which only 2, 3 and 4 fragments have 

been detected (blue bars). Hereby, a Gaussian PDF has 

been selected for the distribution (red dotted line). As can 

be seen, the expected value varies around 0° degree 

meaning that the majority of the fragments are oriented 

towards the downstream of the impact. This behaviour 

was also observed in SPH analysis done in prior to the 

HVI tests.  

PDF Parameters 

Based on the test data observation, the Gaussian 

parameters 𝜇𝑔𝑎𝑢𝑠𝑠 was defined as 0° for the model. The 

resulting distribution of the parameters 𝜎𝑔𝑎𝑢𝑠𝑠 as a 

function of 𝑁𝑓𝑟𝑎𝑔 is shown in Fig. 18 with a weighted 

root function regression (red dotted line). 

 

Figure 18. Distribution of 𝜎𝑔𝑎𝑢𝑠𝑠 as a function of 𝑁𝑓𝑟𝑎𝑔 

for Iron HVI data (blue) with a weighted root function 

fit (red line). 

Consequently, the parameters are calculated as follows: 

𝜇𝑔𝑎𝑢𝑠𝑠 = 0° (13) 

𝜎𝑔𝑎𝑢𝑠𝑠 = (𝑁𝑓𝑟𝑎𝑔 − 1)
𝑎𝑎𝑧

+ 𝑏𝑎𝑧 (14) 

with the parameters 𝑎 and 𝑏 listed in Tab. 12. 
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Figure 19. Distributions of fragment azimuth for impact events which generated 2, 3, 4, 5, 6 and 7 total fragments. 

Blue: distribution of the Iron HVI data, red dotted line: Gaussian PDF fit of the data. 

 

Table 12. Coefficients for 𝜎𝑔𝑎𝑢𝑠𝑠. 

Parameter 𝑎𝑎𝑧  𝑏𝑎𝑧  

Brittle (Olivine) 0.41 2.1 

Ductile (Iron) 0.18 2.7 

4 MODEL IMPLEMENTATION 

GRIM is developed as a main FORTRAN routine with 

several subroutines/modules. Each fragment property is 

calculated in a dedicated module. As a result, the 

simulation of each fragment property can be easily 

modified, by exchanging the underlying subroutine in 

case of new findings in future HVI test campaigns. 

Therefore, based on the impacting projectile properties, 

GRIM is capable of predicting the number of generated 

fragments as well as their individual mass, velocity, 

density, elevation and azimuth angles. Moreover, a 

simulation seed can be provided as additional input to 

allow a deterministic random number generation. Tab. 13 

provides an overview of the input and output parameters 

of GRIM. 

The basic workflow of GRIM is illustrated in Fig. 20. The 

workflow was developed with respect to the observed 

data correlation as described in Fig. 3. 

 

 

 

 

 

 

 

 

 

Table 13. Overview of model input and output 

parameters. 

Parameter Description Unit 

Input Parameters (Projectile) 

𝑚𝑝𝑟𝑜𝑗 Projectile Mass kg 

𝑉𝑝𝑟𝑜𝑗 Projectile Velocity m/s 

𝜃𝑝𝑟𝑜𝑗  Projectile Elevation Angle deg 

𝜌𝑝𝑟𝑜𝑗 Projectile Density kg/m³ 

- Simulation Seed - 

 Output Parameters (Fragment) 

𝑁𝑓𝑟𝑎𝑔 Number of generated fragments 

per impact event 

- 

𝑚𝑓𝑟𝑎𝑔 Individual Fragment Masses kg 

𝑉𝑓𝑟𝑎𝑔 Individual Fragment Velocities m/s 

𝜃𝑓𝑟𝑎𝑔 Individual Fragment Elevation 

Angles 

deg 

𝜑𝑓𝑟𝑎𝑔 Individual Fragment Azimuth 

Angles 

deg 
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Figure 20. Simplified workflow of GRIM. 

5 MODEL VERIFICATION AND 

VALIDATION 

The model output was validated against the HVI test data. 

Initially, it was foreseen to split the HVI test data to a 

development set for the model development activity and 

a test set for model validation activity. However, due to 

the relative low number of available data for statistical 

analysis, the decision was made to use the entirety of the 

available data for the model development to increase the 

statistical quality. However, this leads to the loss of an 

independent test data. Consequently, the model has to be 

further validated against additional HVI data gained in a 

planned second HVI test campaign. The model was 

validated based on two approaches: Module-wise and 

system-wise. 

