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ABSTRACT 

Due to the intensive activities in space during the last 

half century, the population of man-made space objects 

is playing an increasingly relevant role in the space 

environment. ESA´s Master Model predicts that there 

are around 600000 objects bigger than 1 cm orbiting the 

Earth.  

In light of recent events, SpaceX has launched several 

Starlink satellites in the near Earth region. While taking 

into account the increase in the number of space debris 

and the deployment of mega-constellations, an increase 

of the number of collision avoidance warnings is 

inevitable. Furthermore, this increase in the number of 

high-risk conjunctions will led to an increase in the 

Collision Assessment workload, making difficult and 

almost impossible for the collision avoidance decision 

to be taken manually. 

This paper provides an in-depth description of the 

Autonomous Collision Avoidance System (autoca) 

which has the objective to develop mechanisms that 

allow the automation of all the processes and procedures 

related to decision-making. Furthermore, the current 

study is focused on the collision risk assessment and on 

the operational implementation of collision avoidance 

manoeuvres, as well as on the use of existing GMV 

software [2] that provides implementation for orbital 

mechanics, collision risk and avoidance manoeuvre 

algorithms. Having the goal to recommend accurate 

manoeuvre decisions, the study innovates with the use 

of deep learning algorithms that are used to discover 

patterns within the historical data. 

1. INTRODUCTION 

The increasing density of satellites in Low Earth Orbit 

causes multiple concerns about the safety of future space 

missions. When a collision occurs, the consequences 

depend on the size and velocity of the debris. To 

determine the risk of collision for the active satellites, 

conjunction assessments are continuously performed for 

all trackable objects in LEO and GEO regions. The 

problem becomes more complex for the case of missions 

with electric propulsion. While taking into consideration 

the longer reaction time, the decision must be performed 

well in advance. Because of the high uncertainties in 

orbit determination and orbit propagation, the decision 

making process tends to become a highly difficult task. 

GMV is currently developing an Autonomous Collision 

Avoidance System (autoca) together with EUTELSAT 

and ESA, within the ARTES program. This system is 

based on the use of machine learning techniques, and 

aims at its use for large fleets (e.g. large operators in 

GEO and future mega-constellations in LEO and MEO) 

and also orbit raising scenarios with full-electric 

satellites (e.g. orbit transfer from LEO to Upper-LEO 

for deployment of a large constellation or from 

LEO/GTO to GEO for a large telecom satellite). 

GMV has extensive experience in flight dynamics 

systems and space debris, and has its own software 

solution for Collision Assessment: closeap [2], a tool 

designed to support the detection of close conjunctions, 

the collision risk computation and the optimization of 

collision avoidance manoeuvres. closeap has also a solid 

foundation provided by the conjunction detection and 

collision probability algorithms inherited from CRASS. 

It also counts on the special algorithms for orbit 

determination in degraded tracking situations from 

ODIN and on ESA’s NAPEOS library. The ESA’s 

Database and Information System Characterizing 

Objects in Space (DISCOS) is used operationally 

together with CRASS and ODIN being also developed 

and supported by GMV. 

The innovation is brought in this project by the use of 

machine learning techniques to generate models that are 

trained on the past data, in the form of augmented 

conjunction data messages (CDMs), in order to decide 
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whether a collision avoidance manoeuvre should be 

considered or not to minimise the collision risk. 

2. AUTOCA OVERVIEW  

The purpose of the autoca software is to take 

autonomous decisions on the need to perform a 

manoeuvre after a collision risk assessment has been 

performed and a high-risk conjunction has been detected 

and to recommend the optimal collision avoidance 

manoeuvre when needed. This section aims to outline 

the software architecture in terms of its components, 

inputs, outputs and operation states. 

The Conjunction Data Messages (CDMs) are the main 

input of the software and they are used to decide if a 

collision avoidance manoeuvre is needed and to 

recommend an optimized solution. The information 

provided in CDMs is complemented with the operator 

orbit, which includes not only a more reliable source of 

information for the primary satellite orbit but also 

includes the planned manoeuvre in the future. The 

already propagated ephemerides are used as a trigger for 

a CAM analysis in case of receiving an update not 

necessarily linked to a new CDM. Furthermore, some 

external auxiliary data such as EOPs, leap-seconds and 

space weather information is needed. Finally, a 

configuration file received is used to configure the 

operational constraints such as the CAM strategy to be 

applied, the maximum delta-V allowed by the 

propulsion system of the satellite and others. 

 

autoca is composed of the following main components:  

 autoca-core: the core component that groups all the 

subcomponents providing the functionality of the 

software.  

 CDM-reader: it is an adapter to read the CDM from 

different sources. It defines a common internal 

interface with autoca-core and different 

implementation strategies can be developed to read 

the CDMs from different sources.  

 Datastore: it is an internal database to store the 

CDMs, configuration, inputs and outputs or any 

other data that the software needs to operate.  

