

ENHANCEMENT OF THE PROOF SOFTWARE FOR SPACE

DEBRIS OBSERVATION MODELLING AND SIMULATION

Lorenz Böttcher(1), Christopher Kebschull(2)

(1) IRAS, TU Braunschweig, Hermann-Blenk-Str. 23, 38108 Braunschweig (Germany), l.boettcher@tu-braunschweig.de
(2) OKAPI:Orbits, Hermann-Blenk-Str. 23, 38108 Braunschweig (Germany), christopher.kebschull@okapiorbits.space

ABSTRACT

Within the framework of ESA’s Space Situational

Awareness program, the software tool Program for

Radar and Optical Observation Forecasting will be

extended and revised with regard to new functionalities

and improvements of the modelling approaches. While

the existing software already supports fundamental

capabilities in terms of observation planning, the sphere

of interest has shifted in recent years towards the

assessment of design criteria and evaluation of overall

performance of space surveillance, tracking and

cataloguing capabilities. The planned and in progress

upgrades and new features of the ESA activity are

presented. The three major foundations of the updated

tool are addressed and a first insight into the ongoing

activity is provided. In the context of this proceeding,

special attention is allocated to the implementation of

the new software framework, the upgrade of observation

models and the enhancements in terms of software

accessibility.

1 Introduction

The observation of the near-Earth object population

takes a prominent role in the context of design and

operational phases of space missions, as well as in the

validation of debris environment models. The software

Program for Radar and Optical Observation Forecasting

(PROOF) originally was designed to perform the latter

validation tasks for the Meteoroid and Space Debris

Terrestrial Environment Reference (MASTER) object

population. In this regard, actual observation campaigns

are re-modelled, simulated and compared to the real-

world data. The comparative validation bases on

observation characteristics, as detection rates, object

size and orbital element distributions. The core of the

currently updated PROOF-2009 software consists of the

crossing analysis, which performs the geometrical

filtering of objects traversing the Field Of View (FOV)

of an Earth- or space-based sensor. In a second step the

crossing objects are analysed with respect to the core’s

radar or optical performance models, which provide

detailed information on the detectability and signal

characteristics of the crossing object and superimposed

background noise [1]. In the context of the mentioned

detection performance models, the PROOF-2009

software is able to simulate passive optical and active

mono- or bi-static radar campaigns.

Already providing those fundamental observation

modelling capabilities, the focus of interest has shifted

in recent years towards the assessment of sensor and

observation performance characteristics. Especially in

the context of planning, designing and conducting costly

observation campaigns, the retrieval of such information

becomes essential. Furthermore, such an observation

modelling tool may support the evaluation and

understanding of real-world observation campaigns.

This change of targeted use cases and expansion of the

application domain has led to a series of proposed

enhancements, which currently are implemented by a

consortium of European partners (Institute of Space

Systems TU Braunschweig, OKAPI Orbits, Deimos

Space, Astronomical Institute University of Bern) under

ESA contract.

The ongoing activity, leading to a new PROOF-3

software release bases on three major pillars, which are

explained in detail within the following sections. The

first major contribution to this activity focuses on the

introduction of modularity, in order to increase

maintainability and traceability from a programming

point of view and allow for a high level of

customisation of the software by generating new access

points. The second major task is committed to the actual

update of the underlying observation models and

expansion of possible use-case. Finally, the third major

contribution consists in the improvement of

accessibility, as well as in the verification and validation

of the new software release.

2 Modular design

The increased demands in terms of interfaces, modelling

capabilities and functionalities led to the decision of re-

implementing the entire tool to allow for maximal

flexibility, as well as to consider more contemporary

standards in software engineering. A high level of

flexibility is achieved by two architectural concepts,

which are adopted for the implementation of the new

software tool.

