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ABSTRACT

Maneuver detection of Resident Space Objects is an ac-
tive research topic, highly demanded in Space Surveil-
lance and Tracking (SST) applications. The present work
proposes a novel approach for tracking maneuverable ob-
jects in a reduced observability scenario. The latter is typ-
ically the case for Medium or Geostationary Earth Orbits,
altitudes at which only optical observations are usually
available. The novelty of the method relies on the use of
a Sequential Monte Carlo framework for state estimation,
enhanced by Markov Chain Monte Carlo post-maneuver
state recovery. Through the definition of surrogate func-
tions to approximate maneuvers, it is possible to recover a
region of states compliant with the incoming observations
provided some bounds for the maximum expected con-
trol effort. Additionally, hypotheses can be formulated
based on historical data or otherwise already character-
ized maneuvers. Results are obtained for Geostationary
spacecraft in a simulated optical observation scenario.

Keywords: Space Situational Awareness; Space Traf-
fic Management; Maneuver Detection; Data Association;
Maneuvering Target Tracking; Sequential Monte Carlo;
Markov Chain Monte Carlo.

1. INTRODUCTION

Space Surveillance and Tracking (SST) is becoming
more critical due to the current and expected growth of
the earth orbiting population. As of January 2021, the
number of Resident Space Objects (RSOs) greater than
10 cm in size registered by the U.S. Space Surveillance
Network climbs up to 21, 901, the 71 % of which are
not related to either active or ceased operations [1]. Ad-
ditional threats are envisaged due to the deployment of
mega-constellations aimed at providing global internet
coverage. Starlink and OneWeb are two examples, cur-
rently accounting for almost 1,600 satellites in Low Earth
Orbit (LEO). Procedures to efficiently build and maintain
RSO catalogs are deemed necessary to ensure the con-
tinuation of space operations in the near future, se e.g.

[2, 3]. In this regard, Space Surveillance and Tracking
(SST) systems retrieve observations from a wide variety
of both ground and space-based sensors and build a la-
beled map of RSOs through the so-called observation-
correlation process.

Based on RSO catalogs, detection of potential conflicts
can be automated and managed by Space Traffic Man-
agement (STM) entities. Operators are then relieved from
conflict detection, only being warned and asked for res-
olution if required. This framework is convenient to en-
sure the safe and orderly growth of space operations in
the era of space tourism and space-based global internet
coverage. SST systems determine whether an incoming
(uncorrelated) observation: 1) belongs to an already cat-
aloged object, 2) can be associated to a previous uncor-
related observation to create a new object or 3) shall re-
main uncorrelated. This process, known as observation-
correlation, requires the implementation of orbit deter-
mination, orbit propagation and data association meth-
ods. Coherence between these methods is critical for the
provision of SST services in an operational environment,
which imposes certain limits on the computational bur-
den. Besides, operational spacecraft are found to perform
maneuvers that may stem from mission requirements or
collision avoidance. Maneuver detection and estimation
further complicates the observation-correlation process,
introducing additional complexity to the problem, as the
space accessible to a given object is a priori infinite.
Bounds for feasible maneuver efforts and gating for ma-
neuver estimation scenarios must be properly defined, to-
gether with a reasonable approach for maneuver estima-
tion.

The aim of the present work is thus to identify the cur-
rent needs in maneuver detection methods applied to op-
tical survey scenarios and propose a solution that can be
used to accurately represent the character of maneuvers
of RSOs in a statistical manner. The proposed approach
relies on 1) the definition of an admissible region based
on a novel control distance metric, and 2) the use of a sta-
tistical filtering framework in which hypotheses are gen-
erated from the admissible space conditioned on one or
multiple measurements and previously characterized ma-
neuvers. Accordingly, Section 2 provides an extensive re-
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view on maneuver detection and estimation methods ap-
plied to the particular problem of space object tracking.
The definition of an admissible region based on a control
distance metric is covered in Section 3, aimed at char-
acterizing the space accessible to a maneuvering RSO in
terms of expected control effort. A novel and efficient
control distance metric is presented in Section 4, which
is then compared to state-of-the-art approaches. The pro-
posed statistical framework is discussed in Section 5,
where different approaches for post-maneuver state re-
covery based on Markov Chain Monte Carlo (MCMC)
methods are presented. Section 5 also deals with the def-
inition of heuristics based on already characterized ma-
neuvers, together with a procedure to elaborate, promote
and discard maneuver hypotheses. Results are obtained
in a simulated scenario representative of a typical SST
optical survey, which is described in Section 6. These
results focus on the ability of the proposed method to
solve the measurement association problem, properly de-
tect maneuvers and accurately recover the post-maneuver
state of the target RSO. Finally, conclusions and future
extensions to this work are provided in Section 7, where
the adequacy of the method to fulfill the current needs in
maneuver detection and estimation is also analyzed.

2. MANEUVER DETECTION AND ESTIMA-
TION METHODS APPLIED TO SST

The Earth orbital space is typically characterized by qui-
escent objects, whose position is highly dependant on en-
vironmental factors such as Earth’s oblateness, the pres-
ence of third bodies, solar radiation pressure and atmo-
spheric density. Models of varying complexity exist for
determining the effects of these force fields on RSOs,
which can be extremely useful for tracking purposes in
cluttered regions. These models serve as the effective
link between different observations of the same object,
yet deemed to fail during maneuvering intervals. It is
thus desirable to automatically infer when an object has
maneuvered to properly keep track of the earth orbiting
population.

Maneuver detection and estimation methods, being an ex-
tension of tracking algorithms, are significantly affected
by the information available and the quality and timeli-
ness of such information. In this regard, space surveil-
lance typically employs two types of ground-based sen-
sors: radars and optical telescopes. While the former are
capable of determining the entire state of an RSO, includ-
ing its radar cross section in some cases, the latter only
provide line-of-sight data, i.e. angular data. Radars can
operate under all lighting conditions, whereas telescopes
have limitations regarding the amount of environmental
light and the relative brightness of visible space objects.
Moreover, keeping track of fast objects such as low al-
titude satellites is further complicated by the necessity
of rapidly adapting the pointing direction. Optical tele-
scopes are thus normally relegated to the observation of
RSO that fall beyond the scope of current radar technol-
ogy, i.e. Medium Earth Orbit (MEO) altitudes or above.

MEO and GEO object observations feature a revisit time
for a still telescope of (at most) once per night (twice in
survey operations), which may even be of the order of
days depending on the space surveillance strategy. The
partial character of such observations coupled with the
relatively long re-observation time, renders the problem
of maneuver detection and, especially, estimation chal-
lenging. It is the objective of the current section to dis-
cuss on the main approaches to maneuver detection and
estimation in the context of space surveillance, with a
special interest on optical observations. There are mainly
four types of methods for maneuvering target tracking of
space objects:

• Perturbed Dynamics: rely on the use of State Tran-
sition Matrices for approximating the effects of
maneuvers in the orbital motion. Maneuvers are
then characterized via parameter estimation meth-
ods such as Non-Linear Batch Least Squares, see for
instance the work by A. Pastor et al. [4].

• Multiple Models: additional models are considered
for the target motion, typically varying the level of
process noise or augmenting the number of state
variables to be estimated. The active model is
then marginalized based on measurement associa-
tion metrics. Examples can be found in the work
of B. Jia et al. [5] and J. Katzovitz [6].

• Heuristics: a statistical characterization of previous
maneuvers can be performed using kernel density
estimators [7] or machine learning algorithms [8].
New maneuvers are then approximated by means of
the so-called patterns of life, or heuristics.

• Optimal Control: fitting a new observation can be
posed as an optimal control problem. It is then pos-
sible to derive mismodeled dynamics or characterize
the optimal maneuver subject to a defined cost func-
tion. In this regard, one can find the work of M.
Holzinger et al. [9], D. Lubey [10] or the more re-
cent proposal by R. Serra et al. [11] focused on track
association.