 CAM library: it encapsulates all the business logic 

related to the conjunction analysis and the 

generation of the possible collision avoidance 

manoeuvres that could be applied in any case 

according the operational constraints, making use 

of closeap library. 

 

The dynamic architecture of the software presented in 

Figure 1 indicates the 4 different operation states: 

1. Data Initialisation: The first time the autoca is 

executed, it needs to be initialised with historical 

records of collision warnings in the form of CDMs 

coming from the SSA provider. Those CDMs are 

read and stored in the internal database so it can be 

used in the next stage. The data initialisation can be 

seen as an initial execution of the data ingestion 

state that is performed right after installing the 

software.  

2. Machine Learning Training: Once the database has 

been populated with CDMs, they are used to train 

the machine learning models in order to predict the 

evolution of the secondary object’s covariance.  

3. Data Ingestion: When a new CDM arrives, it needs 

to be parsed and stored into the internal database. It 

also correlates the new CDM with the already 

existent ones to identify conjunction events (series 

of CDMs referring to the same event).  

4. CAM Decision-making: the software autonomously 

decides if a CAM is to be implemented and which 

one is recommended. It is made by assessing the 

criticality of the event, using the predicted 

covariance evolution and analysing the possible 

manoeuvres that fits the operational constraints in 

case of high-risk events.  

 

 

Figure 1. AUTOCA state diagram 

Apart from this workflow, the user can decide, at any 

moment, to re-train the machine learning models to fit 

the new data that has been ingested since the last time 

they were trained. It allows to improve the score of the 

machine learning models and, consequently, improves 

the CAM decisions. 

The main outputs obtained as a result of the autoca 

execution are the CDMs re-processed by the software 

and augmented with some more information such as the 

probability of collision and criticality assessment and 

the orbital information of the primary object containing 

the manoeuvre proposed, as well as the graphical 

visualisation of the conjunction parameters (and their 

covariance) and the proposed manoeuvres to better 

understand the nature of the problem and the 

calculations performed. 

 

 



3. DATA PREPARATION 

autoca software takes as input dataset for the machine 

learning models training a set of historical CDMs for 

different conjunction events. The raw CDMs are 

processed and stored in the software internal database 

before using them. The accepted formats are KVN, 

XML and CSV. 

3.1. Data pre-processing 

3.1.1. Data filtering 

After assuring unified datatypes for each set of data and 

initial cleaning of missing values or misspelled entries, 

fields of the dataset are renamed and normalized to 

allow easier data handling. Additional useful fields are 

calculated, e.g. time to TCA for each CDM (based on 

CDM creation date) or time since last observation used 

for the OD process. State vectors and covariance matrix 

elements for primary and secondary objects, as well as 

relative state vector may be registered in different 

references frames, thus all the relevant values are 

transformed to common inertial system EME2000, 

allowing proper and consistent computations. For a 

portion of CDMs the information of the probability of 

collision is missing, thus for consistency it is 

recalculated for all CDMs according to [7].  

In order to identify the actual updates of orbital 

information of the secondary object, which is the one 

which covariance evolution needs to be predicted, a set 

of filters are defined to discard the updates in which the 

secondary object information has not been updated, 

based on the information provided in the CDM.   

Therefore, events with a single update, covariance 

outliers, updates that have last observations start and end 

equal to the previous, updates with observation used or 

available equal to the previous CDM and Updates with 

state vector distances within 10^-6 compared to the 

previous CDMs are disregarded. 

In order to train the Machine Learning model, the dataset 

is divided within the following way: 80% for training, 

10% for testing and 10% for validation. 

3.1.2.  Scaling the data 

The range of feature values varies widely, thus a 

transformation is applied aiming proper scaling of data 

used as input for machine learning algorithm.  

Quantile Transformer is used in order to transform 

features according to quantile information [9]. Its 

default behaviour is to map the original values to a 

uniform distribution; however, it is possible to obtain a 

normal distribution as well. The mapping is done by 

using the cumulative distribution function 𝐹 of the 

feature and the quantile function of the desired 

distribution 𝐺 as such: 𝐺−1(𝐹(𝑋)); this formula is based 

on the fact that the cumulative distribution function of a 

random variable 𝑋 is uniformly distributed on [0, 1], and 

that 𝐺−1(𝑈) has distribution 𝐺, where 𝑈 is a random 

variable uniformly distributed in the range [0, 1] as well. 

According to the documentation, the quantile transform, 

by performing a rank transform, smooths out “unusual” 

distributions and is more robust to outliers than regular 

scaling methods. Correlations and distances 

within/across features are, however, affected (distorted). 

