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ABSTRACT 

Within the framework of ESA’s Space Situational 

Awareness program, the software tool Program for 

Radar and Optical Observation Forecasting will be 

extended and revised with regard to new functionalities 

and improvements of the modelling approaches. While 

the existing software already supports fundamental 

capabilities in terms of observation planning, the sphere 

of interest has shifted in recent years towards the 

assessment of design criteria and evaluation of overall 

performance of space surveillance, tracking and 

cataloguing capabilities. The planned and in progress 

upgrades and new features of the ESA activity are 

presented. The three major foundations of the updated 

tool are addressed and a first insight into the ongoing 

activity is provided. In the context of this proceeding, 

special attention is allocated to the implementation of 

the new software framework, the upgrade of observation 

models and the enhancements in terms of software 

accessibility. 

1 Introduction 

The observation of the near-Earth object population 

takes a prominent role in the context of design and 

operational phases of space missions, as well as in the 

validation of debris environment models. The software 

Program for Radar and Optical Observation Forecasting 

(PROOF) originally was designed to perform the latter 

validation tasks for the Meteoroid and Space Debris 

Terrestrial Environment Reference (MASTER) object 

population. In this regard, actual observation campaigns 

are re-modelled, simulated and compared to the real-

world data. The comparative validation bases on 

observation characteristics, as detection rates, object 

size and orbital element distributions. The core of the 

currently updated PROOF-2009 software consists of the 

crossing analysis, which performs the geometrical 

filtering of objects traversing the Field Of View (FOV) 

of an Earth- or space-based sensor. In a second step the 

crossing objects are analysed with respect to the core’s 

radar or optical performance models, which provide 

detailed information on the detectability and signal 

characteristics of the crossing object and superimposed 

background noise [1]. In the context of the mentioned 

detection performance models, the PROOF-2009 

software is able to simulate passive optical and active 

mono- or bi-static radar campaigns. 

Already providing those fundamental observation 

modelling capabilities, the focus of interest has shifted 

in recent years towards the assessment of sensor and 

observation performance characteristics. Especially in 

the context of planning, designing and conducting costly 

observation campaigns, the retrieval of such information 

becomes essential. Furthermore, such an observation 

modelling tool may support the evaluation and 

understanding of real-world observation campaigns. 

This change of targeted use cases and expansion of the 

application domain has led to a series of proposed 

enhancements, which currently are implemented by a 

consortium of European partners (Institute of Space 

Systems TU Braunschweig, OKAPI Orbits, Deimos 

Space, Astronomical Institute University of Bern) under 

ESA contract. 

The ongoing activity, leading to a new PROOF-3 

software release bases on three major pillars, which are 

explained in detail within the following sections. The 

first major contribution to this activity focuses on the 

introduction of modularity, in order to increase 

maintainability and traceability from a programming 

point of view and allow for a high level of 

customisation of the software by generating new access 

points. The second major task is committed to the actual 

update of the underlying observation models and 

expansion of possible use-case. Finally, the third major 

contribution consists in the improvement of 

accessibility, as well as in the verification and validation 

of the new software release. 

2 Modular design 

The increased demands in terms of interfaces, modelling 

capabilities and functionalities led to the decision of re-

implementing the entire tool to allow for maximal 

flexibility, as well as to consider more contemporary 

standards in software engineering. A high level of 

flexibility is achieved by two architectural concepts, 

which are adopted for the implementation of the new 

software tool. 

2.1 Framework 

For more flexibility, the architecture is based on a 

modernised frontend/backend paradigm, where the 
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frontend uses web standards for the user interaction and 

visualisation. The backend uses a refreshed object-

oriented FORTRAN core, which is encapsulated in a 

shared library (“lib” in Figure 1). The frontend is 

written in TypeScript (Angular) and relies on Electron 

to create a desktop application runnable on 

Windows 10, macOS and Linux. It communicates with 

the backend using an HTTP interface. The backend 

application is called PRESTO (PROOF over REST). It 

is an executable and it uses the PROOF-3 shared library. 

