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ABSTRACT

In this paper, a modified version of the finite
set statistics-based Probability Hypothesis Density
(PHD) filter is developed specifically for the optical
multi-target tracking of objects in the near-Earth
realm for Space Situational Awareness (SAA). A
two-step PHD filter is proposed in a modified ver-
sion. One labeled PHD filter is used on the orthogo-
nal image plane, in which linear dynamics in a four-
parameter state is employed, forming so-called track-
lets. Tracklets are associated sets of a few closely-
spaced observations covering a negligible part of the
overall orbit. Furthermore, tracklets are fed into a
second PHD filter in a modified measurement update
version, utilizing the full near-Earth astrodynamics
with a six parameter state. In the modification, each
tracklet leads to only one update in the PHD, but all
observations within the tracklet are processed in the
single target Markov transition process within the
filter. In this case, the single target filter is an Ex-
tended Kalman Filter. In addition, the birth process
that has been usually in typical SSA applications
shifted to the birth step, forcing a data-driven birth
with the disadvantage of a severe model mismatch,
back to the propagation step, as in the original PHD
filter formulation, avoiding the mismatch. In order to
overcome the lack of probabilistic description avail-
ability (one of the triggers of the shift to the data-
driven update step of previous authors), the data is
preprocessed. This has the advantage that birth can
employ traditional initial orbit determination meth-
ods and does not have to rely on the initialization
with an incomplete state using, e.g., an admissible
regions approach. The results are generated using
the optical data of the DLR SMARTnet telescope
network and are compared to the DLR BACARDI
data processing.

Keywords: Multi-Target Tracking, Space Situa-
tional Awareness, Optical Observations and Track-
ing, Probability Hypothesis Density Filter, FISST.

1. INTRODUCTION

SMARTnet is a ground-based optical sensor network
founded in 2017 by DLR with the Astronomical
Institute of the University of Bern (AIUB) as
its founding member [8, 7]. SMARTnet aims to
track all human-made objects in high altitude
orbits, namely in the geosynchronous (GEO) and
geostationary transfer (GTO) orbital regions. High
altitude objects are non-resolved in ground-based
observations. Charged particles impinging on the
detector, among other sources, trigger the release
of photo-electrons and, therefore, clutter that does
not correspond to the image of an actual object.
Objects in the field of view (FOV) might not be
detected because of the non-sufficient reflectivity of
the object, illumination geometry, or when in front
of a star.

As such, the high altitude space object track-
ing can be understood as a multi-target tracking
(MTT) problem. In MTT, the states alongside
the cardinality, the number of observed objects, is
estimated, solving, either explicitly or implicitly,
the data-to-(new or existing)-object association
problem.

Historically, two primary research approaches
are used to explore the MTT regime: the track-
based approaches and population-based approaches.
The track-based approaches associate the mea-
surements explicitly with the single targets to
form a track. Decisions are made only with the
measurements that are present in the scene. The
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most well-known representation of this approach is
the Multi-Hypothesis filter.

Population-based approaches model all the ob-
jects in the scene as a single random entity and
formulate the filtering problem using Finite Set
Statistics (FISST) [17]. The random entity also
exists in the absence of measurements and can
provide a fully probabilistic description of the
entire scene. Both track-based approaches and the
population-based approaches have been researched
extensively in the context of tracking for Space
Situational Awareness, especially for high-altitude
objects [10, 11, 20, 3, 12, 13, 14, 1, 2].