5.1 Module Verification and Validation 

Each module (e.g. azimuth distribution, velocity 

distribution etc.) was validated separately based on the 

HVI test data. Hereby, the input for the module was 

extracted from the database and the resulting 

output/predicted value for the fragment property was 

compared to the detected value in the HVI data. As a 

result, the Prediction Accuracy parameter was introduced 

as described in Eq. 15. Due to the application of random 

number generators, the mean value after 1000 Monte 

Carlo iterations was used as a representative of the 

predicted value. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑀𝑒𝑎𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)𝑀𝐶

𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒
  (15) 

Consequently, a prediction accuracy of “1.0” would 

mean that the average value predicted by the model after 

several Monte Carlo iterations equals to the detected 

value in the HVI data while a value below or above “1.0” 

would mean that the model has provided an underrated or 

overrated prediction respectively. In general, the 

validation of all the modules have shown a good 

compliance to the detected HVI test values. For instance, 

Fig. 21 shows the distribution of the mean prediction 

accuracy for fragment relative velocity achieved after 

1000 Monte Carlo iterations (𝑣̃𝑓𝑟𝑎𝑔 𝑣𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑 over 

all of the impact events. The distribution is also expressed 

in form of a Gaussian distribution. As can be seen, for the 

majority of the impact events, the model has achieved a 

prediction accuracy near “1.0”. The mean prediction 

accuracies for fragment relative mass 

(𝑚̃𝑓𝑟𝑎𝑔 𝑚𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑, fragment relative elevation 

(𝜃̃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑 and number of generated 

fragments (𝑁𝑓𝑟𝑎𝑔)𝑀𝐶,𝑝𝑟𝑒𝑑  gained for all of the impact 

events are displayed in Fig. 22, 23 and 24. As 

demonstrated in Fig. 24, the model slightly underrates the 

number of generated fragments in an impact. This 

behaviour will be further analysed in the second test 

campaign. 

 

Figure 21. Distribution of prediction accuracy 

(𝑣̃𝑓𝑟𝑎𝑔 𝑣𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑 over all impact events achieved 

after 1000 Monte Carlo iterations. 

 

Figure 22. Distribution of prediction accuracy 

(𝑚̃𝑓𝑟𝑎𝑔 𝑚𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑 over all impact events achieved 

after 1000 Monte Carlo iterations. 
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Figure 23. Distribution of prediction accuracy 

(𝜃̃𝑓𝑟𝑎𝑔 𝜃𝑝𝑟𝑜𝑗  ⁄ )𝑀𝐶,𝑝𝑟𝑒𝑑 over all impact events achieved 

after 1000 Monte Carlo iterations. 

 

 

Figure 24. Distribution of prediction accuracy 

(𝑁𝑓𝑟𝑎𝑔)𝑀𝐶,𝑝𝑟𝑒𝑑 over all impact events achieved after 

1000 Monte Carlo iterations. 

 

5.2 System Verification and Validation 

A system verification was performed to verify the generic 

workflow concept of GRIM (see Fig. 20) and the 

inclusion of all of the modules into this process. This was 

done by providing the impact properties of all the impact 

events in the HVI test data to the main GRIM routine and 

comparing the predicted to the detected fragment 

distributions. Due to the workflow, GRIM determines the 

number of generated fragments based on the impact 

condition. The fragment quantity will then serve as input 

to other fragment property modules and thus influence 

the output of the model significantly. Therefore, the 

parameter Prediction Accuracy as a mean to perform a 1-

to-1 comparison of fragment property prediction is not 

possible due to different numbers of generated fragments. 

Consequently, the predicted vs detected distributions 

have been compare with each other as presented in Fig. 

25, 26, 27, 28 and 29. In Fig. 26, the peak at 

mfrag mfrag,tot⁄ = 1 represents those projectiles that have 

experienced no fragmentation and thus the resulting 

fragment mass being the same as the projectile mass. As 

can be seen, the model shows a good prediction 

compliance to the detected HVI test data. A more 

elaborated system validation is foreseen after the second 

test campaign. 