This way the GUI can directly connect and control 

PROOF-3. As in previous versions PROOF-3 can also 

be controlled via Command Line Interface (CLI). A 

respective executable is provided and called Command 

Line Tool (CLT). The PROOF shared library can also 

be called from other third party wrappers, that can bind 

to shared libraries (*.so, *.dylib or *.dll files 

respectively). Developers will be able to interact with 

PROOF-3 using the Getter-Setter-Checker (GSC) 

Application Programming Interface (API). It allows to 

access the underlying data structures and manipulate it 

based on identifiers and the underlying class structure. 

Functionalities, like the crossing analysis or the 

detection analysis, are encapsulated in module classes 

and called plugins. These plugins are referenced in the 

core and the main loop of PROOF-3. The core supplies 

a core-model which holds all respective data of the 

simulation. By this approach a separation of the 

software workflow and underlying data structures is 

achieved. 

 

Figure 1: PROOF-3 architecture overview. 

2.2 Separation of functionalities 

As stated in the introduction, the geometrical crossing 

analysis and the detection performance models comprise 

the core of the PROOF software. Accounting for the 

fact, that most of the crossing and detection related 

input configurations are not coupled, the decision was 

made to separate the two plugins, to make them callable 

independently of each other. In a similar manner the 

final analysis step, which comprises the evaluation and 

visualisation of output can be executed independently. 

The main goals of such separation are two-folded: On 

the one hand side it allows for efficient re-evaluation of 

parts of the software for the case, that only minor 

configurational changes were applied. On the other side 

the separation provides additional access points, which 

may be used to plug-in custom tools, which originally 

have not been considered within the default use cases of 

PROOF-3. 

The workflow for the separation of the crossing and 

detection related properties is illustrated by Figure 2. 

 

Figure 2: Workflow for the separation of the crossing 

and detection analysis. 

The crossing analysis can be understood as a 

geometrical filter considering different visibility 

conditions. The latter ones mainly comprise the 

constraint, that the object to observe has to be contained 

in the FOV of the sensor (modelled as right circular 

cone or rectangular frustum). Additional constraints at 

the sensor location are considered: For Earth-based 

sensors those are natural local horizon/minimum 

elevation constraints and artificial time-variable 

azimuth-elevation exclusion masks. For space-based 

sensors the Earth disk and surrounding thin layer of 

atmosphere represents a natural limitation of visibility. 

Based on a numerical step size control the crossing 

plugin then retrieves periods of the simulation time, for 

which the respective visibility conditions are fulfilled 

for an object of the population. The crossing period is 

sampled by providing a time-tagged set of geometrical 

information for the retrieved crossing arc. Those 

geometrical states of object, sensor(s) and pointing of 

the Line Of Sight (LOS) then represent the actual 

interface between the crossing and detection plugin. 
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Based on the geometrical information provided through 

the interface the detection plugin determines the object 

signature at the receiver location in accordance with the 

underlying sensor performance model. Additional 

signature related constraints are considered (e.g. bright 

celestial bodies close to the FOV and background 

signatures for the optical performance model). 

Through the implementation of this separation and the 

associated interface users have the possibility to provide 

a custom set of geometrical states and perform the 

detection analysis through PROOF or they can refer to 

PROOF’s crossing analysis and use it within their 

custom detection models. Referring to the previously 

explained framework design, the separation of analysis 

modes is supported by the elaborated plugin structure. 

3 Modelling updates 

Core of the PROOF-3 software remain the detection 

performance models and operational modes. In this 

context, updates to the existing radar and optical 

performance models, as well as the incorporation of new 

features and use cases are addressed. 

3.1 Optical and radar performance models 

The visible and radar wavelength regimes remain the 

two spectral ranges supported by PROOF, but both 

detection performance models see a series of upgrades 

and extensions. Furthermore, the new software 

considers measurement uncertainties for the evaluation 

of sensor performance characteristics. 