One of the challenges is the absence of exact
knowledge on many of the probabilistic input
parameters needed in order to run the filter prop-
erly. Modeling misfits lead to severely impacted
filter performance [9]. One of the problems is the
uncertainty present in the probability of detection,
which has been addressed for SSA in reformulating
in the Probability Hypothesis Density (PHD) filter
framework [19]. A second problem is finding the
probabilities of birth and their associated proba-
bility density functions (pdf), which is especially
crucial as Space Situational Awareness tracking is
a data-deprived regime. As such, ill-fitting pdfs are
not quickly corrected with new data. In addition,
in optical tracking, only a small subset (two angles)
of the entire six-parameter state is measured. As a
result, the FISST filters are applied in a data-driven
birth, [1, 20, 12, 13, 14, 2, 12, 3, 6, 5, 19] in
combination with an admissible regions formulation
[18, 4]. Data-driven birth is not in the original PHD
formulation and overuses observations, necessitating
the need for gating. Even when additional con-
straints are applied, admissible regions grow large
very quickly, significantly limiting the FISST frame-
work’s ability to pick up and maintain new objects,
which were not previously cataloged. For the admis-
sible regions, a single detection needs to be assumed
to be both angle and angle rates. This, however,
requires single measurements (two angles) that are
already associated, i.e., as described in [10]. Using
a different process in the pre-association leads to
inconsistencies at best and significant performance
impacts at worst. Furthermore, processing all single
measurements of a short observation series, which
are from the operational context closely spaced and
do only cover a small fraction of the object’s orbit
at a time, leads to a very high computational load
within the filter, even when using the first-order
approximation of a PHD filter only.

In this paper, a quick overview is given over
the PHD filter in its classical understanding and
the data-driven birth process as usually employed
in optical SSA tracking. The first step is performed
running a labeled PHD filter in the image plane
using a reduced linear dynamics forming so-called
tracklets. Those tracklets are fed into a second

PHD filter operating on the full orbital dynamics
in the second step. One update in the PHD filter
is performed, while all measurements are processed
on the single target Markov process underlying the
filter. The new formulation for this step is shown
explicitly in the paper. In both steps, birth is
maintained in the propagation step. The proba-
bilistic description is obtained via pre-processing of
the data, which allows the use of classical, robust
orbit determination methods with a much higher
convergence date. The data inputs are actual optical
measurements provided by SMARTnet.

2. A SHORT SUMMARY OF THE PHD
FILTER AND ITS PREVIOUS USE
FOR SSA

The PHD filter has been first proposed by Mahler
[17] and is a first order approximation of the full
FISST, and therefore the computationally leanest
version of the FISST-based filters.

For the prediction step, the following assumptions
are made: (1) the single objects are independent
and their dynamics can be modeled by a Markov
transition density on the single object level denoted
by fk+1|k(x|x′) from time step k to k + 1 with the
prior state x′, and posterior state x; (2) the survival
of the existing objects can be modeled by a Bernoulli
process with known probability ps at each time step;
(3) the new objects are being born independent of
the existing targets, with a known birth process pdf
bk+1|k(x). When neglecting spawning, which is not
relevant for SSA, the PHD filter prediction equation
for the multi-target probability hypothesis density
Dk|k(x) of the k − th time step, to the (k + 1) − th
time step in the state space denoted by x [17]:

Dk+1|k(x) = bk+1|k(x) +∫
pS(x′)fk+1|k(x|x′)Dk|k(x′)dx′ (1)

For the measurement update step, the assumptions
are: (4) Each object produces maximally one mea-
surement at any given time. The set of measure-
ments Z of the single measurements z with z ∈ Z at
a given time k+1 is the union between the measure-
ments produced by previous objects and the clutter
process Z = Zobj∪Zclut; (5) there exists a known sin-
gle target measurement likelihood function fk+1(z|x)
based on the object state x and a single measure-
ments z, respectively; (6) there is a known proba-
bility of detection, which may be state dependent
and which can be modeled as a Bernoulli process,
based on the object state and the sensor character-
istics such as pointing direction and field of view,
xsensor, respectively, pD(x) := pD(x,xsensor)’(7)
there is a false alarm clutter rate, which may de-
pend upon the sensor characteristics, denoted by



xsensor, which can be modeled as a Poisson distribu-
tion with variance λ and spatial distribution c(z) =
c(z|xsensor); (5) the multi-target prior is Poisson dis-
tributed with the variance λprior: fk+1|k(X|Z) =
exp(−λprior)Πx∈Xλprior · fk+1|k(x|Z).The measure-
ment update step at time k + 1 can then be for-
mulated as the following [17]:

Dk+1|k+1(x) = (1− pD(x)) ·Dk+1|k(x)

+pD(x)
∑
z∈Z

fk+1(z|x)Dk+1|k(x)

λc(z) +
∫
pD(x)fk+1(z|x′)Dk+1|k(x′)dx′

(2)

The classical implementation as shown in Eqs.1 and
2 has the birth bk+1|k(x) process in the prediction
step from time k to k + 1. Overcoming the lack
of a probabilistic description of birth in combina-
tion with a data-spare environment, prompted a
shift of the birth process from the prediction step
bk+1|k(x) to the update step bk+1|k+1(x|Z), based
on the measurements, a so-called data-driven birth
[1, 20, 12, 13, 14, 2, 12, 3, 6, 5, 19]. While usually
explicitly formulated this is leading to the modified
equations:

Dk+1|k(x)
mod
=

∫
pS(x′)fk+1|k(x|x′)Dk|k(x′)dx′ (3)

Dk+1|k+1(x)
mod
= (1− pD(x)) ·Dk+1|k(x)

+pD(x)
∑
z∈Zd

fk+1(z|x)Dk+1|k(x)

λc(z) +
∫
pD(x)fk+1(z|x′)Dk+1|k(x′)dx′

+
∑
z∈Zb

bk+1|k+1(x|z) (4)

In order to shift the birth to the update step, a vio-
lation of assumption (4) such that the measurements
are generated either from clutter or from already
known object. In order to not overuse the measure-
ments, a split or gating has to introduced as a hard
constraint, namely re-defining the set of all measure-
ments Z as:

Z
mod
= Zd ∪ Zb (5)

Zd = Zobj ∪ Zclut (6)

Zb = Zbirth (7)

But as Zb and which for Zd are used seperately in
Eq.4, the set of measurements has to be manually
split. The decision of which measurements count for
birth in Zb and which for Zd is often based on the
measurement likelihood function of the known tar-
gets, on the other hand, that ill-represents the clutter
process which can occur at any region on the image;
furthermore not all known objects are detected and
the probability of detection for the known objects is
neglected. As such, the modified PHD equations in
Eqs. 3 amd 4 are not in alignment with the FISST
filtering paradigms. A rederivation is necessary for a
data-driven birth:

Z
new
= Zobj ∪ Zclut ∪ Zbirth (8)

(9)

This is future work for the authors and will be
published seperately. For the Multi-Bernoulli filter
a data-driven re-derivation is available [16].

Figure 1: Gaussian Mixture Admissible Region rep-
resentation, using 300 components, according to [4].

Despite its inconsistencies, the data-driven birth
Eq.4 solves the problem of birth when using optical
measurements only partly. For the birth initializa-
tion, a pdf spanning the full state is required. Optical
observations, however, measure only a subset of the
state, two angles. One workaround is the use of at
least a minimal preassociation of the data, assuming
angle rates are available, in combination with
admissible regions [? 12, 13, 14, 2, 12, 3, 6, 5, 19].
Fig.?? shows the illustration of an admissible region
represented via a Gaussian mixture using 300
components. This already illustrates that a large
number of components are needed for a proper
representation. Furthermore, even when using fur-
ther constraints, the admissible regions, which can
reduce the number of components, are fanning out
quickly, requiring new observations of the same ob-
ject soon not to lose the newly birthed objects again.