 

Figure 25. Area normalized distribution of predicted and detected 𝑁𝑓𝑟𝑎𝑔 (generated fragments per event) on system level 

after 100 Monte Carlo iterations. Blue: Detected data from Iron HVI test. Orange: Predicted data via GRIM. 

 

Figure 26. Area normalized distribution of predicted and detected mfrag mfrag,tot⁄  on system level after 100 Monte Carlo 

iterations. Blue: Detected data from Iron HVI test. Orange: Predicted data via GRIM. 
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Figure 27. Area normalized distribution of predicted and detected 𝑉𝑓𝑟𝑎𝑔 on system level after 100 Monte Carlo iterations. 

Blue: Detected data from Iron HVI test. Orange: Predicted data via GRIM. 

 

Figure 28. Area normalized distribution of predicted and detected 𝜃𝑓𝑟𝑎𝑔 on system level after 100 Monte Carlo iterations. 

Blue: Detected data from Iron HVI test. Orange: Predicted data via GRIM. 

 

Figure 29. Area normalized distribution of predicted and detected 𝜃𝑓𝑟𝑎𝑔 on system level after 100 Monte Carlo iterations. 

Blue: Detected data from Iron HVI test. Orange: Predicted data via GRIM. 

 

6 APPLICATION DEMONSTRATION 

To demonstrate the application capabilities of the model 

for analysing and tracking focused cascading effects 

inside X-ray optic tubes, the model was implemented into 

ESA’s MMOD risk assessment tool 

“ESABASE2/Debris” as a prototype. Hereby, the 

geometry handling and raytracing features of 

ESABASE2 were utilised to initialise a single grazing 

projectile impact inside a tube (representing a silicon-

pore in X-ray detectors), predict the resulting fragments, 

trace fragment secondary impacts inside the tube and 

repeat the cycle upon further impact detection until the 

fragments have reached the back wall of the tube 

representing a CCD camera location. The projectile 

parameters are listed in Tab. 14. Furthermore, the 

dimensions of the modelled rectangular tube are: 65 mm 

x 0.83 mm x 0.606 mm (LxWxH). As shown in Fig. 30, 
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with applying GRIM, the fragmentation cascading 

process of a projectile entering the tube can be simulated 

resulting in hundreds of fragments focused on the tube’s 

back wall. The implementation into ESABASE2 could be 

extended in the future to also allow to derive statistics 

about the properties of the fragments reaching the 

backwall. 

 

Table 14. Projectile parameters for simulation. 

Proj. Parameter Value 

Mass 5e-15 kg  

Diameter 1.07e-6 m 

Velocity 13.02 km/s 

Density 7800 kg/m³ 

Elevation 2.86° 

Type Ductile 

 

 

Figure 30. Demonstration of GRIM’s focused cascading 

analysis capabilities using the tool ESABASE2/Debris.  

7 SUMMARY AND CONCLUSION 

A new statistical model was developed to predict the 

resulting fragment properties based on the projectile 

properties for very shallow impact angles on mirror 

surfaces. The model was developed based on fragment 

data gained from a series of dedicated HVI tests. Based 

on provided projectile parameters (mass, velocity, 

density and incident angle) the model predicts the 

number of generated fragments and their properties 

(mass, velocity, density, elevation and azimuth angles). 

Hereby, the model can distinguish between ductile and 

brittle projectiles. The model was validated against the 

HVI test data and shows a good compliance for the 

predictions. 

Consequently, by implementing into sophisticated 

MMOD risk assessment tools, the model allows to 

analyse focused cascading effects of particles inside X-

ray telescope by using the 3D model of the instrument. 

This was demonstrated by implementing the model into 

ESA’s ESABASE2/Debris tool and perform a cascading 

simulation based on a simple tube geometry. 

In contrast to Smoothed Particle Hydrodynamics 

methods, the statistical model provides the advantage of 

performing impact simulations in a fraction of the 

required time and computational power. Thus, it enables 

the simulation of cascading impact events inside complex 

mirror systems in a reasonable time frame.  

A second HVI test campaign is foreseen, to gain 

additional reference data for further model refinement 

and validation purpose. Furthermore, the model will be 

extended to allow the assessment of mirror surface 

cratering due to grazing impacts. 
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