The perturbed dynamics approach seems to be the most
usual procedure to account for maneuvering targets as it
relies on the main methods used for orbit determination.
The assumption of a fixed number of maneuvers does not
seem to hinder the applicability of the method since two
maneuvers are sufficient to switch between two arbitrary
orbits. Nevertheless, the accuracy may be affected by the
approximations used to infer the effects of maneuvers in
the object dynamics, especially for relatively long prop-
agation times and high maneuver magnitudes. Also note
that post-maneuver state estimation is partially or entirely
conditioned on the control effort, and such control effort
only regards the observed states. In general, a maneuver
needs not necessarily correspond to an optimal transfer
and if so, such optimal transfer is conditioned on the full
state of the final orbit.

By carefully analyzing the diverse multiple model for-
mulations, one may realize they are intended to work



in a rather benign environment. Their primary use may
be limited to operator surveillance, close formations and,
in general, low re-observation time scenarios. Nonethe-
less, the application of Interacting Multiple Model (IMM)
methods is not deemed to fail if a sufficiently close defi-
nition of the maneuvering modes is proposed such as, for
instance, orbit raising modes for electric propelled space-
craft and East-West / North-South Station Keeping modes
for GEO operational satellites.

Heuristics, and in particular the use of historical data, has
shown to bring in many benefits in a wide range of appli-
cations. Estimation in data sparse systems, as is the case
for tracking of space objects with long re-observation
times, can be eased by incorporating prior information
regarding the expected behavior of the target. It is obvi-
ous that in the absence of previous data, these method-
ologies are hardly applicable, in which case they might
be augmented with some of the alternatives discussed in
this work. Moreover, dissimilar maneuvers performed
due to other concerns, e.g. collision avoidance or transfer
to graveyard orbits, may present difficulties in the ability
to estimate the post-maneuver state.

Maneuver detection and characterization via optimal con-
trol is a promising solution in the absence of prior in-
formation about the target, or when heuristics-based ap-
proaches have shown to fail. The latter may well be the
case for outlier maneuvers such as collision avoidance,
failure conditions or re-positioning. Nonetheless, the as-
sumption of continuous thrust may yield inaccurate post-
maneuver state estimates for maneuvers requiring a high
control effort or RSOs equipped with chemical propul-
sion systems.The assumption of fuel-optimal maneuvers
represents the willingness of operators to extend the oper-
ational life of their satellites. Note, however, this assump-
tion is conditioned on a final orbit. Thus, determining the
fuel optimal transfer to a final optical track may lead to
significant errors in the post-maneuver state estimate.

In order to fulfill the gaps in the current methodology, our
proposal is strongly focused on the statistical characteri-
zation of the target state. The latter is thus relieved from
the usual Gaussian and uni-modal assumptions, which al-
lows the treatment of multiple maneuver hypotheses in
the form of multiple modes featuring an arbitrarily com-
plex distribution. These hypotheses may be based on op-
timal control or patterns of life, making an efficient use
of the information available. Decision making, i.e. hy-
pothesis testing, is ultimately based on both measurement
association and control distance metrics.

3. ADMISSIBLE REGION BASED ON CONTROL
DISTANCE

Hereafter, we propose an alternative method for the
canonical Constrained Admissible Region (CAR) ap-
proach [12], tailored to the needs of maneuvering space
objects. The CAR method is applicable to short arc track-
lets or very short arcs, typically obtained in automated

Charge-Coupled Device (CCD) space surveys. The sky is
swept in search of objects, which appear as bright spots
on a telescope lens (to which the CCD is attached) but
since a significant area of the sky is to be covered, the du-
ration of each individual observation (or fixed telescope
pointing) is limited to a few minutes. These optical ob-
servations yield line-of-sight measurements (α-δ pairs) at
different epochs, for which preliminary orbit determina-
tion methods exist [13]. Nevertheless, due to the short
duration of the observations, the perceived objects often
travel a very short arc, thereby hindering the applicabil-
ity of usual preliminary orbit determination methods. A.
Milani et al. [12] developed a methodology to deal with
these type of observations. They realized that due to the
short arc traveled by the object, the additional informa-
tion obtained by these closely separated observations was
very limited. It is then possible to reduce such observa-
tions, commonly referred to as tracklets, to a single line-
of-sight and its time derivative (Attributable, given by α,
δ, α̇, δ̇) at the mean epoch of the observations without a
significant loss of information. It is clear that a single ob-
servation is insufficient to determine the state of a space
object as there is no information regarding its range and
range-rate (ρ, ρ̇). However, certain constraints can be ap-
plied to the latter depending on the expectations about the
observed object: it is possible to define Admissible Re-
gions for space objects of different orbital regimes. Con-
sider for instance the difference in the expected values
of range and range-rate between a solar-orbiting asteroid
and an Earth-orbiting artificial satellite.

Originally, the concept of Admissible Regions was ap-
plied to the observation of deep space objects such as
comets or asteroids [14]. The increase in RSOs has raised
the interest in Space Surveillance and Tracking (SST)
and triggered the appearance of Space Situational Aware-
ness (SSA), which can be defined as: “the knowledge
required to detect, predict, avoid, operate through, re-
cover from, and/or attribute cause to the loss or degra-
dation of space activities” [15]. These, together with the
availability of an extense network of optical telescopes
that can be devoted to space surveillance, yield a high
number of very short arc (VSA) observations that are to
be assigned to space objects: either already catalogued
or newly detected. A revisit of the Admissible Region
was then proposed for this application, the Constrained
Admissible Region [16]. The latter is based on defining
a feasible set of ranges and range-rates given expected
values (boundaries) for the eccentricity and semi-major
axis, as opposed to the orbital energy and range metrics
approach used in the original methodology to identify as-
teroids. There are numerous works on the application of
the CAR for Initial Orbit Determination (IOD) and track-
ing. K. DeMars et al. [17] propose a statistical charac-
terization of the CAR based on Gaussian Mixture Mod-
els applied to IOD of near geostationary space objects.
T. Kelecy and J. Moriba [18], on the other hand, follow
a Multiple Hypothesis method (CAR-MHF), in this case
to track the orbital debris generated after a LEO object
breakup. Similarly, J. Stauch et al. [19] propose a similar
approach to the breakup of a geostationary object, adapt-
ing the CAR-MHF to deal with longer re-observation



times by means of a smoothing recursion. L. Pirovano
et al. [20] recently published an interesting work cover-
ing the different IOD approaches derived from the Ad-
missibile Region and Attributable concepts, suggesting a
Differential Algebra IOD method that ultimately shows
the loss of information derived from the use of Attributa-
bles as opposed to complete tracklets. They agree that
for certain types of observations, a linear regression of
the tracklets not only yields the same level of information
but can be used to decrease the uncertainty [21]. In par-
ticular, this applies to short duration observations of GEO
objects whose apparent motion is close to null. However,
when the arc traveled by the object is sufficiently large,
non-linearities of the object motion render this approach
unusable and a higher-order regression or direct use of
the raw data is recommended.

The method proposed here is primarily aimed at solv-
ing the track association problem considering maneuvers
for optical survey scenarios and, as such, relies on At-
tributables as observation data. Typical bounds for the
CAR, given in terms of semi-major axis and eccentric-
ity, are found to cover a very broad region of the ρ-ρ̇
space, thus not being well-suited for maneuver detection.
Through the use of an efficient control distance metric, it
is possible define proper bounds on the Admissible Re-
gion. These bounds may be based on a maximum ex-
pected control effort in absolute or relative terms. To this
end, the nearest post-maneuver state in terms of control
distance xest needs to be determined. Based on this es-
timate and its associated control distance, ∆Vest, bounds
for the space accessible to the object in terms of control
effort are determined as:

∆Vth = min (∆Vmax,max(∆Vmin, krel∆Vest)) (1)

where ∆Vmax, ∆Vmin represent maximum and mini-
mum absolute thresholds and krel is a factor used to de-
fine a maximum relative threshold. Following this ap-
proach, the entire region satisfying ∆V (ρ, ρ̇) ≤ ∆Vth is
assumed accessible to the object.