If the data is not assumed to be preassociated,
the admissible region’s approach cannot be used.
However, then only a potentially wrongly associated
subset of the observations is available, potentially
relying on very different methods to form so-called
tracklets [10]. Tracklets are observations that are
determined to belong to the same object and span
a very short part of the object’s orbit. On the
other hand, if all the single observations are inserted
into the filter, many hypotheses, e.g., Gaussian
components in a Gaussian mixture implementation,
are generated with the result that very aggressive
pruning and merging has to be applied, which
degrades filter performance. A further complication
is that in operational data, often small time correc-
tions, e.g., for different shutter times, are applied,
leading to slightly different times of the order of
microseconds for detections on the same image.
Such short propagation times are disadvantageous
within a multi-target tracking filter with the full
orbital dynamics employed.



3. TWO-STEP APPROACH OF SSA PHD
FILTER

A new two-step modified implementation of the clas-
sical PHD filter is proposed to avoid some known
shortcomings in the usual SSA implementations. In
this new form, the birth process is shifted back to
the prediction step, and a two-step approach is im-
plemented.

3.1. Labeled Association in the Orthogonal
Projection

As a first step, the PHD filter in its form of Eqs.1 and
2 are used in a Gaussian mixture implementation
[23]. Labeling is applied for use in the subsequent
filter step. The dynamics is a linear dynamics in
the orthogonal image plane, constructing a state
that consists of right ascension α, declination δ,
right ascension rate α̇ and declination rates δ̇. The
linear dynamics is justified because the method is
applied to high altitude orbits spanning only a small
fraction of the orbit. Adaptions are easily possible
for objects in lower orbits. No catalog data is used
at this step, but the filter is initialized cold on birth
only without a priori information. Each series is
processed separately.

The birth distribution is found via a pre-processing
of the data. Each short observation series is pre-
analyzed for determining from the data a Gaussian
mixture distribution of birth distributions in the
two-dimensional orthogonal image plane projection.
For the velocity in angle rates, all detections are
combined, excluding combinations on the same
image. For positions, the locations within the image
are used in a similar fashion. Again a Gaussian
mixture distribution is assumed. The process is
illustrated via pictograms in Fig. 2, where a series
of six images are shown with detections, actual
observations and clutter, marked by golden circles.
The Gaussian distribution is, of course, not valid
in spherical coordinates. But as a localized region
in the orthogonal tangential plane is used, the in-
accuracies in the projection are negligible. In order
to limit the Gaussian mixture components, merging
is applied within user-specified bounds using the
Kullbach-Leibler divergence as criteria. For the
observation epochs, rounding to one common epoch
per image is applied in this first step.

3.2. Full Orbital Dynamics Modified PHD
Filter

The filter results within the orthogonal image plane
are then transferred over into the full PHD filter
employing a six-state vector of position and velocity
in the Cartesian space. Again, birth is kept in the

(a) position
probabilities

(b) velocity probabilities

Figure 2: Pictrographic illustration of finding posi-
tion and velocity probabilities in the orthogonal im-
age plane for detection on the image indecated by
golden circles .

propagation step, as in the original definition of the
PHD filter, Eqs.1. This requires a process again to
determine a probabilistic birth process. This is done
analogous to the previous step, only now in the full
Cartesian space using proper orbit dynamics. There-
fore classical methods of orbit determination can
be used. In this paper, the authors decided to use
the Gauss method, followed by the Herrick-Gibbs
method [22] using combinations of three tracklets
to determine orbital hypotheses. The process
requires additional computations, however, it is very
robust and allows leveraging classical initial orbit
determination methods, including multi-revolution
methods, avoiding the use of admissible regions.
IOD for tracklets of different objects often is not
successful, which in this context simply means
they do not contribute to the Gaussian mixture
birth population representation. For a proper
representation of the birth process, a proper pdf
representation is needed. Interpreting the initial
orbit determination results as the means, the second
moment can be approximated using an unscented
transform of the expected measurement noise [15].
This introduces a slight bias, which is found to be
overall negligible.