The ranking of the values of each feature is preserved 

when using quantile and power transforms, since they 

are based on monotonic transformations [10]. Power 

transformations aim to achieve an output distribution as 

close to a normal distribution as possible, with the intent 

of minimising skewness and to stabilise variance. In the 

Python Scikit-Learn library [8], there are two means of 

computing power transformations: the Yeo-Johnson and 

Box-Cox transforms. Since the Box-Cox transform can 

be applied only to strictly positive data, the Yeo-Johnson 

method is used in the scope of the prototypes described 

herein. The Eq. (1) details the Yeo-Johnson transform, 

parametrized by 𝜆 (determined through maximum 

likelihood estimation for minimising skewness and 

stabilising the variance): 

𝑥𝑖
𝜆 =

{
  
 

  
 
[(𝑥𝑖 + 1)

𝜆 − 1]

𝜆
, 𝑖𝑓 𝜆 ≠ 0, 𝑥𝑖 ≥ 0

𝑙𝑛(𝑥𝑖 + 1), 𝑖𝑓 𝜆 = 0, 𝑥𝑖 ≥ 0 

−
[(−𝑥𝑖 + 1)

2−𝜆 − 1]

2 − 𝜆
,   𝑖𝑓 𝜆 ≠ 2, 𝑥𝑖 < 0

−𝑙𝑛(−𝑥𝑖 + 1),   𝑖𝑓𝜆 = 2, 𝑥𝑖 < 0

 

 

(1) 

 

4. COLLISION RISK EVALUATION AND 

MITIGATION STRATEGY 

 

4.1. Conjunction assessment 

When a collision occurs, the consequences depend on 

the size and velocity of the debris. To determine the risk 

of collision for the active satellites, conjunction 

assessments are continuously performed for all 

trackable objects in LEO and GEO. 

The miss distance and the probability of collision are the 

main parameters broadly considered in the conjunction 

assessment, especially in LEO regime. The probability 

of collision depends both on the minimum distance 

between the first and second flying object at TCA as 

well as on their size. Besides the position and velocity 

vectors, the covariance matrix (size and orientation in 

the relative frame, B-plane) and the size of the objects 

have a significant role in the calculation of the collision 

probability as presented in Eq. (2) thus the accurate 



prediction of these parameters is the basis of the validity 

of the collision risk assessment.  

 

 
𝑃𝑜𝐶 =

1

2𝜋|𝐷𝑒𝑡(𝐶)|
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2
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(𝑟
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− 𝑟𝑆/𝑃)
𝑇
𝐶−1 (𝑟

− 𝑟𝑆/𝑃))𝑑𝑥𝑑𝑦 

 

(2) 

Where C is the 2𝑥2 projection of the combined 3𝑥3 

covariance at TCA onto the conjunction plane, d is the 

sum of the two object sizes, 𝑟 = (𝑥, 𝑦)𝑇 is any point in 

the collision plane such that 𝑥2 + 𝑦2 ≤ 𝑑2 and 𝑟𝑆/𝑃 = 

(𝑟𝑆/𝑃, 0)
𝑇 is the position of the secondary relative to the 

primary along the x-axis in the collision plane, as 

described in [1]. 

The GEO orbital regime is much less populated than the 

LEO regime, between one and two orders of magnitude 

less populated. This implies that high risk events in GEO 

occur with lower frequency than in LEO. Because of 

this, GEO operators do not use probability of collision 

as a driving parameter to monitor the risk of collision 

and evaluate the need for collision avoidance 

manoeuvres. Instead, GEO operators monitor the miss 

distance of secondary objects, and in particular, the 

radial miss distance. GEO operators perform station-

keeping manoeuvres around every two-weeks in order 

to keep the satellites in the operational orbit. Moreover, 

GEO dynamics occur at a larger time scale than in LEO, 

being in the order of days in GEO (e.g., orbital period in 

GEO is 1 day) and in the order of hours in LEO (e.g. 

orbital period in LEO is between 1-2 hours normally). 

GEO dynamics occur at a very different time scale than 

in LEO, allowing to predict potential collisions much 

more time in advance (up to 10 to 14 days) than in LEO 

(about 7 days).  

 

4.2. Collision risk computation 

An important contribution in the collision risk 

assessment is the evaluation of the probability of 

collision. A new methodology into this filed is worth 

considering for autoca and it is the so-called scaled 

probability (scaled PoC). The idea behind this concept 

is that covariance information linked to the orbital 

information used for the computation of the probability 

of collision may not be very accurate. Covariance values 

in current objects catalogues can be in many cases 

poorly estimated by the orbit determination processes 

used to estimate the orbit and its associated uncertainty 

for both objects involved in the conjunction. 

This methodology tries to enhance the level of realism 

of the covariance matrices involved in a conjunction 

event in order to achieve a more reliable estimate of the 

actual risk of collision. 

A qualitative characterization of covariance, presented 

in Figure 2, can be described generating a diagram of the 

orbital positions and successive covariance in the local 

orbital system referred to the object in its most recent 

occurrence, as highlighted in [3]. 