The optical performance model is extended by an 

additional active Satellite Laser Ranging model (SLR). 

For this new model a perfect mechanical tracking 

performance is assumed (modelled by local horizon 

crossings). The detectable number of photoelectrons 𝑛𝑅 

then can be determined in analogy to the radar link 

equation 1 for a single laser pulse [2]. 

𝑛𝑅 = 𝜂𝑇𝑛𝑇 ⋅ 𝑇𝛼
2𝑇𝐶

2 (
1

4𝜋𝑅2
)

2

⋅ 𝜎 ⋅ 𝜂𝑅𝜂𝑄𝐴𝑅 (1) 

Here, 𝑛𝑇 = 𝐺𝑇𝐸𝑇
𝜆

ℎ𝑐
  is the emitted number of 

photoelectrons, defined by transmitter gain 𝐺𝑇, 

transmitter power 𝐸𝑇 and wavelength 𝜆. The 

transmitter’s optical transmissivity is represented by 𝜂𝑇. 

Equation 1 then accounts for the two-way signal path by 

considering atmospheric and cloud transmissivity 𝑇𝛼 

and 𝑇𝐶 , as well as the signal slant range 𝑅. The 

detectable number of electrons at the receiving telescope 

furthermore depends on the object’s optical cross 

section 𝜎, the receiver’s aperture area 𝐴𝑅 and the 

associated optical transmissivity 𝜂𝑅 and quantum 

efficiency 𝜂𝑄. The detection probability at the receiver 

then follows from Poisson statistics (depending on the 

detector system) and under consideration of the 

effective signal ratio, relating the required number of 

signal photoelectrons to the superimposed background 

photoelectron numbers. In this context, the presence of 

SLR retro reflectors are considered as additional object 

attribute for the deterministic population. Apart from the 

incorporation of the active SLR model, the possibility to 

generate realistic image frames with passive optical 

telescopes is reactivated. Here, the image capture rate or 

specific time-tags can be specified by the user in order 

to provide full-frame optical outputs. 

For the radar performance model a series of different 

upgrades are foreseen in a similar manner. Those 

comprise simplified coherent integration of pulses, 

consideration of side-lobe detections and the possibility 

to use and/or customise phased array scan patterns as 

exemplary seen in Figure 3. For this case, the 

orientation of the LOS is specified as sequence of 

pointing angles (local azimuth and elevation or inertial 

right ascension and declination), for which the time 

dependency is defined by the number of pulses per 

orientation, pulse duration and the associated repetition 

frequency. Furthermore, the bi-static restriction is 

loosened to enable the analysis of multi-static scenarios. 

In this regard PROOF-3 supports the analysis of entire 

sensor networks, consisting of a single transmitter and a 

series of different receivers. 

 

Figure 3: Exemplary phased array scan pattern 

(chainsaw pattern). 

Independent of the choice of the detection performance 

model the resolution of the crossing arc of the orbital 

trajectory is increased. This allows to not only perform 

the detection analysis for a single point of the crossing 

period (for PROOF-2009 the point of closest approach), 

but rather for a sample of the complete crossing arc. 

This higher resolution is achieved by interpolating in the 

crossing-detection interface data described in 2.2. 

For both detection performance models it is foreseen, to 

provide and evaluate information on measurement 

uncertainties. Those uncertainties are modelled as 

Gaussian noise, where the parameters of the distribution 

are either directly provided by the user or are 

determined by the detection performance models in 

dependency of the actual signal-to-noise ratios (SNR). 

For the optical performance model the standard 

deviation of angular measurement errors 𝜎𝐴 can be 



 

 

described in the most general form by equation 2. 

𝜎𝐴 = √(
𝑘1

𝑆𝑁𝑅
)

2

+ 𝑘1
2 (2) 

Close to the detection limit 𝑘1 becomes the dominant 

driver of measurement uncertainty, while 𝑘2 is 

accounting for systematic errors and becomes especially 

relevant for the high SNR regime. 