In Section 4, the definition of a novel and efficient con-
trol distance metric is provided, especially suited to the
CAR approach based on control effort described in pre-
vious paragraphs. Section 5 presents an example of how
the proposed CAR alternative can be embedded into an
operational framework to solve the maneuvering target
tracking problem for space objects in optical survey sce-
narios.

4. CONTROL DISTANCE METRIC DEFINITION

One of the most relevant issues related to maneuver de-
tection methods is whether to perform maneuver charac-
terization or not. In general, the probability of performing
a maneuver of a given magnitude is highly correlated with
its cost, e.g. in terms of fuel. The latter is especially true
for operational satellites since their amount of on-board
propellant is highly limited by design and re-fueling is
usually not an option. Thereafter, properly characterizing
the control cost can greatly increase the performances of
maneuver detection methods.

In some applications, such as optical survey scenarios,
the sparsity of data renders high-fidelity maneuver esti-
mation methods rather inefficient: the time-of-flight be-
tween the pre- and post-maneuver observed states is so
high that there is a significant number of locally optimal
maneuvers featuring similar control magnitudes. This,
coupled with the fact that high-fidelity models involve a
relevant computational cost, lead to the exploration of ap-
proximate or surrogate models for maneuver characteri-
zation. These models need not represent the actual phys-
ical process undergone by the object neither determine
a maneuver sequence close to the optimal one, but pro-
vide a sufficiently close estimation of the control effort
(e.g. proportional to the optimal real solution) required to
acquire the post-maneuver orbit from the pre-maneuver
one. Thereby, one can refer to the output of this surro-
gate model as a control distance metric, since it provides
a metric for the relative distance between two orbits in
terms of the required control effort to move from one to
the other.

In the following, a novel control distance metric based
on a double impulsive burn is presented in Section 4.1.
Such metric relies on the linearization of Gauss Plane-
tary Equations upon the application of a sudden velocity
variation. An implementation of the state-of-the-art in
control distance metric definition is presented in Section
4.2. A comparison between both approaches is presented
in Section 4.3, emphasizing on the ability of both metrics
to characterized the unobserved space in the presence of
a single post-maneuver optical track.

4.1. Double-Burn Keplerian Transfer

A relevant aspect in determining the optimal impulsive
maneuver to acquire a certain target orbit is associated
with the relative geometry of the initial and final trajecto-
ries.


∆p
∆f
∆g
∆h
∆k
∆L

 ≈



0 2p
w

√
p
µ 0√

p
µ sin(L)

√
p
µ [(w + 1) cos(L) + f ] 1

w −(h sin(L)− k cos(L)) gw

−
√

p
µ cos(L)

√
p
µ [(w + 1) sin(L) + g] 1

w (h sin(L)− k cos(L)) fw

0 0
√

p
µ
s2 cos(L)

2w

0 0
√

p
µ
s2 sin(L)

2w

0 0 1
w

√
p
µ (h sin(L)− k cos(L))



[
∆Vr
∆Vθ
∆Vh

]
(2)



By performing one single impulsive maneuver, it is only
possible to transfer to a final orbit that intersects the prior
one, and it will do so in the exact maneuver location.
Thereafter, two impulsive maneuvers are a sufficient (and
necessary) condition to transfer between two arbitrary or-
bits. Another relevant aspect of impulsive maneuver de-
sign is the high impact of the burn location on the re-
quired velocity increment ∆V . This is especially relevant
when considering two impulses since there are infinitely
many pairs of burns that are compliant with a given trans-
fer, but only a reduced set features an affordable control
effort. Since our objective is to provide a control metric
that can be applied to arbitrary initial and final orbits, a
two-impulsive burn approach will be adopted. Moreover,
it is desirable to reduce the computational complexity to
the minimum, and so the transfer will be assumed to oc-
cur between two keplerian orbits, i.e. maneuvers are to
be determined assuming unperturbed orbits.

The Gauss Planetary equations present a convenient for-
mulation to develop a surrogate method for charac-
terizing impulsive maneuvers. Expressed in Modified
Equinoctial Elements [22], they take the form given by
Eqs. 18-23 in Appendix A. This system of first order dif-
ferential equations can be used to model the dynamics of
an object subject to the gravitational field of a primary,
with central parameter µ = GM . In the case of a keple-
rian (unperturbed) orbit, the radial, azimuthal and normal
perturbing accelerations ar, aθ, ah are assumed to be null
so that every orbital element is kept constant except for
the anomaly, i.e. the angle that determines the location
in the orbit as a function of time, which in this case is
given by the true longitude L. More importantly, one can
take advantage of the definition of the Gauss Planetary
Equations to infer the effect of a sudden velocity varia-
tion in the orbital elements. To this end, the right hand
side of Eqs. 18-23 can be integrated in an infinitesimal
time, during which a Dirac’s delta acceleration is applied
(ar, aθ, ah) ∼ δ(t − tM ). Note the latter involves solv-
ing a multi-dimensional integral with the initial and final
orbits as boundary conditions.

An approximation to this integral is obtained under the
assumption that the main contribution for the change in
orbital elements is caused by the sudden velocity incre-
ment, so that the orbital elements are assumed to remain
constant during the (infinitesimal) maneuvering interval.
Thereafter, the instantaneous effect of an impulsive burn
∆V in the prior orbit is approximated by the linear sys-
tem in Eq. 2. The error committed in estimating the effect
of a given burn by means of the previous approximation
can be consulted in Appendix B, where the maximum rel-
ative error in characterizing the maneuver given the post-
maneuver state is bounded by a 10 % for orbits featur-
ing virtually any inclination and eccentricity value under
a nominal impulsive burn of ∆Vr ≡ ∆Vθ ≡ ∆Vh =
10 m/s.

Based on these results, it follows the derivation of a
method to fully determine the control effort required to
transfer between two different orbits (given by the vectors
of Modified Equinoctial Elements œ0 and œ2) in a spe-

cific amount of time. The aim is to obtain the minimum
∆V compliant with a given variation in orbital elements
∆œ = ∆ [ p f g h k ] such that:

∆œ ≡ ∆œ1 + ∆œ2

= A(œ0, L1)∆V1 +A(œ1, L2)∆V2
(3)

Where the term A(œ1, L2) can be linearly approximated
as:
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Thereafter, it is possible to solve for the couple of burns:
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[
0
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.

Note that the linear term in Eq. 4 is dropped as oth-
erwise the problem would have a second order term on
∆V1,∆V2. In fact, one can apply predictor-corrector
scheme on A2 as follows:

Ak+1
2 = Ak2 +

∂Ak2
∂œ
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œ0

A1∆V k1 (6)

In general, we are concerned about solving a modified
problem, since the goal is to determine the optimal ma-
neuver, instead of simply a compliant one. The solution
proposed in Eq. 5 may lead to an over estimation of
∆V1, counteracted through ∆V2 so that the overall resid-
uals ((A1 + A2)∆V −∆œ∗)T ((A1 + A2)∆V −∆œ∗)
are minimized. An alternative solution can be devised by
defining a cost function as:

J = ∆V T∆V + c1(∆œ∗ −∆œ)T (∆œ∗ −∆œ) (7)

being c1 some scaling parameter, ∆œ∗ the desired
change in orbital elements, and ∆œ the change in orbital
elements implied by the burn couple ∆V as given by Eq.
3. Then, one can simply equate the partial derivative of
this function with respect to ∆V to zero, thereby leading
to:



Figure 1: Loss function J vs [ L1, L2 ] for a GEO East-West (left) and North-South (right) station keeping maneuvers.
The black shaded area comprises the region with a loss function value lower or equal than 110% of the global minimum,
the latter being indicated by the green cross.

