

STREEK EVALUATION TOOL

Nina Marić1, Noelia Sánchez-Ortiz2, María Jesus Enriquez Pabon2, Benjamín Murcia Sánchez2, Jaime

Nomen Torres3, Laura Pedrouzo Rodriguez1, Tim Flohrer4, Jan Siminiski4

(1) DEIMOS Space UK Ltd, Building R103, Fermi Avenue, Harwell Campus, Oxfordshire, OX11 0QR, UK

spacesafety@deimos-space.com

(2) DEIMOS Space S.L.U., Ronda de Poniente 19, Tres Cantos, Madrid, 28760 Spain

 spacesafety@deimos-space.com

(3) Deimos Engineering and Systems, Calle Francia 9, 13500 Puertollano, Spain

(4) ESA/ESOC Space Debris Office, OPS-SD, ESA/ESOC, Robert Bosh Strasse, Darmstadt, Germany

Tim.Flohrer@esa.int

ABSTRACT

Optical telescope images in the SST field may contain

streaks (a list of pixels with higher local salient pixel

density and more elongated shape than background noise

and other artefacts). This is particularly common for very

large Field of View (FoV) sensors and low Earth objects.

Automatic processing of streaks is challenging due to

many factors, including but not limited to: false streaks

caused by artefacts, fading introducing difficulty

establishing streak ends, and chained behaviours. Deimos

created a database of images cataloguing streaks detected

by the Deimos trail analyser tool for a future test of

algorithms for an intelligent trail detector. The tool

searched for trailed shapes on the images, analysed and

collected features of the trails found, and classified them

accordingly. The analysis showed that around 80% of

images contained streaks, whereas streaks were detected

automatically in 50-70% of cases, depending on the

sensor features and image conditions.

1 INTRODUCTION

Optical telescope images in the SST field may contain

streaks (a list of pixels with higher local salient pixel

density and more elongated shape than background noise

and other artefacts). It is typical for the observation with

very large Field of View sensors and low Earth objects

(which move faster than high orbiting objects). The

processing pipeline for astrometric and data reduction of

such images considered the variety of features of those

streaks for a robust solution. Until now, the European

Space Agency (ESA) has tested prototype algorithms

(developed in a General Support Technology

Programme) based on simulated images.

The streak detection algorithm was developed

considering various features in the images to ensure a

robust streak detection solution. The images with

spurious artefacts like cosmic rays, hot pixels, etc., were

considered (Fig. 1). Different sensor features were used

during this activity, like FoV, pointing accuracy, time tag

accuracy, resolution, etc. Additionally, different types of

observations were accounted to reflect the different

streak features.

Observing and processing images every night showed

many trail features caused by fast rotators, particularly

observing geometries, different object attitudes, and

entering in Earth shadow conditions. Some of them were

fading until disappearing. Others showed chained

behaviours, making it difficult to establish the actual trail

ends and the accurate measurement and time registry

belonging to the start-end over the plate exposure (Fig.

2). Sometimes, it was impossible to detect them as

streaks because they did not show as simple stripes.

Figure 1: Artefacts in real optical images

Figure 2: Variety of trails features in real optical images

The project objective was to identify the sensors and

possible datasets of raw observation derived data

products stored in the database and provided to ESA. The

database was designed to support the archive of data

acquired during the activity and support the future test

and validation of streak detection algorithms.

Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20–23 April 2021, published by the ESA Space Debris Office

Ed. T. Flohrer, S. Lemmens & F. Schmitz, (http://conference.sdo.esoc.esa.int, May 2021)

mailto:spacesafety@deimos-space.com
mailto:%20spacesafety@deimos-space.com
mailto:Tim.Flohrer@esa.int

Visualisation capabilities were also applied to ease the

analysis of database contents.

2 OBSERVATION CAMPAIGN

Within the campaign, several sensors of different features

were assigned to the observation, and more than

125 000 images were obtained:

• Two United Kingdom sensors from the Open

University, COAST and PIRATE

• DEIMOS sensors ANTSY1 and TRACKER2

• Sybilla Technologies’ sensor PANOPTES-

MAM.