 

Figure 2. Visualization of orbital positions and 

succesive covariances 

In order to obtain a reliable value of the collision 

probability, scaling factors for the primary and 

secondary covariance matrices need to be applied. The 

scaling factors are determined assuming that the most 

recent observation (CDM) is the most accurate and the 

Mahalanobis distance for each orbital information can 

be calculated with respect to it. 

The uncertainties in position follow a Gaussian 

distribution, so the square of the Mahalanobis distance 

for each observation in an event must follow a Chi2 

distribution, with three degrees of freedom. Thus, an 

observed cumulative distribution function (CDF) can be 

obtained by sorting in ascending order the Mahalanobis 

distances of the latest update with respect to the previous 

ones as shown in Figure 3. 

 

Figure 3. Theoretical and observed CDFs 

 



The following methods are proposed in [3] for adjusting 

the scaling factor values, so that the observed 

distribution fits the theoretical distribution expected: 

 K-Point coefficient 

 K-Interval coefficient 

 Kolmogorov-Smirnov method 

In k-point method each observed point should 

correspond exactly to its theoretical position from the 

cumulative distribution function. In the “K-interval” 

method, each element of the sample is corrected with a 

different factor so that each observed point should be in 

its theoretical interval. The maximum difference in the 

probability recorded between the distribution function 

and the data set corrected by a certain scaling factor K 

corresponds to the Kolmogorov Smirnov method. The 

KS test measures the compatibility of the data sample 

with a theoretical probability distribution function. In 

other words, the purpose of using this method is that the 

Mahalanobis distances belonging to an observation must 

follow a theoretical cumulative distribution function. 

The general method consists in performing a statistical 

test that measures the distance between the theoretical 

distribution and data. Then the two distributions are 

projected together and the greatest vertical distance 

between the two is measured using Eq. (3): 

 

 𝐷𝑘𝑠 = sup(𝐹𝑡(𝑥) − 𝐹𝑑𝑎𝑡𝑎(𝑥)) (3) 

 

Where 𝐹𝑡(𝑥) is the CDF of the theoretical distribution 

and 𝐹𝑑𝑎𝑡𝑎(𝑥) is the empirical distribution function of the 

data. 

Then the probability of obtaining data that have a value 

greater than the observed value is calculated, assuming 

that the theoretical hypothesis is true. With the DKS value 

and the size of the Mahalanobis distance sample 

(number of observations), the probability (p-value) of 

getting a DKS value greater than the computed one if the 

null hypothesis is true can be obtained. This p-value is 

compared against the level of significance α chosen 

when performing the test (a typical value is α = 5%) and, 

if the p-value is less than α, there is evidence enough to 

reject the null hypothesis with a confidence level of 

(1−α) %, as presented in Figure 4. 

 

Figure 4. Kolmogorov-Smirnov Test 

It shall be noted that, since the value K=1 may not be 

included in the realistic interval that arises from the 

Kolmogorov-Smirnov test, a good practice is to set as 

final solution the union of the ranges obtained from the 

K-Interval method and the Kolmogorov-Smirnov test. In 

this way, the nominal data of the latest update of the 

object under analysis is guaranteed to be considered 

when computing the scaled probability of collision. 

Another condition that must be taken into account for 

the scaling factors obtained from the Kolmogorov-

Smirnov method to be reliable is the number of 

observations used. In order to achieve enough statistical 

power it is good practice to use as many observations as 

possible, so that a minimum threshold of the previous 

independent updates must be set (typically 3). If the 

amount of information in a conjunction event does not 

exceed this threshold, a fixed range 𝑖s considered 

instead. 

Following the three methods described above it is 

possible to obtain the range of the scaling factors for 

which the validity of the relationship between the 

sample corrected by the K factor and the theoretical 

distribution is statistically confirmed 

Withal the scaling factors for primary and secondary 

objects, 𝐾𝑝 and 𝐾𝑠, needs to be used and applied to the 

primary and secondary covariance matrices. Both 

factors are squared because the convention followed 

here considers that 𝐾𝑝 and 𝐾𝑠, are scale factors applied 

to the standard deviations. Therefore, the corresponding 

scale factors for the elements of the covariance matrix 

should be 𝐾𝑝
2 and 𝐾𝑠

2. Thus the corrected level of realism 

of the combined position covariance matrix is obtained 

by applying separate scale factors both for the position 

covariance matrices of the primary and secondary 

objects as expressed in Eq. (4) : 

𝐶 = 𝐾𝑝
2𝐶𝑝 +𝐾𝑠

2𝐶𝑠 (4) 



 

4.3. Predicted probability of collision 

The next-day conjunction analysis is the methodology 

proposed in [4] to predict the evolution of the probability 

of collision over time. Anticipating the evolution of the 

collision probability in the near future aims to ease the 

work of the satellite operators regarding the decision to 

perform the avoidance manoeuvre if the collision risk 

stays high or if it is expected to dissipate. 