2.1 Framework

For more flexibility, the architecture is based on a

modernised frontend/backend paradigm, where the

Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20–23 April 2021, published by the ESA Space Debris Office

Ed. T. Flohrer, S. Lemmens & F. Schmitz, (http://conference.sdo.esoc.esa.int, May 2021)

frontend uses web standards for the user interaction and

visualisation. The backend uses a refreshed object-

oriented FORTRAN core, which is encapsulated in a

shared library (“lib” in Figure 1). The frontend is

written in TypeScript (Angular) and relies on Electron

to create a desktop application runnable on

Windows 10, macOS and Linux. It communicates with

the backend using an HTTP interface. The backend

application is called PRESTO (PROOF over REST). It

is an executable and it uses the PROOF-3 shared library.

This way the GUI can directly connect and control

PROOF-3. As in previous versions PROOF-3 can also

be controlled via Command Line Interface (CLI). A

respective executable is provided and called Command

Line Tool (CLT). The PROOF shared library can also

be called from other third party wrappers, that can bind

to shared libraries (*.so, *.dylib or *.dll files

respectively). Developers will be able to interact with

PROOF-3 using the Getter-Setter-Checker (GSC)

Application Programming Interface (API). It allows to

access the underlying data structures and manipulate it

based on identifiers and the underlying class structure.

Functionalities, like the crossing analysis or the

detection analysis, are encapsulated in module classes

and called plugins. These plugins are referenced in the

core and the main loop of PROOF-3. The core supplies

a core-model which holds all respective data of the

simulation. By this approach a separation of the

software workflow and underlying data structures is

achieved.

Figure 1: PROOF-3 architecture overview.

2.2 Separation of functionalities

As stated in the introduction, the geometrical crossing

analysis and the detection performance models comprise

the core of the PROOF software. Accounting for the

fact, that most of the crossing and detection related

input configurations are not coupled, the decision was

made to separate the two plugins, to make them callable

independently of each other. In a similar manner the

final analysis step, which comprises the evaluation and

visualisation of output can be executed independently.

The main goals of such separation are two-folded: On

the one hand side it allows for efficient re-evaluation of

parts of the software for the case, that only minor

configurational changes were applied. On the other side

the separation provides additional access points, which

may be used to plug-in custom tools, which originally

have not been considered within the default use cases of

PROOF-3.

The workflow for the separation of the crossing and

detection related properties is illustrated by Figure 2.

Figure 2: Workflow for the separation of the crossing

and detection analysis.

The crossing analysis can be understood as a

geometrical filter considering different visibility

conditions. The latter ones mainly comprise the

constraint, that the object to observe has to be contained

in the FOV of the sensor (modelled as right circular

cone or rectangular frustum). Additional constraints at

the sensor location are considered: For Earth-based

sensors those are natural local horizon/minimum

elevation constraints and artificial time-variable

azimuth-elevation exclusion masks. For space-based

sensors the Earth disk and surrounding thin layer of

atmosphere represents a natural limitation of visibility.

Based on a numerical step size control the crossing

plugin then retrieves periods of the simulation time, for

which the respective visibility conditions are fulfilled

for an object of the population. The crossing period is

sampled by providing a time-tagged set of geometrical

information for the retrieved crossing arc. Those

geometrical states of object, sensor(s) and pointing of

the Line Of Sight (LOS) then represent the actual

interface between the crossing and detection plugin.

• Custom visibility
constraint

• Intersection with the FOV

• Minimum elevation

• Pointing masks

• Earth occultation

Crossing

• Set of geometrical states

• Sensor states (transmitter
and/or receiver)

• Object states

• Pointing

Interface
• Evaluation of the

detected signal

• Object signature based on
crossing geometry

• Background signature
based on the pointing

Detection

Based on the geometrical information provided through

the interface the detection plugin determines the object

signature at the receiver location in accordance with the

underlying sensor performance model. Additional

signature related constraints are considered (e.g. bright

celestial bodies close to the FOV and background

signatures for the optical performance model).

Through the implementation of this separation and the

associated interface users have the possibility to provide

a custom set of geometrical states and perform the

detection analysis through PROOF or they can refer to

PROOF’s crossing analysis and use it within their

custom detection models. Referring to the previously

explained framework design, the separation of analysis

modes is supported by the elaborated plugin structure.

3 Modelling updates

Core of the PROOF-3 software remain the detection

performance models and operational modes. In this

context, updates to the existing radar and optical

performance models, as well as the incorporation of new

features and use cases are addressed.