∂J

∂∆V
=2
(
I + c1(A1 +A2)T (A1 +A2)

)
∆V

− 2c1(A1 +A2)T∆œ∗ ≡ 0

(8)

Thus resulting in the following expression for determin-
ing the fuel optimal pair of impulsive burns:

∆V = (2
(
I + c1(A1 +A2)T (A1 +A2)

)−1

· 2c1(A1 +A2)T∆œ∗
(9)

Note that Eq. 9 can be regarded as a generalized solu-
tion to the problem since if c1 is set to zero, the expres-
sion in Eq. 5 is recovered. In either case, the predictor-
corrector scheme defined in Eq. 6 can be applied on A2

to improve the validity of the approximation in the inter-
mediate transfer orbit, for which convergence is typically
achieved after a reduced number of iterations (5-10).

The solution given by Eq. 9 is completely defined for a
relative change in orbital elements ∆ [ p f g h k ] and the
pair of true longitudes [ L1, L2 ] at which the burns are
performed. It is then possible to determine the optimal
couple of true longitudes that lead to the minimum value
of the loss function J introduced in Eq. 7. Fig. 1 depicts
the behavior of J as a function of the true longitudes at
which the impulses are applied. Therein, the global min-
imum is indicated with a green cross, whereas the region
with a value not greater than 110% of such minimum is
highlighted with shadowed circles. Despite only one lo-
cal minimum is found for the East-West Station Keep-
ing (EWSK) maneuver, the North-South Station Keeping
(NSSK) one presents three well separated valleys. This
behavior of the loss function is critical for the selection of
the solver used to determine the optimal [ L1, L2 ] cou-
ple. In the case at hand, a simple Gauss-Newton method

with multiple initial guesses seems to be a good compro-
mise between a proper exploration of the solution space
and efficiency in terms of computational cost.

4.2. Optimal Control Approach

The state of the art in maneuver detection and estimation
methods propose an optimal control based approach to
detect the existence and approximate the character of ma-
neuvers of RSOs [9, 23, 24, 11]. In this regard, a contin-
uous thrust model is usually adopted, establishing upper
and lower bounds for the maximum control acceleration.
The outcome of the Optimal Control Problem (OCP) can
be synthesized to the integral of the control acceleration
over the prescribed time of flight, which formally defines
a proper control distance metric. The non-linear opti-
mization problem may be expressed as:

Minimize J = 1
2 ||xf − x(tf )||2 + 1

2

∫ tf
t0

xTc xc dt

subject to: x(t0) = x0
dx
dt = f(x, t,xc)

(10)

Where xc is the control acceleration vector, and xf , x0

are the final and initial boundary conditions, respectively.
In this work, the control metric considered is directly re-
lated to the second term of the loss function in Eq. 10,
usually referred to as lagrangian in optimal control the-
ory. As in the previous case (see Section 4.1), the control
effort is regarded as an increase in orbital velocity so that
the distance metric ∆V is given in velocity units and de-
fined by:

∆V =
√

2P P =
1

2

∫ tf

t0

xTc xc dt (11)

The OCP is solved using a direct collocation method, in
which the dynamical model is given by the unperturbed



Gauss Planetary Equations expressed in Mean Equinoc-
tial Elements. CasADi [25] framework is used to pose
the Non-Linear Programming (NLP) problem, and the se-
lected NLP solver is WORHP [26], mainly due to its ro-
bustness and computational efficiently when compared to
the well-established open source alternative IPOPT [27].

4.3. Control Distance Metrics Comparison

A comparison is drawn between the aforementioned con-
trol distance metric based on continuous thrust and the
impulsive burn approach developed in Section 4.1. The
intended application scenario is composed of known
maneuvering objects observed from ground-based tele-
scopes. Under these settings, only the line-of-sight r (α-
δ pair) and its first time derivative ṙ are observed, so that
information regarding the range ρ and range-rate ρ̇ needs
to be estimated in order to determine the full state of the
RSO. These are typically inferred from already cataloged
objects whose trajectory is well characterized, at least for
pure ballistic (or uncontrolled) motion. In the presence
of (unknown) maneuvers, the post-maneuver state of an
object cannot be accurately estimated but rather hypoth-
esized, usually in terms of range and range-rate values.
These ρ-ρ̇ hypotheses are thus built upon the observation,
rendering association metrics such as Mahalanobis dis-
tance, measurement likelihood or observation residuals
useless. It is then convenient to use alternative metrics,
e.g. based on a control effort, to evaluate the hypothe-
sized states.

In the following, the ability of the metrics presented in
Sections 4.1 and 4.2 to properly describe and character-
ize the state space in terms of the unobserved variables
ρ-ρ̇ is to be assessed. Results are obtained for two dif-
ferent cases: a) an East-West Station Keeping (EWSK)
maneuver and b) a North-South Station Keeping (NSSK)
maneuver, both performed by a Geosynchronous (GEO)
RSO. The solution space in terms of the control distance
metrics is depicted in Fig. 2 for the EWSK maneuver
and Fig. 3 for the NSSK one. Therein, the true post-
maneuver state is given by the (0, 0) coordinates and the
control distance metric is referred to the ballistic estimate
at the post-maneuver observation epoch. The assumed
time of flight in both cases is one sidereal day.

From the figures, contour lines for the distance metric
based on optimal control are seen to be tilted ellipses with
a positive ∆ρ-∆ρ̇ correlation. This is the expected behav-
ior for the case of limited control authority, as the mo-
mentum gain required to reach high |∆ρ| is necessarily
given by ∆ρ̇ values of the same sign. This directional be-
havior is not so evident in the impulsive approach, where
only a mild effect can be observed for the EWSK case
near the diagonal. Another relevant difference between
both approaches is the relative value of the control met-
ric itself, being almost one order of magnitude lower in
the impulsive case. Nonetheless, this is simply a relative
scaling that mimics the effect of gravity losses and does
not have further implications in the usability of the con-

Figure 2: Impulsive (top) and continuous thrust (bottom)
control distance metric as a function of range and range-
rate differences for an EWSK maneuver.

Figure 3: Impulsive (top) and continuous thrust (bottom)
control distance metric as a function of range and range-
rate differences for a NSSK maneuver.



trol distance metric, i.e. similar admissible spaces are ob-
tained for 10 and 100 m/s thresholds on the impulsive and
continuous thrust approaches, respectively. With regard
to the impulsive based control distance metric, a non-
smooth behavior can be observed for the NSSK maneu-
ver (see Fig. 3), despite the overall trend being captured.
This is thought to be caused by the presence of multiple
local minima (as already inferred from Fig. 1) and the in-
ability of the optimization scheme to properly determine
the global minimum.

Overall, both metrics give a similar insight into the prob-
lem provided a proper scaling is applied to leverage the
raw distance metric magnitude. The optimal control ap-
proach presents a smoother behavior as convergence to
the global minimum seems to be ensured. This comes at
the cost of a greater computational burden, since a high-
dimensional non-linear optimization problem needs to be
solved. Moreover, the size of the NLP problem increases
with the time of flight as more discretization (or colloca-
tion) points are required to properly capture the dynam-
ics. The proposed control distance metric based on im-
pulsive burns is free from these limitations since the time
of flight only affects the admissible true longitude region,
i.e. those values that are feasible within the specified time
span. A reduction in computational time of up to one or-
der of magnitude is also experienced, from an expected
execution time of 700ms for the OCP to 90ms in an In-
tel Core i7-8750H laptop CPU. Thereafter, this novel ap-
proach has proved to deliver an efficient control distance
metric, generalized to consider impulsive maneuvers and
readily applicable to optical observation scenarios.