For the radar performance model angular, as well as 

range uncertainties are considered [3]. The standard 

deviation of range uncertainty 𝜎𝑅 is given by equation 3. 

𝜎𝑅 =
𝑐

2𝐵√2 ⋅ 𝑆𝑁𝑅
 (3) 

It depends on the SNR and the range resolution, 

expressed by bandwidth 𝐵 and speed of light 𝑐. Angular 

uncertainties can be approximated by equation 4. 

𝜎𝐴 =
𝜃𝐴

𝑘𝑀√2 ⋅ 𝑆𝑁𝑅
 (4) 

Here, 𝜃𝐴 corresponds to the beamwidth in the 

considered plane in which the angle is measured 

(typically azimuth and elevation), while 𝑘𝑀 represents 

the difference pattern slope of the sensor. 

In order to access sensor performance characteristics, 

the measurement uncertainties are mapped to orbital 

state covariances. Those may be evaluated for a single 

detection, for the entire detected arc of a single crossing 

or for the complete set of crossings for a single object. 

3.2 Use cases 

In addition to the upgrades of the performance models 

the extension and enhancement of use cases mainly 

address questions in the space surveillance and tracking 

area. In this regard features from the two ESA tools 

LIght Space Surveillance radar System Simulation 

Approach (LIS4A) and Near Earth Object Population 

Program (NEOPOP) are adopted and migrated to the 

new PROOF-3 tool. The considered features mainly 

account for automated parameter studies and the 

evaluation of observation performance characteristics. 

Furthermore, new analysis modes are introduced. 

The LIS4A tool is used for the quick evaluation of 

mono-static radar performance characteristics 

accounting for the detected number of objects of a given 

population with respect to the overall number of objects 

[4]. In the context of the here presented activity, the 

LIS4A feature for performing automated parameter 

studies is of special interest. This functionality is 

incorporated into the new PROOF-3 software, allowing 

to assess the sensor sensitivity by performing systematic 

parameter variations. In order to evaluate parameter 

dependencies, the variation of up to two sensor related 

variables at a time is supported. Performance 

characteristics then are reflected by the respective 

crossing and detection frequencies. Furthermore, basic 

cataloguing capabilities can be evaluated based on the 

provision of minimum number of detections and a lower 

bound of detection period. 

The considered NEOPOP features comprise the 

definition of observation strategies and the reactivation 

of observation performance characteristics. The former 

one allows to provide a NEOPOP-style survey strategy, 

which by its part can automatically adapt sensor related 

parameters for arbitrary instances of the simulation 

time. This approach prevents the user from having to 

manually split and configure the simulation whenever 

adjustments are made to the sensor configuration. The 

latter observation performance characteristics allow to 

access statistical information on the coverage of the 

analysed object population. Those characteristics are 

either geometrical ones (azimuth-elevation-frequency 

distribution of objects crossing the local horizon and 

eventually being detected) or population related ones 

(crossing and detection coverage of different size 

regimes of the analysed population) [5]. 

By the two new processing modes derived from LIS4A 

and NEOPOP features, the internal workflow and call 

order of the new PROOF-3 tool can be described as 

shown in Figure 4. 

 

Figure 4: Internal workflow and processing loops 

starting from the highest hierarchy level in the 

outermost circle, to the lowest one in the innermost 

circle. 

The outermost loop comprises the sensitivity analysis, 

which is responsible for the systematic variation of 

sensor characteristics. On the next-lower hierarchy level 

the Monte-Carlo randomisation of orbital elements of 

MASTER population objects takes place for the 

statistical run-mode. For the deterministic processing-

mode, which is used to study non-statistical Two-Line 

Element (TLE) populations, this loop is skipped. The 

next-inner loop then iterates over all specified sensor 

systems, whereby multi-static scenarios are resolved by 

considering one pair of transmitter and receiver at a time 

(one pair of transmitting and receiving FOV and signal 
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path respectively). The two innermost loops then run the 

desired analysis modes for all population objects and the 

respective simulation time. 