3.1 Optical and radar performance models

The visible and radar wavelength regimes remain the

two spectral ranges supported by PROOF, but both

detection performance models see a series of upgrades

and extensions. Furthermore, the new software

considers measurement uncertainties for the evaluation

of sensor performance characteristics.

The optical performance model is extended by an

additional active Satellite Laser Ranging model (SLR).

For this new model a perfect mechanical tracking

performance is assumed (modelled by local horizon

crossings). The detectable number of photoelectrons 𝑛𝑅

then can be determined in analogy to the radar link

equation 1 for a single laser pulse [2].

𝑛𝑅 = 𝜂𝑇𝑛𝑇 ⋅ 𝑇𝛼
2𝑇𝐶

2 (
1

4𝜋𝑅2
)

2

⋅ 𝜎 ⋅ 𝜂𝑅𝜂𝑄𝐴𝑅 (1)

Here, 𝑛𝑇 = 𝐺𝑇𝐸𝑇
𝜆

ℎ𝑐
 is the emitted number of

photoelectrons, defined by transmitter gain 𝐺𝑇,

transmitter power 𝐸𝑇 and wavelength 𝜆. The

transmitter’s optical transmissivity is represented by 𝜂𝑇.

Equation 1 then accounts for the two-way signal path by

considering atmospheric and cloud transmissivity 𝑇𝛼

and 𝑇𝐶 , as well as the signal slant range 𝑅. The

detectable number of electrons at the receiving telescope

furthermore depends on the object’s optical cross

section 𝜎, the receiver’s aperture area 𝐴𝑅 and the

associated optical transmissivity 𝜂𝑅 and quantum

efficiency 𝜂𝑄. The detection probability at the receiver

then follows from Poisson statistics (depending on the

detector system) and under consideration of the

effective signal ratio, relating the required number of

signal photoelectrons to the superimposed background

photoelectron numbers. In this context, the presence of

SLR retro reflectors are considered as additional object

attribute for the deterministic population. Apart from the

incorporation of the active SLR model, the possibility to

generate realistic image frames with passive optical

telescopes is reactivated. Here, the image capture rate or

specific time-tags can be specified by the user in order

to provide full-frame optical outputs.

For the radar performance model a series of different

upgrades are foreseen in a similar manner. Those

comprise simplified coherent integration of pulses,

consideration of side-lobe detections and the possibility

to use and/or customise phased array scan patterns as

exemplary seen in Figure 3. For this case, the

orientation of the LOS is specified as sequence of

pointing angles (local azimuth and elevation or inertial

right ascension and declination), for which the time

dependency is defined by the number of pulses per

orientation, pulse duration and the associated repetition

frequency. Furthermore, the bi-static restriction is

loosened to enable the analysis of multi-static scenarios.

In this regard PROOF-3 supports the analysis of entire

sensor networks, consisting of a single transmitter and a

series of different receivers.

Figure 3: Exemplary phased array scan pattern

(chainsaw pattern).

Independent of the choice of the detection performance

model the resolution of the crossing arc of the orbital

trajectory is increased. This allows to not only perform

the detection analysis for a single point of the crossing

period (for PROOF-2009 the point of closest approach),

but rather for a sample of the complete crossing arc.

This higher resolution is achieved by interpolating in the

crossing-detection interface data described in 2.2.

For both detection performance models it is foreseen, to

provide and evaluate information on measurement

uncertainties. Those uncertainties are modelled as

Gaussian noise, where the parameters of the distribution

are either directly provided by the user or are

determined by the detection performance models in

dependency of the actual signal-to-noise ratios (SNR).

For the optical performance model the standard

deviation of angular measurement errors 𝜎𝐴 can be

described in the most general form by equation 2.

𝜎𝐴 = √(
𝑘1

𝑆𝑁𝑅
)

2

+ 𝑘1
2 (2)

Close to the detection limit 𝑘1 becomes the dominant

driver of measurement uncertainty, while 𝑘2 is

accounting for systematic errors and becomes especially

relevant for the high SNR regime.

For the radar performance model angular, as well as

range uncertainties are considered [3]. The standard

deviation of range uncertainty 𝜎𝑅 is given by equation 3.