For predicting the evolution of the PoC, a prediction of 

how the covariance of primary and secondary objects are 

expected to evolve is needed first. The approach used for 

this consists in the use of Machine learning models 

which allow predicting the evolution of position error of 

the objects during a conjunction event. To this end, the 

previous CDMs are used to predict the covariance and 

hence the collision risk between objects. Different time 

horizons for the predictions (24h, 48h, 72h before TCA, 

and TCA) are used in autoca. 

 

Figure 5. Scattering process performed in the B-plane 

in order to generate a set of feasible miss vectors in the 

future 

Once a future combined position covariance matrix has 

been predicted, the approach proposed by EUMETSAT 

consists in performing a pseudo Monte Carlo analysis 

based on the data of the latest available update of the 

event, that is, performing a scattering process where a 

large number of feasible future miss vectors are obtained 

using the latest combined position covariance matrix in 

the B-plane, as qualitatively illustrated in Figure 5. 

Since position errors are expected to follow a zero-mean 

Gaussian distribution, this set of feasible miss vectors 

can be obtained from a 2D Gaussian distribution centred 

on the latest available miss vector. The shape of this 

Gaussian distribution is given by the latest available 

combined position covariance matrix in the B-plane. 

 

Figure 6. PoC population predicted by the Monte 

Carlo approach 

Once the set of miss vectors has been generated, their 

associated PoC values can be computed considering the 

future position covariance matrices predicted 

previously. In this way, a population of the most likely 

future PoC values is obtained and the evolution of the 

risk can be characterized in terms of probability 

(probability of getting a future PoC value above a 

defined threshold during the analysis).  This probability 

is defined as the share of points of the computed PoC 

population in the Figure 6 above the previous threshold. 

 An alternative approach, following GMV’s 

interpretation of this method as a conditional probability 

method, is presented next. The set of future miss vectors 

can also be generated by meshing a region of the B-plane 

that contains the 3σ error ellipse defined by the latest 

combined position covariance matrix (see Figure 7). In 

that way, if the latest combined covariance matrix is 

realistic enough, it is ensured that most of the feasible 

future miss vectors are considered during the prediction. 

Just like for the Monte Carlo approach, a population of 

future PoC values can be obtained from the points of the 

mesh although, since these points are not equally likely, 

each member of the computed PoC population must be 

weighted. The weighted factors required can be obtained 

from the 2D Gaussian probability density function 

(PDF) associated with the latest combined position 

covariance.  

Once the values of the PoC population have been 

properly weighted, the probability of getting a future 

PoC value above a defined threshold can be estimated as 

the weighted share of points above this threshold. This 

method based on creating a mesh of points is chosen to 

be implemented in autoca. Both methods yield to the 

same results, with the advantage of the second being less 

demanding in terms of computation resources. 



 

Figure 7. Uniform B-plane meshing and its associated 

of weighting factors for the weighted scattering 

approach. 

Once the values of the PoC population have been 

properly weighted, the probability of getting a future 

PoC value above a defined threshold can be estimated as 

the weighted sum of points above this threshold. The 

computed PoC population can be characterized by its 

mean Probability of Collision (i.e., expected value), 

which is given by the Eq. (5): 

 
𝜇 = 𝐸[𝑃𝑐(𝑋, 𝑌)]

= ∬𝑃𝑐(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

(5) 

where X and Y are random variables associated to each 

component of the miss vector in the B-plane. This 

expected value represents the integral over the 

considered domain of feasible future miss vectors of the 

weighted probability of collision conditioned to a given 

future miss vector in the B-plane (integrand of the 

previous expression). Besides, since the probability of 

collision is a univariate random variable, the dispersion 

of its distribution can be measured computing the Eq. 

(6): 

 

𝜎 = √𝑣𝑎𝑟(𝑃𝑐) = √𝐸[𝑃𝑐
2] − 𝜇 (6) 

 

 

The previous mean value and its dispersion can be used 

to provide a quantitative estimate of the expected value 

of the PoC in the future. In this way, this methodology 

is not only able to provide a prediction of the evolution 

trends of the PoC, but also to quantitatively forecast an 

estimated value of the risk in the future. 

 

4.4. Operational implementation of collision 

avoidance manoeuvre 

The strategy is to use AI/ML to estimate and predict 

criticality. Then, operationally, these results will be 

compared with accepted criticality thresholds, and 

combined with a systematic consideration of the 

relevant mission constraints (defined by the O/O) for the 

Collision Avoidance Manoeuvre recommendation 

(CAM). Appropriately using all this info allows to 

define a unified workflow for a software system that 

ultimately recommends the CAM decision to the 

operator (who has the final say), hence a software that 

reflects existing operational processes, but with 

increased level of automation and functionality. For this 

purpose, it is important to consider the following key 

aspects:  

 Satellite operators only consider executing CAMs 

when the conjunction exceeds thresholds for 

specific criticality metrics (features) such as those 

previously described: probability of collision in 

different forms like standard PoC or Scaled PoC, 

miss distance and radial miss distance;  

 Satellite operators try to wait as much as possible to 

perform CAM in order to make use of the 

information closest to TCA to take the right 

decision, as well as to minimize the time the 

satellite is taken out of its nominal operational orbit 

producing useful data for the mission.  