5. SEQUENTIAL MONTE CARLO FOR MANEU-
VERING SPACE OBJECTS

Sequential Monte Carlo (SMC) methods have been suc-
cessfully applied to maneuvering target tracking prob-
lems in the presence of high measurement uncertainty
(see for instance [28, 29]), and so they are expected to
deliver reasonable performances in data sparse scenarios
as is the case of maneuvering space objects. SMC re-
lies on the use of sampled populations for approximating
the state distribution of a target in order to solve the state
space filtering problem. Treatment of individual observa-
tions or measurements is done in a sequential manner, so
that the sampled distribution that approximates the target
state is updated at each incoming observation. This pop-
ulation may take any realization, rendering SMC filters
suitable for applications in which the state distribution is
non-gaussian and/or multi modal.

SMC methods provide natural support for multiple hy-
potheses, which may appear in the form of clearly sepa-
rated modes in the sampled space. These hypotheses can
be elaborated based on measurement association consid-
ering maneuvers. Hypothesis pruning and promotion is
then performed according to their ability to associate with
more recent observations so that at some point, only the
true hypothesis survives.

In the following, methods for inferring the post-maneuver
state distribution by means of a control distance metric
are developed in Section 5.1. Section 5.2 presents an
overview of how hypotheses are generated and promoted
based on the measurement sequence. Section 5.3 deals
with maneuver characterization methods and the defini-
tion of heuristics that can be used to approximate future
maneuvers. Finally, Section 5.4 discusses on the pro-
posed SMC framework for solving the maneuvering tar-
get tracking problem applied to optical observations.

5.1. Post-maneuver State Estimation via MCMC

For some applications, there is not a clear definition of
the dynamical model governing the state evolution of the
target. In these cases, an alternative procedure is given
by Markov Chain Monte Carlo (MCMC) methods, which
focus on the exploration of the posterior distribution dis-
regarding the underlying physical processes.

In the case of maneuvering space objects, one may as-
sume the dynamics to be unknown during maneuvering
intervals, and focus on determining a sufficiently accu-
rate state estimation after the maneuver. In doing so, the
definition of an Admissible (control) Region, as given in
Section 3, can be of aid. Based on a control distance
metric ∆V , bounds for the admissible set of range ρ and
range-rate ρ̇ values are defined, e.g. according to Eq.
1. These bounds can then be used to build a hypothe-
sized state distribution conditioned on the post-maneuver
measurement p(x|y) or measurement sequence p(x|Y).
These two cases are very different in terms of the infor-
mation available, and so the methods used to sample from
the post-maneuver state distribution.

5.1.1. Single Track after the Maneuver

When only a single track is available after the maneuver,
the expected correlation between the post-maneuver state
and the control distance metric is high. In the proposed
approach, the state is assumed to be divided into two
clearly distinguishable sets, the observed o =

[
α δ α̇ δ̇

]
and the unobserved u = [ρ ρ̇] variables. Since there is no
information regarding the dynamical process undergone
by the target, the observed set is assumed to follow the
distribution given by the measurement uncertainty, i.e.
o ∼ N (y,Q), where y is the processed measurement
data and Q the assumed measurement covariance.

A proposal distribution is defined for the unobserved set
u based on the admissibility region, modeled as a Gaus-
sian. This assumption is somehow compliant with the
control distance metric distribution shown in Figs. 2 and
3, where there is one region of single or multiple local
minima featuring elliptical outer contour lines. In order
to build this Gaussian, five points need to be determined.
The first, uest = [ρest ρ̇est], is used as reference for de-
termining the outer boundaries of the distribution, and is
defined as:



uest : argmin
u

∆V (u,y) (12)

In essence, it is the state featuring the minimum con-
trol effort required to be compliant with a post-maneuver
track. The remaining four points are given by:

u+ : argmin
ρ

(∆V ([ρ ρ̇est] ,y)−∆Vth)2 | ρ > ρest

u− : argmin
ρ

(∆V ([ρ ρ̇est] ,y)−∆Vth)2 | ρ < ρest

u+ : argmin
ρ̇

(∆V ([ρest ρ̇] ,y)−∆Vth)2 | ρ̇ > ρ̇est

u− : argmin
ρ̇

(∆V ([ρest ρ̇] ,y)−∆Vth)2 | ρ̇ < ρ̇est

(13)

where ∆Vth is the maximum allowable control effort
as defined in Eq. 1. The proposal π(u) is then char-
acterized by the four points in Eq. 13, using their
mean 〈u〉 = E

(
u+, u−, u+, u−

)
and variance P =

V ar
(
u+, u−, u+, u−

)
as the kth σ-contour so that

π(u) ∼ N (〈u〉 , kP ).

Markov Chain Monte Carlo methods, and in particular
Metropolis-Hastings (MH) type algorithms [30], rely on
the use of a proposal to determine the target or posterior
distribution. Samples are randomly (or quasi-randomly)
drawn from the proposal and accepted or rejected based
on certain criteria. Note that for this approach to follow,
the support of the posterior distribution must be con-
tained within that of the proposal, i.e. the set of points
with non-zero probability w.r.t. the posterior must also
have non-zero probability w.r.t. the proposal. Explo-
ration of the posterior is essentially based on a metric,
usually the likelihood: samples featuring higher likeli-
hood values are favoured over those with lower values.
Thereafter, we propose to define the target distribution
p(x|y) inversely proportional to the exponential of the
control distance metric, i.e.:

p(x|y) ∝ exp(−∆V (x)) (14)

In the present work the DiffeRential Evolution Adap-
tive Metropolis (DREAM) algorithm by J. Vrugt et al.
[31] is selected, mainly due to its increased performance
when compared to naive random-walkMH algorithms.
DREAM uses a Metropolis selection rule to accept or re-
ject samples drawn form a proposal distribution. These
samples generate a chain or sequence of values that con-
verges to the target as this chain is simulated, i.e. more
samples are drawn. In fact, DREAM is a multi-chain
algorithm, meaning that multiple chains are simulated
in parallel to improve convergence and efficiency. The
last n values of the different sequences are then incor-
porated into the population representing the state of the
RSO, characterizing the accessible space conditioned on
the last observation. Note that multiple hypotheses might
stem from this process in case the posterior distribution
presents a multi-modal shape.

5.1.2. Multiple Tracks after the Maneuver

If more than one track is available after the maneuver,
the aim is to determine the state distribution conditioned
on the track sequence p(x|Y). In fact, this scenario can
be regarded as a refinement over the post-maneuver state
estimated using a single post-maneuver track. The prior
distribution is then known and effectively corresponds to
the Admissible Region based on the control distance met-
ric. At this point, it is of interest to determine the sub-
set of the Admissible Region that is compliant with the
track sequence. To this end, another type of MCMC algo-
rithm is used: the Hybrid (or Hamiltonian) Monte Carlo
(HMC), proposed by S. Duane et al. [32]. In fact,HMC
is a special kind ofMH algorithm with a concrete def-
inition of the proposal distribution. Initialization is per-
formed via a single starting point x0, whose dynamics are
assumed to be subject to the Hamiltonian:

dx

dt
= r

dr

dt
=
∂log(p(x|y))

∂x

x(0) = x0 r(0) ∼ N (0, I)

(15)

These fictitious Hamiltonian dynamics are then simulated
by means of a time-reversible and volume-preserving
propagator, usually the fixed-step leapfrog scheme. Dy-
namics are propagated for L steps, resulting in a total fic-
titious propagation time tf = εL. Acceptance or rejec-
tion of the propagated particle xtf is based on a Metropo-
lis Hastings update, i.e. if the ratio α = p(xtf |y)

p(xt0 |y) is greater
than some number u ∼ U(0, 1), then the sample xtf is
accepted and will replace x0 in the following iteration.
Note that this sampling scheme is highly sensitive to the
number of integration points and step size. Too small ε
would lead to an inefficient sampling as each new pro-
posal would be very similar to the previous one. High
ε values lead to a greater exploration of the distribution
while producing less likely proposals. Tuning L is fur-
ther complicated by its local dependency on the dynam-
ics. Hoffman et al. [33] propose a method to eliminate the
need to define a number of steps. This method, coined the
No U-Turn Sampler (NUTS), suggests building candidate
points until those are found to make a U-Turn. Results
therein presented show a significant increase in compu-
tational efficiency as one only needs to optimize a single
parameter, the step size.

