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ABSTRACT 

Optical telescope images in the SST field may contain 

streaks (a list of pixels with higher local salient pixel 

density and more elongated shape than background noise 

and other artefacts). This is particularly common for very 

large Field of View (FoV) sensors and low Earth objects. 

Automatic processing of streaks is challenging due to 

many factors, including but not limited to: false streaks 

caused by artefacts, fading introducing difficulty 

establishing streak ends, and chained behaviours. Deimos 

created a database of images cataloguing streaks detected 

by the Deimos trail analyser tool for a future test of 

algorithms for an intelligent trail detector. The tool 

searched for trailed shapes on the images, analysed and 

collected features of the trails found, and classified them 

accordingly. The analysis showed that around 80% of 

images contained streaks, whereas streaks were detected 

automatically in 50-70% of cases, depending on the 

sensor features and image conditions. 

1 INTRODUCTION 

Optical telescope images in the SST field may contain 

streaks (a list of pixels with higher local salient pixel 

density and more elongated shape than background noise 

and other artefacts). It is typical for the observation with 

very large Field of View sensors and low Earth objects 

(which move faster than high orbiting objects). The 

processing pipeline for astrometric and data reduction of 

such images considered the variety of features of those 

streaks for a robust solution. Until now, the European 

Space Agency (ESA) has tested prototype algorithms 

(developed in a General Support Technology 

Programme) based on simulated images.  

The streak detection algorithm was developed 

considering various features in the images to ensure a 

robust streak detection solution. The images with 

spurious artefacts like cosmic rays, hot pixels, etc., were 

considered (Fig. 1). Different sensor features were used 

during this activity, like FoV, pointing accuracy, time tag 

accuracy, resolution, etc. Additionally, different types of 

observations were accounted to reflect the different 

streak features.  

Observing and processing images every night showed 

many trail features caused by fast rotators, particularly 

observing geometries, different object attitudes, and 

entering in Earth shadow conditions. Some of them were 

fading until disappearing. Others showed chained 

behaviours, making it difficult to establish the actual trail 

ends and the accurate measurement and time registry 

belonging to the start-end over the plate exposure (Fig. 

2). Sometimes, it was impossible to detect them as 

streaks because they did not show as simple stripes. 

 

 
Figure 1: Artefacts in real optical images 

 

Figure 2: Variety of trails features in real optical images 

The project objective was to identify the sensors and 

possible datasets of raw observation derived data 

products stored in the database and provided to ESA. The 

database was designed to support the archive of data 

acquired during the activity and support the future test 

and validation of streak detection algorithms. 
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Visualisation capabilities were also applied to ease the 

analysis of database contents.  

2 OBSERVATION CAMPAIGN 

Within the campaign, several sensors of different features 

were assigned to the observation, and more than  

125 000 images were obtained:  

• Two United Kingdom sensors from the Open 

University, COAST and PIRATE 

• DEIMOS sensors ANTSY1 and TRACKER2  

• Sybilla Technologies’ sensor PANOPTES-

MAM.  

Different objects were observed within different orbital 

parameters. The observations were generated with 

varying exposure times to have streaks of various lengths 

for similar orbital regimes. Diverse background 

conditions were also considered, benefiting from 

observing varying periods during the month (with 

varying Moon light conditions). For the image 

generation, sensors were following scheduled known 

targets based on a two-line element set (TLE) and the 

online Satellite Catalogue (SATCAT) cross-section 

information [1]. Images were delivered in triplets over 

the same FoVs. The objective was to get at least three 

trails of the target inside the same FoV, trying to centre 

the middle one. However due to the angular speed, 

pointing uncertainties of the sensor and TLE accuracy, 

sometimes two, one, or none could be registered. After 

three shots, the sensor might slew to the next target to do 

the same tasks; they were all solved by World Coordinate 

System (WCS) [2]. In the case that some of them could 

not be resolved, it was usually because the observing 

conditions were too extreme for solving the plates. In 

those situations, the images were not further processed.  

Tab.1 shows a summary of observation nights per each 

sensor. For some of them, it was necessary to recover 

observation nights to reach a minimum required number 

of images (600 images/night) due to the reasons 

mentioned above.  

Table 1:Summary of observation night 

Sensor Number 

of 

planned/ 

operated 

nights 

% of 

nights 

completed 

Num. 

of 

images 

Num. of 

unsolved 

FITS 

TRACKER2 25/25 100% 53532 3200 

ANTSY1 25/26 104% 33717 7808 

PIRATE 25/32 128% 23406 - 

COAST 25/37 148% 13141 - 

PANOPTES-

MAM 

14/27 193% 5400 - 

 

Image resolution for TRACKER2 and ANTSY1 was 512 

x 512 pixels for binning2 and 1024 x 1024 pixels for 

binning1, while for COAST, it was 3032 x 3032 pixels 

(x1) and 1496 x 1496 pixels (x2). For PIRATE 4056 x 

4056 pixels (x1), and 2008 x 2008 pixels (x2). 