However, the measurement update step is modified
in its formulation. In order to curb the creation
of new hypotheses, a single PHD filter step is
employed per tracklet-object that has been found
in the previous PHD filter step in the orthogonal
plane. Nevertheless, the single labeled tracklet
observations are processed in all steps through the
Markov transition within the PHD filter with their
exact respective epochs without rounding. This
allows processing all measurements, which is advan-
tageous for the sequential filtering of the Markov
process to mitigate filter divergence, especially after
longer observation gaps that frequently occur in
SSA tracking. Mathematically, the update step can



hence be formulated as the following:

Dk+1|k+1(x) = (1− pD(x)) ·Dk+1|k(x) +

pD(x)
∑
Z∈ζ

F (Z|x, Dk|k(x))

λc(Z) +
∫
pD(x)F (Z|x′, Dk|k(x′))dx′

(10)

Please note that the first term, representing the prob-
ability of non-detection uses the propagated multi-
object density Dk+1|k(x), whereas the newly formu-
lated transition process still uses the non-propagated
density Dk|k(x), as several different propagation
epochs are needed:

F (Z|x, Dk|k(x)) =

fkz+1(z|x)

∫
fkz+1|k(x|x′)Dk|k(x′)dx′ (11)

∀z ∈ Zi

This requires a redefinition of the measurement set
Zi, which now consists of the sets containing the
measurements of a tracklet from the previous la-
belled PHD filter step in the orthogonal plane.

Z1 = {z1, z3, ...} (12)

Z2 = {z2, z5, ...} (13)

Z. = ... (14)

To speed up computation no labelling is used in this
step. A Gaussian mixture implementation is chosen
again. In this step, the catalog of all known high
altitude orbit is used as existing object population.

4. RESULTS

For the results, the data of a single observation
night of March 3, 2021, collected by the SMARTnet
sensor located in Sutherland, has been used. During
that night, GEO surveys to detect new objects and
catalog maintenance follow-up observations were
collected.

The observation night consists of 1526 total
detections, with a minimum of one detection and
a maximum of 13 detections on a single image.
Overall there were 81 observation series. A series
spans on average 103 seconds, with a maximum
time span of 220 seconds and a minimum one of 48
seconds. The average time from one image to the
following (mid observation times) is 15 seconds; the
average time from one observation series to the next
is 231 seconds.

Unfortunately, the observation set was already
formed into tracklets, is hence of a cleansed data
set, so to speak. The previously formed associations
were undone and not used in the processing.

On average, 40 velocity hypotheses and three
position hypotheses per observation series were
formed. A merging with standard deviations of 1
arcsecond per second in velocity and two arcseconds
in position were performed. The latter is consistent
with the measurement accuracy determined for the
sensor. On average, three birth hypotheses remained
after merging. The results for the labeled PHD
filter in the orthogonal image plane were consistent
with the BACARDI [21] processing; the previously
undone associations were found again, with some
outliers that BACARDI removes in a separate step,
already removed in all but two cases by the PHD
filter step.

For the orbit determination step, catalog ob-
jects have been confirmed, and new objects have
been found. Because of technical problems, valida-
tion with the BACARDI system is currently still
pending.

5. CONCLUSIONS

In conclusion, there is an established way of im-
plementing a probability hypothesis density filter
(PDH) for the use of tracking in space situational
awareness. This standard implementation has
several drawbacks, which limit performance and
general use.

In this paper, a two-step approach has been
derived and implemented, providing method con-
sistency in all processing steps. Furthermore,
traditional initial orbit determination methods can
be used, avoiding a costly non-robust admissible
regions approach for object birthing. Reformulating
the filter update step allows curbing the number
of needed hypotheses, allowing for more relaxed
pruning and merging. At the same time, still, all
measurements with their exact epochs are processed
for the best possible orbit estimates in the sequential
single object filter, which provides the PHD filter
Markov transition process.

The first results are auspicious; however, more
rigorous testing and validation are needed. For
the birthing using multiple nights of data, better
multi-revolution initial orbit determination methods
need to be implemented. Future work includes the
operational implementation of the method in the
SMARTnet network. Unrelated to the implemen-
tation, future work includes the publication of the
reformulation with a proper data-driven birth.
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