The proposed method suggests utilizing NUTS with
a starting point selected from the population subset
sampled according to the procedure described in Sec-
tion 5.1.1. This point is then propagated to the
subsequent measurement epochs and State Transition
Matrices (STMs) for these transformations are ob-
tained. The posterior distribution used in this case
corresponds to the Bayesian definition p(x|Y) ∝
p(x|y1)p(x|y2)...p(x|yN ), being N the total number of
post-maneuver tracks. The measurement likelihood for
the entire track sequence is determined for each sample
point, propagated using the aforementioned STMs. These



Figure 4: Hypothesis generation based on a typical post-
maneuver track sequence. Different colors represent hy-
potheses based on different track sets.

STMs are updated whenever a sample significantly devi-
ates from the reference point used to calculate them or
after certain number of samples have been drawn. Again,
a chain is simulated using NUTS and the last n values
of this chain are incorporated into the population that
approximates the state distribution of the target RSO at
the last measurement epoch. This way, hypotheses based
on the association of multiple post-maneuver tracks are
generated, which can be used for instance to refine post-
maneuver state estimates as new tracks become available.

5.2. Hypotheses Management

This section presents the rationale behind hypotheses
generation, promotion and pruning. Decision making is
based on the control metric derived in Section 4.1 and an
association metric, the measurement likelihood L. Simi-
lar to the threshold defined for the control distance met-
ric, ∆Vth, another threshold is set for the measurement
likelihood Lth, which in this case is the result of a gating
procedure based on the Mahalanobis distance [34] (see
Section 5.3 in the thesis by J. Siminski [21]). This thresh-
olding is used to detect maneuvers, i.e. if any particle xi
belonging to the population features an association met-
ric L(xi) ≥ Lth then the track is assumed to belong to
the RSO; otherwise the maneuver hypothesis is tested.

In the no-association scenario, the reference point speci-
fied in Eq. 12 is determined, and its corresponding con-
trol distance metric value ∆Vest is tested against the max-
imum allowable control effort given in Eq. 1. If lower,
samples from the post-maneuver state distribution are
drawn based on the procedure described in Section 5.1.1.
Otherwise, if ∆Vest ≥ ∆Vth, the track is not associated
with the RSO and thus left uncorrelated.

As more post-maneuver tracks arrive, hypotheses are
generated based on all the possible combinations. This is
illustrated in Fig. 4, where the measurement likelihood of
different hypothesis is shown as a function of the track se-
quence in chronological order. At T4, the ballistic (light
blue) hypothesis is not compliant with the measurement,
so maneuver hypotheses are built based on T4 alone (red)

and the T3-T4 pair (green). Note that the maneuver might
have been performed between T2 and T3 but the impact
in the state could have been so low that the ballistic hy-
pothesis is still capable of associating with T3. As T5
arrives, none of the previously generated hypotheses is
able to associate so new hypotheses are generated based
on T5 (black), the T4-T5 pair (yellow), the T3-T5 pair
(pink) and the set T3-T4-T5 (dark blue).

This process is continued until a change is detected in the
ballistic hypothesis, effectively conforming a maneuver
detection. Selection of the ballistic hypothesis rb is done
according to the following criteria:

rb(tj) : argmax
rk

nw∑
m=0

φnw−m maxL(xk(tj+m−nw))

(16)

where φ = 0.9 is a forgetting factor used to give more
weight to more recent tracks and nw is a sliding win-
dow over which the selection of the ballistic hypothesis
is smoothed.

With regard to pruning of the hypotheses, only those that
are found to associate are maintained. Indeed, there is
an exception to this rule as the ballistic hypothesis at
each epoch is always kept in order to account for the no-
maneuver scenario.

5.3. Maneuver Characterization and Heuristics

As mentioned in Section 5.2 above, a change in the bal-
listic hypothesis is considered a maneuver detection. At
that point, both the pre- and post-maneuver orbits are as-
sumed to be properly characterized; and so the maneu-
ver. This maneuver is expected to occur right before the
first track that associates with the new ballistic hypothe-
sis, e.g. in Fig. 4 the ballistic hypothesis at T5 would cor-
respond to the dark blue line so that the maneuver is iso-
lated between T2 and T3. In order to characterize the ma-
neuver, the population subsets corresponding to the pre-
and post-maneuver hypotheses are compared. This com-
parison is translated into a distribution of relative varia-
tions in orbital elements, in particular the change in semi-
major axis ∆a, eccentricity ∆e and inclination ∆i. A re-
duced set of the classical orbital elements is chosen due
to the target orbital regime, i.e. Geosynchronous orbits.
Note that the relative change in mean longitude is dis-
regarded as it is strongly affected by the relative timing
of the maneuver with respect to the measurements and
can be somehow estimated from the optical tracks them-
selves.

The outcome of comparing the pre- and post-maneuver
populations is a multi-variate Gaussian distribution in
[∆a ∆e ∆i]. As more maneuvers are characterized, a
Gaussian Mixture Model with an increasing number of
components is built. At some point, an expectation max-



imization algorithm can be used to merge similar maneu-
vers and reduce the size of the Gaussian Mixture.

In order to efficiently use information derived from his-
torical maneuvers, a procedure similar to the one de-
scribed in Section 5.1.1 is followed. The proposed ap-
proach still consists in using the DREAM algorithm to
sample from the posterior distribution based on a pro-
posal. In fact, the proposal is exactly the one described
therein, so the only variation is the definition of the poste-
rior. Each sample drawn during the MCMC simulation is
compared against the ballistic reference state at the mea-
surement epoch and the probability of belonging to the
Gaussian Mixture Model used to characterized previous
maneuvers is used as discriminant instead of the metric
defined in Eq. 14. The latter procedure effectively pro-
vides a means to sample from the admissible control re-
gion conditioned on the information derived from previ-
ously characterized maneuvers.

5.4. Sequential Monte Carlo Framework

An overview of the proposed Sequential Monte Carlo
method can be consulted in Algorithm 1. This scheme
can be regarded as the upper level framework containing
the procedures and methods described in Sections 5.1-
5.3. The filter is initialized with a sampled population
at the initial epoch. Such population is then propagated
to the subsequent measurement epoch according to the
non-linear dynamical model f(·) and an assumed pro-
cess noise w(·). Measurement likelihood is then evalu-
ated for the entire population to accept or reject measure-
ment association. In the latter case, post-maneuver state
hypotheses are elaborated based on the different MCMC
methods presented in Section 5.1 as discussed in Section
5.2. Note that if a maneuver has been detected recently,
the post-maneuver orbit is refined in step 3.2. The latter
is usually required by the lack of information available
at the first post-maneuver track and thus the inability to
sample from the support of the post-maneuver state dis-
tribution at this point. A resampling step is then applied
to replace those particles (and hypotheses) that do not as-
sociate with the measurement or fall beyond the admis-
sibility region. Finally, a smoothing recursion is used to
improve the measurement association and maneuver de-
tection performance by incorporating future information
to the problem. This recursion is only necessary near ma-
neuver intervals, so when the active ballistic hypothesis
changes (a maneuver detection is confirmed), the filter
runs in pure sequential mode until a new maneuver hy-
pothesis is generated.