Furthermore, for PANOPTES-MAM, for binning1 was 

2048 x 2048 pixels and 4056 x 4056 pixels. For binning2 

it was 1024 x 1024 pixels and 2008 x 2008 pixels. 

  

Sensors were using sidereal tracking mode and longer 

exposure time to produce trails of different length, 

intensity, variations, etc. The following graphs show 

typical track lengths where initially they were requested 

(in pixels for the bin mode) from a few to > 100. The goal 

was to reach trail diversity longitudes to analyse different 

cases. The longer the length, the longer the exposure of 

the camera. Statistics of the generated data summarised:  

• For TRACKER2 the most common target 

lengths were 84 and 96 pixels for x1 and 12, 36 

and 48 pixels for x2 (Fig. 3).  

• For sensor ANTSY1 more common target 

length was shorter for both binning modes. For 

x1 it is 12, 24, 36 pixels and for x2 12, 24 pixels 

(Fig. 4).  

• For PANOPTES-MAM sensor, the most 

common trail length for x1 was 36 and 108 

pixels, and 48 pixels for x2 (Fig. 5)  

• For COAST (Fig. 6) and PIRATE (Fig. 7), the 

most common trail length for both binning 

modes was 156 pixels.  

 

Figure 3: Summary of the number of the objects per 

trail length for TRACKER2 



 

 

 

Figure 4: Summary of the number of the objects per 

trail length for ANTSY1 

 

Figure 5: Summary of the number of the objects per 

trail length for PANOPTES-MAM 

 

Figure 6: Summary of the number of the objects per 

trail length for COAST 

 

Figure 7: Summary of the number of the objects per 

trail length for PIRATE 

 

3 IMAGE PROCESSING 

Images were processed and analysed with two different 

tools and approaches:  

• Deimos processing tool  

• Astrometry24.net (A24N) 
 

To verify Deimos tool efficiency, which was the baseline 

for characterising the images, a set of images was also 

manually analysed and processed with two additional 

tools: 

• ESA's Streak Det tool 

• Czech Technical University's detection tool 

 

3.1 Deimos Processing Tool 

Fig. 8 approximately shows a required software (SW) 

architecture for processing, extracting the data and 

cataloguing, from raw Flexible Image Transport System 

(FITS) images to user interfaces. 

 

Figure 8: Software architecture for processing the raw 

FITS images during the activity 

After obtaining FITS raw images, SExtractor was used 

for automated detection and photometry for sources in 



 

 

FITS image files. The outputs were the catalogue with a 

range of characteristics of each detected object and maps 

of these objects. Some of the issues that occurred using 

SExtractor [3] were:  

• It had significantly low precision in trail 

detection in crowded fields because it is mainly 

oriented towards reducing large-scale galaxy 

survey data.  

• It had limited accuracy in the determination of a 

trail’s barycentre and ends.  

• It was also possible that trails were not detected 

by SExtractor at all.  

For each sensor, SExtractor parameters had to be changed 

and adapted as much as possible according to sensor 

specification and FITS images that it generated. It was 

necessary to compromise between more accurate 

detection and loss of faint trails by changing some 

parameters.  

SExtractor's catalogue was processed using Python 

scripts and its various libraries. The software applied 

filters for real streaks extraction. The output parameters 

were extracted, used for image processing and object 

light curve was obtained, a starting point for further 

detailed analysis and classification. The algorithm 

marked a streak as real or false based on that light curve 

and the trail's target length. Trails were not well 

categorised (false positive/false negative) in crowded, 

shacked images, in those close to the full Moon or Milky 

Way or when trails themselves were not well-detected by 

SExtractor (which caused inaccurate angle and/or 

barycentre).   

It was necessary to smooth the light curve using 

convolution to determine the real length of a trail and 

detect them correctly. Fig. 9 shows a detected streak and 

its corresponding light curve in Fig. 10 (blue line), while 

the purple line is convolution. After smoothing, the 

algorithm looked for a target trail length over it. At the 

point where the purple line intersected the red line (the 

background value of the image), if a certain trail length 

was detected between these two intersections, it was 

detected as a trail. In this case, these lines did not intersect 

the red line at the same point, underestimating the streak 

length.  

 

Figure 9: Detected streak. 