With regard to new analysis modes, the current set of 

PROOF-2009 functionalities gets extended by a new 

tracking feature. The tracking analysis does not aim for 

the detailed modelling of the sensor tracking motion, but 

rather provides statistical information on pass 

frequencies, coverage and detectability of objects 

crossing the local horizon. As for the SLR a perfect 

mechanical tracking is assumed. Accordingly, this 

tracking mode allows for assessing statistical 

cataloguing performance characteristics based on the 

chosen sensor network and configuration. Furthermore, 

the new PROOF-3 software allows for different levels 

of detail in terms of analysis. The detailed mode of 

analysis is applicable for deterministic object 

populations, incorporates a full-force propagator 

interface and enhanced modelling assumptions (e.g. 

consideration of atmospheric refraction effects). In order 

to enable a user to quickly assess supported 

performance characteristics an additional simplified 

mode is supported, for which a simplistic, but fast 

propagator (only accounting for J2-perturbations) is 

available. 

4 Software accessibility 

The third major design criterion for the new PROOF-3 

tool is to facilitate access to the software in any regard. 

In this context three aspects are considered, in order to 

make PROOF-3 available to a larger community. This is 

mainly achieved by simplifying the use of the software 

through an intuitive Graphical User Interface (GUI), 

streamlining used data formats and providing 

verification and validation test cases. 

4.1 GUI 

The updated graphical user interface uses web-standards 

to create a modernised and with ESA’s corporate design 

harmonised look and feel, as shown in Figure 5. The 

user is greeted with a main window, which shows the 

top bar, containing the sandwich menu, run-mode 

selection, run button and the ESA logo. In contrast to 

previous versions the sidebar on the left serves only a 

navigational purpose to move between configuration 

sections. On the bottom of the sidebar the user can 

switch between the input view and the output view. In 

the centre of the input view all configurations are 

performed concerning the simulation, the manipulation 

of the underlying spacecraft and debris population and 

detailed sensor configurations. 

As part of the usability improvements the radar beam 

pattern, in its polynomial representation is now 

visualised (cp. Figure 6.a). The user can configure 

multiple segments and specify the degree of the 

polynomial as well as the respective polynomial 

coefficients. 

In a similar fashion the line-of-sight definition is now 

accompanied by an azimuth-elevation mask. The user 

can specify in a time-dependent manner when the field 

of view is blocked. The definition is performed using 

two azimuth-elevation tuples, specifying the lower and 

upper bounds of the exclusion area. The spanning area 

is considered blocked and shown in a polar plot (cp. 

Figure 6.b). 

 

Figure 5: The main window of the PROOF-3 GUI, with 

top and side bar and the main input in the centre. 

 

Figure 6: Visualisation of a) the radar beam pattern 

and b) the LOS mask showing the radar beams and the 

exluded mask area. 

4.2 Standardised interfaces 

Apart from the backend API and the new GUI described 

in section 2.1 and 4.1, a series of standardised file 

formats and interfaces are used by the new PROOF-3 

software. 

In addition to the already supported TLE format, Orbit 

Ephemeris Message (OEM) and Orbit Parameter 

Message (OPM) formats are supported to provide 

orbital elements and detection related object attributes. 

When using the GUI, the local object database can be 

a) b) 



 

 

updated via an interface to ESA’s Database and 

Information System Characterising Objects in Space 

(DISCOS). Each supported input interface has its own 

initialisation sequence and order by which attributes get 

associated with the considered object. For information, 

which are not available in any of the provided 

interfaces, default values and empirical data are used as 

fall-back option. The supported interfaces and attributes 

are summarised in Figure 7. 

 

Figure 7: Supported input interfaces and object 

attributes. 