6. RESULTS AND DISCUSSION

The proposed method is evaluated in a simulated opti-
cal survey scenario. The subject of study is a geosyn-
chronous RSO performing East-West and North-South
station keeping maneuvers to remain in its assigned slot.

Algorithm 1: Sequential Monte Carlo Approach

INITIALIZATION

Sample N particles x0,i from p(x0) with weights ω0,i = 1
N

for k > 1 do

IMPORTANCE SAMPLING

1) Approximate p(xk|Yk):

ω−k,i = ωk−1,i x−k,i = f(xk−1,i, tk−1) + w(tk−1)

2) Apply the measurement update to obtain p(xk|Yk−1):

ωk,i =
ω−k,ip(yk|xk,i)∑N
i=1 ω

−
k,ip(yk|xk,i)

xk,i = x−k,i

DETECT MANEUVER

3) Check association:

if max(L(xk,i)) < Lth then

3.1) Simulate a Metropolis Hastings chainMH(yk) to
obtain x+

k,i as described in Section 5.1.1.

if maneuver detected at yk−j then
3.1.1) Simulate a Hamiltonian Monte Carlo chain to

obtain x+
k,i as described in Section 5.1.2

considering all the possible measurement
combinations

(yk−j:k
k

)
, i.e. HMC

[(yk−j:k
k

)]
.

else
3.1.2) Simulate a Hamiltonian Monte Carlo chain
HMC(yk−1:k) to obtain x+

k,i as described in
Section 5.1.2.

else if maneuver detected at yk−j then
3.2) Simulate a Hamiltonian Monte Carlo chain
HMC(yk−j:k) to obtain x+

k,i as described in Section
5.1.2.

RESAMPLING

4) Compute the set of surviving particles Ω:

Ω =
{
x+
k,l :

[
∆V (x+

k,l) ≤ ∆Vth

]
∪
[
L(x+

k,l) ≥ Lth
]}

if Ω ( x+
k,i then

4.1) Compute the cumulative distribution of ps(xk|Yk):

Ps(xk|Yk) =
∑

i∈I(x)
ωk,i I(x) = {i : xi ≤ x}

4.2) Draw ui from U(0, 1) and update the particles
x+
k,i /∈ Ω according to:

ωk,i = 1
N

xk,i = xk,j

P (xk,j−1|Yk) ≤ ui ≤ P (xk,j |Yk)

4.3) Retain a fraction of the population fb belonging to
the ballistic hypothesis rb(tk).

SMOOTHING

5) Repeat steps 1-4 (obviating step 3.2) for all
measurements up to the last detected maneuver, first
backward and then forward in chronological order.



Observations are obtained for an optical sensor network
consisting of two telescopes. The details of the proposed
test scenario are summarized below:

• Subject: geosynchronous RSO equipped with chem-
ical propulsion featuring a mean longitude slot ` =
−4.8 ± 0.2◦ and an inclination slot i = 2 ± 0.05◦.
The object is simulated for a total duration of 400
days using a dynamical model including the follow-
ing perturbations:

– Non-spherical Earth of degree and order 70.

– Third-body perturbations of Sun, Moon and
Planets (including Pluto).

– Cannonball model for the Solar Radiation
Pressure (SRP) with a conical solar and lunar
eclipse model, using fraction of illumination
for penumbra regions.

– Solid Earth and ocean tides.

– General Relativity.

• Optical Sensor Network: two optical ground tele-
scopes located at Zimmerwald (AIUB Zimmer-
wald’s Observatory) and Tenerife (ESA Optical
Ground Station). The optical survey presents the fol-
lowing characteristics:

– Elevation mask of 20◦.

– Solar phase angle between 0◦ and 9◦.

– Angular distance to Earth shadow θ > 0◦.

– Observation model for both right ascension α
and declination δ featuring a zero-mean Gaus-
sian noise with standard deviation σα,δ = 1′′.

– Mean revisit time of 1 day per site, as shown
in Fig. 5.

– Track length T ∼ U(2.5, 15) min.

– Tracks are reduced to the Attributable format
by performing a linear regression with respect
to the mean epoch.

– Observation covariance is determined accord-
ing to the time span and number of obser-
vations of a given track as suggested by J.
Maruskin et al. [35], Eq. (8).

• Proposed Method: the proposed Sequential Monte
Carlo Framework based on an admissible control re-
gion is configured as follows:

– Thresholds for the admissible control region
∆Vmax = 10 m/s, ∆Vmin = 1 m/s, krel = 3.

– The association gate is given by a 3-σ thresh-
old considering a χ2 distribution with 4 de-
grees of freedom.

– Total size of the population is N = 5000 par-
ticles, and NMC = 500 particles are sampled
in every call to the DREAM and NUTS algo-
rithms.

Figure 5: Histogram of re-observation time for the simu-
lated optical sensor network.

– The three cartesian components of position
and velocity are estimated, together with the
solar radiation pressure coefficient cR.

– Process noise w is included in the form
of a random initial perturbation with
standard deviation [σx σv σcR ] =[
10 m 10−3 m/s 10−3

]
/(tk − tk−1), t

expressed in days.

• Alternative Method: an alternative approach is con-
sidered for the sake of comparison. This approach
uses a Non-Linear Batch Least Squares (BLS) that
considers up to 6 subsequent measurements. Mea-
surement association and maneuver detection is
based on the same thresholds used in the proposed
method, also considering the Admissible Region
based in the developed control distance metric. Esti-
mation is re-initialized after a maneuver is detected.

• Dynamical Model: the dynamical model used for
state estimation both in the proposed and alternative
methods have the following characteristics:

– Non-spherical Earth of degree and order 5.

– Third-body perturbations of Sun and Moon.

– Cannonball model for the SRP with a conical
solar and lunar eclipse model, using angular
linear interpolation for penumbra regions.

A comparison between the proposed and alternative
methods is then drawn based on 1) association and ma-
neuver detection metrics and 2) post-maneuver state es-
timation accuracy. The former compares the ability of
the methods to indicate a proper measurement association
and correctly isolate the maneuver interval. Accuracy in
terms of post-maneuver state estimation is given in the
form of the Root Mean Squared Error (RMSE) as a func-
tion of the elapsed tracks (not time) since the maneuver.
This RMSE is compared to the ground truth and given
for the entire population (Pop) of the true hypothesis at
epoch (not the ballistic one) and the maximum likelihood
estimate (MLE) of each method.



Association Maneuvers

BLS SMC BLS SMC

TP 793 795 20 20

TN 5 5 769 775

FP 0 0 9 3

FN 2 0 2 2

Table 1: Association and maneuver detection metrics for
the proposed Sequential Monte Carlo (SMC) approach
and the alternative Batch Least Squares (BLS) method.