 

Figure 10: Corresponding light curve to detected streak 

in Fig. 9 

Sometimes if an image had a high signal-to-noise ratio 

(SNR) or was crowded, it was difficult to detect real 

streaks using  smoothed light curve. Fig. 11 represents an 

example of a detected streak using convolution and a 

target length. Fig. 12 shows corresponding light curve 

and original image (Fig. 13). In these cases, it was a false 

positive streak. 

 

Figure 11: False positive detection 

 

Figure 12: Corresponding light curve to detected streak 

in Figure 11 



 

 

 

Figure 13: Original image of detected streak in Fig. 11 

 

3.2 Astrometry24.net 

Sybilla Technologies have developed Astrometry24.net 

(A24N). It is an astronomic web service that provides 

astrometric and photometric measurements and streak 

detection for SST and Near-Earth Object (NEO) 

observations. The use of A24N mainly allowed: 

• Cross-check and parallel processing of all 

ingested images in the database. In this way, 

several approaches for data processing could be 

considered, and products from different 

processing algorithms could be stored for the 

sake of comparison. 

• Ingestion of the data extracted from A24N 

solutions inside the database as part of the 

information related to all the images and trails.  

• Comparison and convergence of commonly 

available outputs.  

A24N, together with Deimos Processing Tool, has been 

integrated into the database for automated image 

processing. Its output was used to cross-check all the 

images ingested in the database. In each successfully 

processed image with A24N, at least one streak was 

detected, including false positives. 

 

3.3 ESA StreakDet Tool 

Deimos tested StreakDet tool on the data set obtained 

during the campaign on ESA request. 

As a result, Deimos noticed that whether the image 

contained trails, a significant number of false positives 

were detected in most of them. For the images without 

trails, false detections still occurred. Fig. 14 shows the 

processed image by StreakDet Tool. 

 

Figure 14: Detected streaks with StreakDet Tool (left) 

and original image (right) 

3.4 Czech Technical University Group 

Deimos provided a set of images to the Czech Technical 

University Group led by Vojtech Cvrcek, on ESA 

request. They analysed an image dataset detecting 

objects of interest with a significant angular error for 

short streaks, with their method being more suitable for 

longer streaks. 

 

3.5 Manual Analysis 

A subset of each sensor's images in a range of 1h (an 

arbitrary night) was manually checked on ESA request to 

verify the streak detection algorithm. Each image was 

verified if it had a trail, and, in the case that it did, length 

measurements of the trail (in pixel) was calculated and 

saved in the database including the trail coordinates of its 

ends. Tab. 2 shows the results of manual analysis for each 

sensor. 

Table 2: Results of manual analysis 

Sensor Num. 

of 

images 

for 1h 

Images 

with 

streaks 

% of 

images 

with 

streaks 

Mutual 

streaks 

TRACKER2 393 277 70 Yes 

ANTSY1 54 48 88 Yes 

COAST 36 22 61 Yes 

PIRATE 198 177 86 Yes 

PANOPTES-

MAM 

47 38 80 Yes 

 

4 DATABASE 

The database was designed to support the archive of the 

data acquired during the activity and the future design, 

test and validation of streak detection algorithms. For 

that, the interface with such an algorithm was 

implemented. Visualisation capabilities were also 



 

 

required to ease the analysis of the database contents. It 

was based on ensuring that bottlenecks were properly 

tackled (as using very large files), data accessibility and 

robustness. 

In order to comply with the objective, the following 

requirements and design drivers were identified: 

• The database allows the ingestion of different 

levels of reduction products from the raw 

images. 

• Pre-existing product metadata can also be 

ingested in the database, as well as the data can 

be traceable to its source and uniquely 

identifiable. 

• The database allows easy access to the acquired 

data (at different processing levels) through a 

user interface. 

• The basic image format in the database is FITS 

format 

• The database allows general FITS headers to be 

included. 

• PNG format is included. 

• The database allows entering the processed 

information generated by different 

algorithms/mechanisms (for example, 

manually) to be used as a reference for trail 

detection algorithms). The solution encountered 

by different mechanism was stored.  

• It allows the database's easy and fast 

extensibility to keep new contents without 

modifying manually at the database's low level. 

• The system provides a REST API to the rest of 

the world that external third-party tools could 

use. This REST API provides automatic 

processing using the database contents. 

• Different databases (RDBMS and/or non-

RDBMS) are assessed regarding their 

performance when handling large files; external 

storage solutions are also evaluated, where only 

the metadata is kept in the database. 

• It provides some minimal protection (through 

the usage of user roles).  

• The STREET User interface accesses the 

database through this API, but also third-party 

entities may use the API directly.  