 Most of the operational and platform constraints 

can be translated into two main types of timing 

constraints: they either impact when (and how) the 

CAM can be performed, or they define the latest 

time when the decision can be taken, to still be able 

to implement the CAM.  

As such, it seems reasonable to evaluate how each 

constraint impacts the time when the manoeuvre can be 

performed or when the CAM decision can be taken, 

relative to the time when the close approach is estimated 

to take place. This analysis is done in a systematic way, 

analysing each constraint either individually or in 

combination for constraints that depend on each other.  

Once all constraints have been evaluated in this manner, 

a timeline relative to TCA can be defined, to help 

establish the latest time of CAM decision (i.e. point of 

no return), based on which the software workflow can 

then be defined as well. The main operational and 

platform constraints which affect the time budgets 

relative to TCA are: CDM provider response time, 

satellite operator operational overheads, conjunction 

geometry, already planned manoeuvres, ground station 

contacts, forbidden locations or interval where the 

satellite should not go/cannot go, eclipsing periods, 

South Atlantic Anomaly, the type of secondary object 

(active and maneuverable satellite or not), the 

propulsion capabilities, AOCS constraints, and 

alternative communication paths to increase the 

opportunities to uplink the manoeuvre commands. 

To use these constraints in the implementation of an 

automated collision avoidance software, the strategy is 

a systematic approach to first determine the optimum 

CAM for a given event and, based on the burn time of 

this optimum CAM, determine the latest CAM decision 

time. This is based on the fact that all the available 

information, in the form of received CDMs as well as 



AI/ML criticality estimates, can be combined with those 

constraints that determine when and how CAM can be 

performed to obtain the desired reduction in criticality. 

Then, with a list of viable CAM options, the optimal one 

can be selected as that with burn time closest to TCA, as 

this would result in the latest decision time, allowing 

operators to wait as much as possible. With the burn 

time of the optimum CAM, a timeline can be defined 

backwards (from TCA towards present) as presented in 

Figure 8 using the constraints that impact the time when 

the final decision must be made, to compute this point 

of no return in the decision process. 

 

 

Figure 8. Simple representation of constraints-based 

time budgets in CAM timeline 

The focus of the timeline is to show the constraints 

identified previously as critical to appropriately 

determining the latest time of CAM decision for a given 

event. Each of those processes are described next, going 

backwards in time:  

Time between CAM burn & TCA. Essentially, this is 

the result of the selection of the optimum CAM through 

the filtering of the parametric analysis (previous step). 

The time budget to execute this burn is essentially given 

by the burn time of the optimum CAM; this gathers the 

effects of all the constraints identified previously that 

impact when and how the CAM can be executed. It is 

shown with no margins on the timeline because the 

reduction in criticality is estimated based on assuming 

this burn takes place exactly at that time, so this must be 

ensured operationally as accurately as possible.  

Time between uplink & CAM burn. Different 

operators have different requirements for how much 

ahead of the actual burn time the command must be 

received on-board. This time is represented by the dark 

blue part in the plot, and the light blue part on its left 

indicates the potential increase if the best command 

opportunity is available only some quantifiable time 

before the start of this time interval, due to constraints 

imposed by available ground stations or alternative 

communications paths (if available).  

Time to create tele-command files. This is evaluated 

several times, in the context of uplink constraints, 

AOCS constraints and pre-loaded CAM; the latter are 

disregarded here, as justified before. Creating these tele-

command files involves rather standard processes, 

unless specific cases require a more tailored solution 

which could greatly increase the time. In any case, a time 

estimate for this would be provided by the operator as a 

configurable parameter; it is not the responsibility of the 

automated collision avoidance software to create the 

tele-command files. Once these are available, the uplink 

can be done in a very short time, hence not requiring an 

additional time budget. Furthermore, although these 

files are currently created after making the final CAM 

decision, but using the automated collision avoidance 

software it may be suggested to start this activity slightly 

before. This is because AI/ML processes for criticality 

estimation will lead to more reliable info than what is 

currently used operationally. More confidence in these 

means that if the software recommends to start creating 

the files, they will most probably be used in the end, so 

starting this would not be a waste of resources; in fact, it 

could allow delaying the moment when the final 

decision must be taken.  