6.1. Association and Maneuver Detection

Herebelow, the association and maneuver detection per-
formances shown by the proposed Sequential Monte
Carlo framework and a Non-Linear BLS approach are
presented and discussed. Results are given as the number
of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) according to the decisions
taken by the algorithms under evaluation. These results
are summarized in Table 1, where the true negative asso-
ciations are related to erratic observations caused by the
selected measurement noise model. In terms of associa-
tion, the proposed method is capable of correctly deter-
mining which tracks correspond to the target RSO. The
BLS approach, on the contrary, presents two false nega-
tive associations, both in the vicinity of a maneuver. The
latter is associated to an improper post-maneuver state
estimation at the second track after the maneuver, so that
the control distance required to reach the final orbit falls
beyond the admissible bounds and association with this
last track is discarded. The RSO performs a total of
22 maneuvers, 5 North-South and 17 East-West. As in-
dicated in Tab. 1, both methods are capable of correctly
isolating 20 maneuvers. In fact, the failure modes for
the false negatives are similar in both cases, one maneu-
ver is detected with a delay of one track and the other
is combined with a previous maneuver occurring three
tracks in advance. False positives are triggered by insuffi-
ciently accurate estimates of the post-maneuver states, so
that additional maneuvers are required to recover a proper
state definition. In either case, the most demanding sce-
nario turned out to be NSSK maneuvers, for which post-
maneuver state predictions present significant errors in
semi-major axis and eccentricity. According to the asso-
ciation and maneuver detection performances obtained in
the presented test scenario, the proposed method exhib-
ited a superior performance when compared to an indus-
try standard, i.e. the Non-Linear Batch Least Squares es-
timator. The measurement association problem has been
properly solved and maneuver detection and isolation is
better characterized, possibly due to the use of heuristics
and a multiple hypothesis approach. Still there is room
for improvement in the correct determination of maneu-
ver intervals, which may be limited by observability con-
ditions.

Figure 6: Position (top) and velocity (bottom) Root Mean
Square Error (RMSE) as a function of post-maneuver
tracks elapsed for the entire state distribution (Pop) and
Maximum Likelihood Estimate (MLE).

6.2. Post-maneuver State Estimation

As indicated in the previous section, the majority of
errors committed in properly isolating a maneuver are
caused by inaccurate post-maneuver state estimates. In
the following, the ability of the methods to predict the
state of an RSO after performing a maneuver will be eval-
uated. The metric used in this regard is the Root Mean
Squared Error (RMSE) defined as:

RMSEx =

√∑nM
i=1

∑nP
j=1(xi,j − x̂)T (xi,j − x̂)

nMnP
(17)

Where x represents the velocity or position of the RSO
in cartesian coordinates, nM is the number of maneuvers
and nP is the size of the population under evaluation. Fig.
6 depicts the post-maneuver state estimation (or track-
ing) performance shown by the batch least squares and
sequential monte carlo approaches, note that sudden er-
ror drops correspond to measurement updates. Pop refers
to the overall root mean square error for the population
subset corresponding to the assumed true hypothesis at
epoch, whereas MLE stands for the maximum likelihood



estimate of such population subset. A significant reduc-
tion in the estimation error is appreciated for both the po-
sition and velocity, almost reaching one order of magni-
tude. In fact, the proposed method is shown to converge
to reasonable RMSE values, of the order of 1 km and 0.1
m/s, at the third epoch after the maneuver, while the batch
least squares requires at least four tracks after the maneu-
ver to accurately estimate the orbit. Remarkable is the
fact that the RMSE for the proposed method between the
second and third tracks after the maneuver increases more
rapidly than in the interval defined by the first and second
post-maneuver tracks. This is caused by the differences
in times of flight and thus the implicit dependency on the
observation schedule: recall these results are normalized
over 22 individual maneuvers

In line with the performances obtained for association
and maneuver detection metrics, the proposed method
has shown to improve the post-maneuver state charac-
terization when compared to the industry standards. A
reduction of almost one order of magnitude in the state
estimation error has been found for the simulated test sce-
nario both in terms of position and velocity.

7. CONCLUSIONS AND FUTURE WORK

A novel method for solving the maneuver detection, and
implicitly the track association problem, in the context
of optical survey scenarios is presented. This method
proposes a re-definition of the Admissible Region based
on a novel control distance metric considering impulsive
burns. Bounds for the maximum expected control ef-
fort are given in absolute and relative terms in order to
shape the space accessible to an object subject to an op-
tical track in the Attributable format. A statistical frame-
work based on this admissible control region is used to
characterize the state of a target RSO, relying on the
use of Sequential Monte Carlo and Markov Chain Monte
Carlo methods. The main filtering and data association
tasks are performed via sequential importance sampling
and resampling, while post-maneuver state estimation re-
lies on the use of different MCMC algorithms. Depend-
ing on the number of tracks available after the maneu-
ver, Metropolis-Hastings or Hamiltonian Monte Carlo
schemes are used to sample from the post-maneuver state
distribution. Maneuver hypotheses are then generated
based on different track association scenarios. Addition-
ally, information derived from already characterized ma-
neuvers can be introduced through conditional sampling,
resulting in a feedback loop for the maneuver detection
and characterization process. Results are obtained in a
simulated test case, representative of an optical survey
scenario of a SST sensor framework. Comparison against
a Non-Linear Batch Least Squares approach has shown
a noticeable improvement in the estimation of the post-
maneuver state, thus resulting in enhanced maneuver de-
tection and data association capabilities.

The main contributions of the present work are twofold:
on the one hand, a Sequential Monte Carlo filtering

framework is successfully applied to the maneuver de-
tection and data association problem; on the other hand,
a reformulation of the Admissible Region concept based
on a novel control distance metric is proposed to define
the space accessible to an object conditioned on an op-
tical track. Direct application of the proposed method
may present scalability concerns, especially regarding
the computational complexity inherent to SMC methods.
The latter may be resolved through a characterization of
the state based on Gaussian Mixtures, each representing
an individual hypothesis. Samples drawn from MCMC
algorithms can then be clustered into additional Gaussian
Mixture components. Thereafter, dynamics may be prop-
agated using the Unscented Transform for each individ-
ual Gaussian component and measurement update could
be based on a Kalman recursion. Still, the capabilities of
the proposed method must be evaluated with real mea-
surement data and longer re-observation times.
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APPENDIX A GAUSS PLANETARY EQUATIONS IN MODIFIED EQUINOCTIAL ELEMENTS

The Gauss Planetary Equations expressed in Modified Equinoctial Elements (MEE) take the form:

dp

dt
=

2p

w

√
p

µ
aθ (18)

df

dt
=

√
p

µ

[
sin(L)ar + ((w + 1) cos(L) + f)aθw − (h sin(L)− k cos(L)) gwah

]
(19)

dg

dt
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√
p

µ

[
− cos(L)ar + ((w + 1) sin(L) + g)aθw + (h sin(L)− k cos(L)) fwah

]
(20)

dh
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=

√
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s2 cos(L)

2w
ah (21)

dk

dt
=

√
p

µ

s2 sin(L)

2w
ah (22)

dL

dt
=
√
µp
(w
p

)2
+

1

w

√
p

µ
(h sin(L)− k cos(L))ah (23)

where s2 = 1+h2 +k2 and w = 1+f cos(L)+g sin(L). The definition of the MEE in terms of classical orbital elements
reads (being ν the true anomaly):

p = a(1− e)2 (24)
f = e cos(ω + Ω) (25)
g = e sin(ω + Ω) (26)
h = tan(i/2) cos(Ω) (27)
k = tan(i/2) sin(Ω) (28)
L = Ω + ω + ν (29)



APPENDIX B ANALYSIS OF CONTROL DISTANCE METRIC ASSUMPTIONS

Hereunder, the approximation described in Section 4.1 is analyzed for a wide variety of orbits under a nominal maneuver
of representative magnitude: ∆Vr ≡ ∆Vθ ≡ ∆Vh = 10 m/s. The set of initial orbits feature a common semi-major axis
a = 24, 000 km and right ascension of the ascending node Ω = 0 deg, and span the inclination range i ∈ [0, 100] deg and
eccentricity range e ∈ [10−5, 0.95]. The entire set [ω, ν] ∈ [0, 2π] is considered, but results are given for the maximum
error incurred by the linearization, i.e.:

{ω, ν} : argmax
ω,ν

(||∆V −∆Vest(œ0)||)

Figure 7: Relative ∆V estimation error for the
radial component.

Figure 8: Relative ∆V estimation error for the tangential
component.

Figure 9: Relative ∆V estimation error for the normal component.