• Software developed in this activity is ESA IPR, 

and it is considered prototype software. 

The STREET system solution was implemented 

following a Service Oriented Architecture (SOA). The 

core modules that compound the whole system provide 

Web services to exchange the data and access their 

functionalities. The Web services are based on the 

REpresentational State Transfer (REST) architectural 

style compounding a commonly called RESTful API 

(Application Programming Interface). The data format to 

interchange the messages in the REST API is the open-

standard (RFC7159) JavaScript Object Notation (JSON). 

The RESTful API's design and implementation follow 

the architectural constraints defined in this style. 

The STREET system's high-level logical architecture is 

shown in Fig. 15. 

 

Figure 15: High-level architecture of STREET system 

The Front-end is a web-based Human Machine Interface 

(HMI) to the STREET system. This module is 

responsible for providing remote access to accredited 

users to each profile's data and functionalities. All the 

data and actions to be executed from the front-end are 

retrieved and requested through the back-end REST API. 

The Back-end is the module that, following the SOA 

paradigm, provides a REST API for data exchange 

between the persistence and the front-end layers. 

Additionally, the REST API allows the users to execute 

on-demand tools for processing products stored in the 

database. Finally, the back-end authenticates and 

authorises the users when the user signs in to the 

STREET system via the front-end. 

The Database (PostgreSQL) is the module responsible 

for the persistence of the STREET system's data. 

4.1 Back-end Database Design 

PostgreSQL is used as a relational database for storing 

products metadata and Minio as an object database for 

files storage. 

The relational database (PostgreSQL) stores a product 

repository or any other information required by the 

system. It allows making queries over the data to provide 

high-performance search capabilities. The database 

contains links to large size files, which are stored in 

external file storage. The choice of Minio for external file 

storage resolves the problem of managing large size files. 

When a query is performed for obtaining a list of 

products matching the used constraints, the REST API 

retrieves links to the external files. External files can be 

downloaded directly from the Minio database using the 

provided links. 

This sub-module manages the data interchange between 

the back-end database and the front-end. It handles data 

insertion (tools and products definitions, sensor 

configurations...), data browsing (search, filtering, 



 

 

sorting and numerical/graphical representations), data 

uploads/downloads (sensor observations load, raw data 

insertion ...), etc. The back-end REST API was built 

using the usual Spring layers (see Fig. 16) where: 

• Controllers layer defines service entry points for 

each HTTP URL and how parameters are to be 

read from the HTTP request.  

• Services layer contains business logic and 

provides interfaces for interaction with the 

repositories and other external Web Services.   

• Repositories layer maps the database to/from in-

memory domain objects 

 

Figure 16: Rest API Architecture Layers 

 

 

4.2 Front-end Architecture 

 

STREET HMI is a Web-based Human-Machine 

Interface based on the Angular framework. The 

application architecture is described in Fig 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: STREET Front-end Architecture 



 

 

The application has been developed with the following 

technology:  

• NodeJS and NPM for the installation and 

management of dependencies.  

• Angular was a development framework with 

TypeScript, HTML and CSS. 

• RxJS (used to maintain the Observable flow in 

queries via HTTP with the back-end).  

 

The application was structured in modules that include 

components and containers (the basic difference was that 

the containers were those that interacted with HTTP 

Services, and the child components received input data 

and sent output data to the container).  

The interaction with the back-end was done via HTTP 

through services, and reactive technology with RxJS was 

used to maintain the streams' flow.  

User authentication was based on JWT (JSON Web 

Tokens).  

The access to data stored in the STREET database was 

based on the RESTful API standard.  

STREET HMI provides the main features described in 

Fig. 18: 

 

Figure 18: STREET HMI Main Features 

The main access view (Fig. 19) gives access to the 

STREET front-end application using user credentials 

(email and password). 

 

Figure 19: Login View  

A dashboard view (Fig. 20) is a reporting tool showing a 

statistical summary of uploaded products and streak 

detection 

 

Figure 20: Dashboard view 

It is possible to upload one or multiple FITS or 

JPEG/PNG products in order to be processed by the 

back-end (see Fig. 21). Choosing only one product view, 

custom metadata might be added. 

 

Figure 21: Upload Products view 

It is possible to search any supported product applying 

different filters to get more specific results based on the 

entered criteria (see Fig. 22). 

 

Figure 22: Search Products view 

HMI shows detailed preview of a selected product from 

the Search Products view of one streak detected in the 

Search Streaks view (see Fig. 23). This view includes 

some features related to the custom metadata edit, the 

possibility of validating detected streaks or review the 

used tools input and streak feature metadata associated 

with the detection process. 