Time to validate CAM. This is one of the most 

important processes that typically requires collaboration 

with the original CDM provider to confirm that 

executing the optimum CAM would not create further 

high risk conjunctions; this check is currently the last 

input in the final CAM decision processes. One main 

hypothesis of the proposed implementation is that the 

screening volume initially requested by the operator to 

the CDM provider is large enough that the orbit obtained 

by applying the maximum allowable 𝛥𝑉 would still be 

within that initial screening volume if propagated for the 

screening period (e.g. 7 days). This would allow the 

operator to perform the validation independently from 

the original CDM provider; this could greatly reduce the 

time budget for CAM validation, which is also to be 

provided by the O/O as a configurable parameter.  

Time for stakeholder meeting on CAM decision. This 

time is needed so that the different experts that are 

responsible for the satellite can meet to assess the 

recommendations made by the automated collision 

avoidance software and take the final decision.  

 

5. ARTIFICIAL INTELLIGENCE: PROBLEM 

FORMULATION 

Having a reliable prediction of the criticality of an event 

allows the human operator to make decisions in a more 

informed manner and can help with navigating 

operational constraints and lead to less costly 

manoeuvres. There are multiple approaches that can be 

employed in order to predict the criticality. An important 

aspect related to the available data is that conjunction 

events are described by updates (in the form of CDMs) 

in a sequential manner. In such a setting, models 

specifically tailored for sequential data can be 

employed.  

  



5.1. Long Short Term Memory 

Recurrent Neural Networks such as LSTM (Long Short 

Term Memory) allow both training and making 

inferences using sequences of arbitrary length. In the 

case of conjunction events, the input can be represented 

by the sequence of available CDMs. The basic unit of 

training is represented by an event (a sequence of data 

from the corresponding CDMs). Therefore, even though 

the events are analysed individually, the model learns to 

generalise, as it is exposed to a training set containing 

multiple events. 

5.2. Covariance prediction 

Prediction of the covariance elements of the secondary 

satellite by means of machine learning techniques 

represents one of the main goals of the application. 

These elements are further used to predict the PoC, 

based on which the CAM decisions are based. 

The covariance prediction as part of the CA analysis is 

a key feature that allows satellites’ operators to 

anticipate the expected collision risk, avoiding the 

planning of CAM strategies that are not really needed or 

with a lower cost in terms of delta V when they are really 

needed. 

The three main diagonal positional elements of the 

covariance matrix in RTN reference frame are selected 

for the prediction. The model has been trained for four 

different prediction time-intervals of the covariance 

elements: 

- 24 hours after the last available update. 

- 48 hours after the last available update. 

- 72 hours to the time of close approach. 

- At the time of closest approach. 

 

5.3. Attention Mechanism 

In order to increase the performance given by the LSTM 

model, an attention mechanism was proposed. The core 

idea behind the attention mechanism is that it allows the 

LSTM model to selectively focus on valuable parts of 

the evolution of an event and therefore, learn the 

association between them. 

Given the implied task of forecasting values based on 

several timeframes, an attention mechanism was 

proposed for testing to assess its performance impact on 

the several types of predictions. The mechanism has 

been proposed due its ability to solve the biggest 

problem in seq2seq tasks, which consists on decoding a 

variable length sequence based on a single context 

vector. It enables the utilisation of all hidden time steps 

of the input sequence during the decoding process. 

There are two types of attention mechanisms proposed 

to be tested in the current section. The first one is 

proposed by Bahdanau et all [5] which is formally 

called additive attention, the second being an attention 

mechanism proposed by Luong et all [6]. The main 

difference between them is how they score similarities 

between the current decoder input and encoder outputs. 

In order to minimize the effect of hyper-parameters on 

the performance, the models were trained using the same 

hyper parameter space. For each draw of random values 

within the hyper-parameter space, all three models were 

trained (the Luong attention, Badhanau and a plain 

LSTM model) 

While experimenting, there were prediction types where 

the Luong attention was not able to provide any usable 

result, obtaining a Figure of Merit (metric explained in 

the next section) score below zero. Because of this the 

models with Luong attention from further data analysis 

were discarded for this application.  

6. PRELIMINARY ANALYSIS RESULTS 

 

6.1. Dataset filtering 

The pre-processed dataset is composed of a collection of 

151106 events, consisting of a total of 2095280 CDMs 

that are originated by the 18th SPCS for LEO satellites. 

A distribution of the number of CDMs/event of the pre- 

processed dataset can be seen in the Figure 9. 

 

Figure 9. Distribution of number of updates per event 

After filtering the dataset, it was observed that 20% of 

events only had one update, around 40% of the updates 

are meaningful for the secondary object and the time 

between meaningful updates is of 15 hours in median.  

  



6.2. Dataset Scaling  

The figures presented in this section illustrate the initial 

dataset and the result of applying Quantile Transformer. 

Figure 10 and Figure 11 illustrate the unscaled 

distribution of the data 

 

Figure 10. Features used as input for ML: unscaled 

covariance matrix elements 

 

 

Figure 11. Distribution of CDM parameters. 