𝜎𝑅 =
𝑐

2𝐵√2 ⋅ 𝑆𝑁𝑅
 (3)

It depends on the SNR and the range resolution,

expressed by bandwidth 𝐵 and speed of light 𝑐. Angular

uncertainties can be approximated by equation 4.

𝜎𝐴 =
𝜃𝐴

𝑘𝑀√2 ⋅ 𝑆𝑁𝑅
 (4)

Here, 𝜃𝐴 corresponds to the beamwidth in the

considered plane in which the angle is measured

(typically azimuth and elevation), while 𝑘𝑀 represents

the difference pattern slope of the sensor.

In order to access sensor performance characteristics,

the measurement uncertainties are mapped to orbital

state covariances. Those may be evaluated for a single

detection, for the entire detected arc of a single crossing

or for the complete set of crossings for a single object.

3.2 Use cases

In addition to the upgrades of the performance models

the extension and enhancement of use cases mainly

address questions in the space surveillance and tracking

area. In this regard features from the two ESA tools

LIght Space Surveillance radar System Simulation

Approach (LIS4A) and Near Earth Object Population

Program (NEOPOP) are adopted and migrated to the

new PROOF-3 tool. The considered features mainly

account for automated parameter studies and the

evaluation of observation performance characteristics.

Furthermore, new analysis modes are introduced.

The LIS4A tool is used for the quick evaluation of

mono-static radar performance characteristics

accounting for the detected number of objects of a given

population with respect to the overall number of objects

[4]. In the context of the here presented activity, the

LIS4A feature for performing automated parameter

studies is of special interest. This functionality is

incorporated into the new PROOF-3 software, allowing

to assess the sensor sensitivity by performing systematic

parameter variations. In order to evaluate parameter

dependencies, the variation of up to two sensor related

variables at a time is supported. Performance

characteristics then are reflected by the respective

crossing and detection frequencies. Furthermore, basic

cataloguing capabilities can be evaluated based on the

provision of minimum number of detections and a lower

bound of detection period.

The considered NEOPOP features comprise the

definition of observation strategies and the reactivation

of observation performance characteristics. The former

one allows to provide a NEOPOP-style survey strategy,

which by its part can automatically adapt sensor related

parameters for arbitrary instances of the simulation

time. This approach prevents the user from having to

manually split and configure the simulation whenever

adjustments are made to the sensor configuration. The

latter observation performance characteristics allow to

access statistical information on the coverage of the

analysed object population. Those characteristics are

either geometrical ones (azimuth-elevation-frequency

distribution of objects crossing the local horizon and

eventually being detected) or population related ones

(crossing and detection coverage of different size

regimes of the analysed population) [5].

By the two new processing modes derived from LIS4A

and NEOPOP features, the internal workflow and call

order of the new PROOF-3 tool can be described as

shown in Figure 4.

Figure 4: Internal workflow and processing loops

starting from the highest hierarchy level in the

outermost circle, to the lowest one in the innermost

circle.

The outermost loop comprises the sensitivity analysis,

which is responsible for the systematic variation of

sensor characteristics. On the next-lower hierarchy level

the Monte-Carlo randomisation of orbital elements of

MASTER population objects takes place for the

statistical run-mode. For the deterministic processing-

mode, which is used to study non-statistical Two-Line

Element (TLE) populations, this loop is skipped. The

next-inner loop then iterates over all specified sensor

systems, whereby multi-static scenarios are resolved by

considering one pair of transmitter and receiver at a time

(one pair of transmitting and receiving FOV and signal

Parameter variation

Monte-Carlo
variation

Sensor systems

Observation
strategy

Population
objects

Time

path respectively). The two innermost loops then run the

desired analysis modes for all population objects and the

respective simulation time.