To facilitate the exchange of data and simplify post-

processing the new PROOF-3 release is able to provide 

Tracking Data Message (TDM) and Consolidated Laser 

Ranging Data (CRD) formats. Furthermore, PROOF-3 

allows for the integration into ESA’s System 

Performance Simulator. 

4.3 Verification and validation 

In order to increase acceptance and trust towards the 

new PROOF-3 release a two-folded verification and 

validation concept is implemented. It bases on small 

scale unit tests, comparative tests with PROOF-2009 

and external observation simulation tools and the 

validation by comparing simulated observations of the 

MASTER population with real-world observation 

campaigns. The implemented approach allows for a 

more efficient localisation of inconsistencies and by this 

increases traceability and maintainability of the tool. 

Considering the low-level tests, a Continuous 

Integration/Continuous Delivery (CI/CD) pipeline is 

established, which performs automated building and 

unit tests of the software. Apart from the automated 

tests, control output is foreseen, which allows for visual 

inspection and verification of physical plausibility of the 

underlying models and implemented algorithms. Figure 

8 shows the visualisation of such exemplary control 

output for the sensor location and pointing of the LOS. 

Subfigures a) and b) show an Earth-based sensor and a 

LOS, which is defined with respect to the local horizon 

coordinate frame. For subfigure b) an additional 

tracking motion about a fixed tracking pole with 

constant angular velocity is considered. Such motion 

can be used to implement and optimise optical 

observation strategies for specific target orbits (this 

incorporates an additional modulo operation inducing a 

repetitive pattern, which is omitted for the shown test 

case). Subfigures c) and d) show a space-based sensor in 

low Earth orbit, where for the case c) the LOS is defined 

in inertial coordinates (inertially stabilised spacecraft), 

while for case d) the LOS is bound to the local sensor 

location and orientation (gravity stabilised spacecraft). 

The visualisation of such features allows for quick and 

intuitive identification of algorithmic programming or 

modelling errors. Additionally, it supports the retrieval 

of minor inconsistencies and bugs in the PROOF-2009 

release. Those low-level tests are mainly designed to 

ensure the correct behaviour of the software from a 

programming and technical point of view. 

 

Figure 8: Control output visualisation for the sensor 

location and pointing of the LOS. The colour gradient 

represents the temporal evolution indicated by the 

Julian Dates in the lower left corners. Bold dots 

represent the sensor location, thin dots the projected 

LOS. 

Apart of those low-level tests intermediate comparative 

verifications relative to the PROOF-2009 and the 

external Advance Space Surveillance System Simulator 

(AS4) software suites are conducted. The high level 

validation is performed by comparing measurement data 

with PROOF-3’s re-simulation of the real-world 

observation campaigns. The simulation of observation 

campaigns refers to the MASTER-8 population. In the 

context of the radar performance model TIRA (Tracking 

and Imaging Radar) and EISCAT (European Incoherent 

Scatter Scientific Association) beam-park experiments 

are considered. The optical performance model is 

validated by campaigns of ESA’s SDT (Space Debris 

Telescope). The major observation characteristics as 
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detection rates and size, range and angular distributions 

of objects are covered by this approach. 

5 Summary and outlook 

The variety of tasks and the envisaged large domain of 

application make the ongoing activity a demanding task 

in terms of software design and implementation. 

Nevertheless, the expected PROOF-3 release should be 

a software easy to use for a large community, while 

providing extensive functionalities and interfaces. In 

order to accelerate the improvement cycle of the 

software and to facilitate reuse in other projects, the 

source code will be made publicly available. The 

identical considerations apply to the associated 

Networking/Partnering Initiative Ephemeris Propagation 

Tool with Uncertainty Extrapolation (NEPTUNE) 

which is accessed through the Orbital Propagation 

Interface (OPI) [6]. First scientific results of the activity 

and more detailed insights into the updated software and 

underlying models are planned to become available by 

the end of the year. 
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