Figure 12 and Figure 13 illustrate the Quantile 

Transformer scaled distribution of the data 

 

Figure 12. Covariance matrix elements features scaled 

with Quantile Transformer 

 

Figure 13. Additional features scaled with Quantile 

Transformer 

6.3. Metric used: FoM 

For evaluating model results, a metric called Figure of 

Merit was defined in Eq.(7) , which is designed to 

represent objectively the model performance on a given 

validation dataset. 

The range of some values even after filtering outliers is 

large. The logic behind this metric is that a robust metric 

that would provide representative information with 

respect to the model performance is needed, while 

weighting the outliers less. 

𝐹𝑜𝑀 = 1− 𝑎𝑣𝑔 (
𝑚𝑒𝑑(𝑟𝑒𝑙𝑒𝑟𝑟𝑡1),𝑚𝑒𝑑(𝑟𝑒𝑙𝑒𝑟𝑟𝑡2),

… ,𝑚𝑒𝑑(𝑟𝑒𝑙_𝑒𝑟𝑟𝑡𝑛)
) 

 

(7) 

 

For each target label that the model is trained to predict, 

the relative error of the predicted value with respect to 

the target value is computed. The median is selected 

from the distribution formed by the relative errors for a 

specific target throughout all the events. The median 

was chosen instead of the average because the median 

represents the middle score for a set of data arranged in 

order of magnitude, thus being less affected by outliers 

or skewed data. The medians are averaged, which gives 

us an average “median” relative error. 

Finally, the result value is subtracted from 1 in order to 

normalize the results. This step ensures a value that is 

human readable. The upper bound value is 1, which 

indicates no error within the model prediction. 

6.4. Covariance Prediction Results 

In order to find the Machine Learning models with the 

highest performance, large empirical tests were 

performed on the LSTM and the LSTM with attention 

mechanism models. 

The tables and figures presented in this section illustrate 

the results in terms of FoM for all covariance prediction 

cases: 



- 24 hours after the last available update 

- 48 hours after the last available update 

- 72 hours to the time of closest approach 

- Time of closest approach. 

 

6.4.1. 24 hours after the last available update.  

24h covariance 

evolution 

model 

LSTM LSTM with 

Attention 

FoM score 0.826 0.828 

 

 

From the error spread figure, a mild improvement can 

be seen in the spread of the relative error for the T 

element, which represents the hardest element to predict, 

as well as mild improvements in the R and N elements.  

6.4.2. 48 hours after the last available update. 

48h covariance 

evolution model 

LSTM LSTM with 

Attention 

FoM score 0.805 0.806 

 

 

In this prediction case, the spread of the T element 

relative error in the Bahdanau attention is higher but the 

median is lower. The same pattern can be observed for 

the R and N element’s relative error. 

This is visible in the table of results, where the Badhanau 

attention obtained a slightly higher FoM. 

6.4.3. 72 hours to the time of closest approach. 

72h before TCA 

covariance model 

LSTM LSTM with 

Attention 

FoM score 0.852 0.861 

 

 

In the 72 hours to TCA case, both the spread and median 

of the relative error for all elements offer an 

improvement. 

This is visible in the table of results, where the Badhanau 

attention obtained a slightly higher FoM. 

6.4.4. Time of closest approach 

Covariance at TCA 

model 

LSTM LSTM with 

Attention 

FoM score 0.513 0.702 

 

 

It is expected that the attention mechanism to achieve 

the highest performance increase when predicting at a 



far point in time such as predicting the covariance 

elements at the time of the closest approach. 

From both the figure and the results table, the attention 

model outperformed the simple LSTM model by a 

considerable margin. 

From the error spread figure, a significant difference in 

the spread of the relative error can be seen. Furthermore, 

one can notice a substantial difference in the median of 

the relative errors, especially in the hardest element to 

predict, the T element.  

7. CONCLUSIONS 

The number of high-risk conjunction events will scale 

progressively and thus the collision avoidance 

manoeuvre automation is required. 

The probability of collision and predicting its evolution 

over time have a major contribution to the collision risk 

assessment.  

The operational constraints strongly condition the 

collision avoidance maneouvre (CAMs) design process 

and the decision to perform a manoeuve is taken 

depending on the criticality when the latest time of CAM 

decision is reached. 

As an outcome of the large scale empirical tests 

performed, one can observe that the use of the attention 

mechanism, proposed for time series tasks, has achieved 

a higher performance compared to the fine-tuned classic 

LSTM models.  

The Machine Learning preliminary results serve as a 

starting point within our mission to achieve an 

autonomous CAM decision software, having a peak of 

0.861 in terms of Figure of Merit. 

The LSTM model enhanced with the attention 

mechanism has improved the highest accuracy for the 

four covariance prediction cases. 
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