With regard to new analysis modes, the current set of

PROOF-2009 functionalities gets extended by a new

tracking feature. The tracking analysis does not aim for

the detailed modelling of the sensor tracking motion, but

rather provides statistical information on pass

frequencies, coverage and detectability of objects

crossing the local horizon. As for the SLR a perfect

mechanical tracking is assumed. Accordingly, this

tracking mode allows for assessing statistical

cataloguing performance characteristics based on the

chosen sensor network and configuration. Furthermore,

the new PROOF-3 software allows for different levels

of detail in terms of analysis. The detailed mode of

analysis is applicable for deterministic object

populations, incorporates a full-force propagator

interface and enhanced modelling assumptions (e.g.

consideration of atmospheric refraction effects). In order

to enable a user to quickly assess supported

performance characteristics an additional simplified

mode is supported, for which a simplistic, but fast

propagator (only accounting for J2-perturbations) is

available.

4 Software accessibility

The third major design criterion for the new PROOF-3

tool is to facilitate access to the software in any regard.

In this context three aspects are considered, in order to

make PROOF-3 available to a larger community. This is

mainly achieved by simplifying the use of the software

through an intuitive Graphical User Interface (GUI),

streamlining used data formats and providing

verification and validation test cases.

4.1 GUI

The updated graphical user interface uses web-standards

to create a modernised and with ESA’s corporate design

harmonised look and feel, as shown in Figure 5. The

user is greeted with a main window, which shows the

top bar, containing the sandwich menu, run-mode

selection, run button and the ESA logo. In contrast to

previous versions the sidebar on the left serves only a

navigational purpose to move between configuration

sections. On the bottom of the sidebar the user can

switch between the input view and the output view. In

the centre of the input view all configurations are

performed concerning the simulation, the manipulation

of the underlying spacecraft and debris population and

detailed sensor configurations.

As part of the usability improvements the radar beam

pattern, in its polynomial representation is now

visualised (cp. Figure 6.a). The user can configure

multiple segments and specify the degree of the

polynomial as well as the respective polynomial

coefficients.

In a similar fashion the line-of-sight definition is now

accompanied by an azimuth-elevation mask. The user

can specify in a time-dependent manner when the field

of view is blocked. The definition is performed using

two azimuth-elevation tuples, specifying the lower and

upper bounds of the exclusion area. The spanning area

is considered blocked and shown in a polar plot (cp.

Figure 6.b).

Figure 5: The main window of the PROOF-3 GUI, with

top and side bar and the main input in the centre.

Figure 6: Visualisation of a) the radar beam pattern

and b) the LOS mask showing the radar beams and the

exluded mask area.

4.2 Standardised interfaces

Apart from the backend API and the new GUI described

in section 2.1 and 4.1, a series of standardised file

formats and interfaces are used by the new PROOF-3

software.

In addition to the already supported TLE format, Orbit

Ephemeris Message (OEM) and Orbit Parameter

Message (OPM) formats are supported to provide

orbital elements and detection related object attributes.

When using the GUI, the local object database can be

a) b)

updated via an interface to ESA’s Database and

Information System Characterising Objects in Space

(DISCOS). Each supported input interface has its own

initialisation sequence and order by which attributes get

associated with the considered object. For information,

which are not available in any of the provided

interfaces, default values and empirical data are used as

fall-back option. The supported interfaces and attributes

are summarised in Figure 7.

Figure 7: Supported input interfaces and object

attributes.

To facilitate the exchange of data and simplify post-

processing the new PROOF-3 release is able to provide

Tracking Data Message (TDM) and Consolidated Laser

Ranging Data (CRD) formats. Furthermore, PROOF-3

allows for the integration into ESA’s System

Performance Simulator.

4.3 Verification and validation

In order to increase acceptance and trust towards the

new PROOF-3 release a two-folded verification and

validation concept is implemented. It bases on small

scale unit tests, comparative tests with PROOF-2009

and external observation simulation tools and the

validation by comparing simulated observations of the

MASTER population with real-world observation

campaigns. The implemented approach allows for a

more efficient localisation of inconsistencies and by this

increases traceability and maintainability of the tool.

Considering the low-level tests, a Continuous

Integration/Continuous Delivery (CI/CD) pipeline is

established, which performs automated building and

unit tests of the software. Apart from the automated

tests, control output is foreseen, which allows for visual

inspection and verification of physical plausibility of the

underlying models and implemented algorithms. Figure

8 shows the visualisation of such exemplary control

output for the sensor location and pointing of the LOS.