 

 

 

Figure 23: Product detail view 

It is possible to search any streak in the STREET 

database, applying different filters based on the Streak 

Features related to the streak detection process (see Fig. 

24).  

 

Figure 24: Search Streaks view 

 

5 RESULTS 

The average percentage of detected streaks by Deimos 

Processing Tool and the number of streaks in total are 

shown in Tab. 3, including the estimated number of 

images with streak extrapolated from a manually checked 

set of images. 

Table 3: Results of the Analysis with Deimos tool for 

Tracker2 

Sensor Num. 
of 

images 

 

Num. of 
FITS 

with at 
least 
one 
streak  

 

% of 
FITS 

with 
streak
s 

 

Estimated 
number 

of streak 
images  

 

TRACKER2 53532 26395 49.12 35220 

ANTSY1 33717 25456 75.50 23253 

PIRATE 23406 15897 67.92 20113 

COAST 13141 7511 57.16 7999 

PANOPTES

-MAM 

5400 3914 72.49 5074 

 

TRACKER2 sensor has been observing for 25 nights. 

Observation nights were almost entirely successful. The 

average percentage of streaks per night (excluding 

unsolved FITS files) was 49.12%, and for those which 

include all FITS files was 46.87%. One of the reasons for 

the lower % of trails per image may be SExtractor 

detection's imprecision (as previously mentioned, we had 

to compromise where a lot of chained and faint trails 

would not be detected). However, it could also be due to 

bad, shaken images or nights close to the Moon, Milky 

Way or cloud base.  

For ANTSY1, the average percentage of streaks per night 

(excluding unsolved FITs files) was 75.50% and for 

those which included all FITs files was 56.29%. The 

same reasons as those mentioned for TRACKER2 can 

cause fewer trails detections. However, it could also lead 

to the opposite result – a significant number of false 

positives. In the COAST sensor case, the average 

percentage of streaks per night was 57.16%, for PIRATE, 

it was 67.92%, and for PANOPTES-MAM 72.49%. For 

these three sensors, unresolved images were not provided 

to Deimos. The total number of trails/nights and detected 

trails/nights are shown graphically in the following 

figures (Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29). 

 

Figure 25: Images per night and the total number of 

detected trails per night for TRACKER2 

 

Figure 26: Images per night and the total number of 

detected trails per night for ANTSY1 



 

 

 

Figure 27: Images per night and the total number of 

detected trails per night for COAST. 

 

Figure 28: Images per night and the total number of 

detected trails per night for PIRATE. 

 

Figure 29: Images per night and the total number of 

detected trails per night for PANOPTES-MAM. 

If SExtractor output catalogue was precise enough (in 

particular barycentre and angle), trail detection was easier 

and more accurate. Fig. 30, Fig. 31, Fig. 32 and Fig. 33 

show some well-detected streaks for different sensors. 

 

 

Figure 30: FITs file and image of the detected streak. 

The image obtained by TRACKER2. 

 

Figure 31: Multiple detected streaks. Image obtained by 

TRACKER2. 

 

Figure 32: Original FITs file (left) and detected streaks 

(right). Image obtained by ANTSY1. 



 

 

 

Figure 33: FITs file (left) and cropped image of s 

detected streaks (right). Image obtained by COAST. 

Fig. 34 shows an example of both false-positive (right-

top) and real streak (right-bottom) detections in the same 

FITS. 

 

Figure 34: False-positive and real streak detection. 

Image obtained by PIRATE. 

With all given conditions for the observation, false-

positive streaks were also detected. Fig. 35 shows false-

positive detected streaks in cropped images (right) and 

ANTSY1 png of original FITS. Fig. 36 is another 

example of false-positive detections. In the original FITS 

file, dark shadow-like features around trails displayed. In 

this case, those trails were stars with smears. These dark 

shadows happen on frame transfer CCD architectures 

when stars/trails are very bright and close to saturation. 

 

Figure 35: False-positive detections. 

 

Figure 36: False-positive streak detection in ANTSY1 

image. 

 

6 CONCLUSION AND FUTURE WORK 

Overall, around 80% of the images contained streaks, 

whereas streaks were detected automatically for 50-70% 

of the cases, depending on the sensor features and image 

conditions. The current database can integrate different 

streak detection algorithms and compare the output with 

already implemented software and stored data. This can 

give us a thorough insight into various tools' capabilities 

and ideas on achieving the highest possible accuracy in 

streak detection.  

In future work: 

• ESA might use STREET database in a challenge 

to find faint streaks. 

• STREET may also be used in preparing for 

space-based observation endeavours by ESA. 
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