Subfigures a) and b) show an Earth-based sensor and a

LOS, which is defined with respect to the local horizon

coordinate frame. For subfigure b) an additional

tracking motion about a fixed tracking pole with

constant angular velocity is considered. Such motion

can be used to implement and optimise optical

observation strategies for specific target orbits (this

incorporates an additional modulo operation inducing a

repetitive pattern, which is omitted for the shown test

case). Subfigures c) and d) show a space-based sensor in

low Earth orbit, where for the case c) the LOS is defined

in inertial coordinates (inertially stabilised spacecraft),

while for case d) the LOS is bound to the local sensor

location and orientation (gravity stabilised spacecraft).

The visualisation of such features allows for quick and

intuitive identification of algorithmic programming or

modelling errors. Additionally, it supports the retrieval

of minor inconsistencies and bugs in the PROOF-2009

release. Those low-level tests are mainly designed to

ensure the correct behaviour of the software from a

programming and technical point of view.

Figure 8: Control output visualisation for the sensor

location and pointing of the LOS. The colour gradient

represents the temporal evolution indicated by the

Julian Dates in the lower left corners. Bold dots

represent the sensor location, thin dots the projected

LOS.

Apart of those low-level tests intermediate comparative

verifications relative to the PROOF-2009 and the

external Advance Space Surveillance System Simulator

(AS4) software suites are conducted. The high level

validation is performed by comparing measurement data

with PROOF-3’s re-simulation of the real-world

observation campaigns. The simulation of observation

campaigns refers to the MASTER-8 population. In the

context of the radar performance model TIRA (Tracking

and Imaging Radar) and EISCAT (European Incoherent

Scatter Scientific Association) beam-park experiments

are considered. The optical performance model is

validated by campaigns of ESA’s SDT (Space Debris

Telescope). The major observation characteristics as

Interface

• POP file

• TLE

•OPM

•OEM

•DISCOS

• SLR database

Attributes

•Object ID

•COSPAR ID

• Factor

•Diameter

•Mass

•Cross section

•Mass-to-area ratio

• 𝐶𝐷and 𝐶𝑅

•Ballistic coefficient

•Retro-reflector

a) b)

d) c)

detection rates and size, range and angular distributions

of objects are covered by this approach.

5 Summary and outlook

The variety of tasks and the envisaged large domain of

application make the ongoing activity a demanding task

in terms of software design and implementation.

Nevertheless, the expected PROOF-3 release should be

a software easy to use for a large community, while

providing extensive functionalities and interfaces. In

order to accelerate the improvement cycle of the

software and to facilitate reuse in other projects, the

source code will be made publicly available. The

identical considerations apply to the associated

Networking/Partnering Initiative Ephemeris Propagation

Tool with Uncertainty Extrapolation (NEPTUNE)

which is accessed through the Orbital Propagation

Interface (OPI) [6]. First scientific results of the activity

and more detailed insights into the updated software and

underlying models are planned to become available by

the end of the year.

6 References

1. Gelhaus, J., Flegel, S., Wiedemann, C. (2011),

Program for Radar and Optical Observation

Forecasting, Final Report, 21705/08/D/HK

2. Degnan, J. (1993), Millimeter Accuracy Satellite

Laser Ranging: A review, Contributions of Space

Geodesy to Geodynamics: Technology, Vol.25

3. Curry, R. (2012), Radar Essentials, SciTech

Publishing, 10, ISBN: 978-1-61353-007-8

4. Krag, H. (2008), LIght Surveillance radar System

Simulation Approach LISA, User Manual

5. Gelhaus, J., Hahn, G., Müller, S. (2015), Snythetic

Generation of a NEO Population, Final Report

6. https://github.com/Space-Systems

	1 Introduction
	2 Modular design
	2.1 Framework
	2.2 Separation of functionalities

	3 Modelling updates
	3.1 Optical and radar performance models
	3.2 Use cases

	4 Software accessibility
	4.1 GUI
	4.2 Standardised interfaces
	4.3 Verification and validation

	5 Summary and outlook
	6 References