Different objects were observed within different orbital

parameters. The observations were generated with

varying exposure times to have streaks of various lengths

for similar orbital regimes. Diverse background

conditions were also considered, benefiting from

observing varying periods during the month (with

varying Moon light conditions). For the image

generation, sensors were following scheduled known

targets based on a two-line element set (TLE) and the

online Satellite Catalogue (SATCAT) cross-section

information [1]. Images were delivered in triplets over

the same FoVs. The objective was to get at least three

trails of the target inside the same FoV, trying to centre

the middle one. However due to the angular speed,

pointing uncertainties of the sensor and TLE accuracy,

sometimes two, one, or none could be registered. After

three shots, the sensor might slew to the next target to do

the same tasks; they were all solved by World Coordinate

System (WCS) [2]. In the case that some of them could

not be resolved, it was usually because the observing

conditions were too extreme for solving the plates. In

those situations, the images were not further processed.

Tab.1 shows a summary of observation nights per each

sensor. For some of them, it was necessary to recover

observation nights to reach a minimum required number

of images (600 images/night) due to the reasons

mentioned above.

Table 1:Summary of observation night

Sensor Number

of

planned/

operated

nights

% of

nights

completed

Num.

of

images

Num. of

unsolved

FITS

TRACKER2 25/25 100% 53532 3200

ANTSY1 25/26 104% 33717 7808

PIRATE 25/32 128% 23406 -

COAST 25/37 148% 13141 -

PANOPTES-

MAM

14/27 193% 5400 -

Image resolution for TRACKER2 and ANTSY1 was 512

x 512 pixels for binning2 and 1024 x 1024 pixels for

binning1, while for COAST, it was 3032 x 3032 pixels

(x1) and 1496 x 1496 pixels (x2). For PIRATE 4056 x

4056 pixels (x1), and 2008 x 2008 pixels (x2).

Furthermore, for PANOPTES-MAM, for binning1 was

2048 x 2048 pixels and 4056 x 4056 pixels. For binning2

it was 1024 x 1024 pixels and 2008 x 2008 pixels.

Sensors were using sidereal tracking mode and longer

exposure time to produce trails of different length,

intensity, variations, etc. The following graphs show

typical track lengths where initially they were requested

(in pixels for the bin mode) from a few to > 100. The goal

was to reach trail diversity longitudes to analyse different

cases. The longer the length, the longer the exposure of

the camera. Statistics of the generated data summarised:

• For TRACKER2 the most common target

lengths were 84 and 96 pixels for x1 and 12, 36

and 48 pixels for x2 (Fig. 3).

• For sensor ANTSY1 more common target

length was shorter for both binning modes. For

x1 it is 12, 24, 36 pixels and for x2 12, 24 pixels

(Fig. 4).

• For PANOPTES-MAM sensor, the most

common trail length for x1 was 36 and 108

pixels, and 48 pixels for x2 (Fig. 5)

• For COAST (Fig. 6) and PIRATE (Fig. 7), the

most common trail length for both binning

modes was 156 pixels.

Figure 3: Summary of the number of the objects per

trail length for TRACKER2

Figure 4: Summary of the number of the objects per

trail length for ANTSY1

Figure 5: Summary of the number of the objects per

trail length for PANOPTES-MAM

Figure 6: Summary of the number of the objects per

trail length for COAST

Figure 7: Summary of the number of the objects per

trail length for PIRATE

3 IMAGE PROCESSING

Images were processed and analysed with two different

tools and approaches:

• Deimos processing tool

• Astrometry24.net (A24N)

To verify Deimos tool efficiency, which was the baseline

for characterising the images, a set of images was also

manually analysed and processed with two additional

tools:

• ESA's Streak Det tool

• Czech Technical University's detection tool

3.1 Deimos Processing Tool

Fig. 8 approximately shows a required software (SW)

architecture for processing, extracting the data and

cataloguing, from raw Flexible Image Transport System

(FITS) images to user interfaces.

Figure 8: Software architecture for processing the raw

FITS images during the activity

After obtaining FITS raw images, SExtractor was used

for automated detection and photometry for sources in

FITS image files. The outputs were the catalogue with a

range of characteristics of each detected object and maps

of these objects. Some of the issues that occurred using

SExtractor [3] were:

• It had significantly low precision in trail

detection in crowded fields because it is mainly

oriented towards reducing large-scale galaxy

survey data.

• It had limited accuracy in the determination of a

trail’s barycentre and ends.

• It was also possible that trails were not detected

by SExtractor at all.

For each sensor, SExtractor parameters had to be changed

and adapted as much as possible according to sensor

specification and FITS images that it generated. It was

necessary to compromise between more accurate

detection and loss of faint trails by changing some

parameters.

SExtractor's catalogue was processed using Python

scripts and its various libraries. The software applied

filters for real streaks extraction. The output parameters

were extracted, used for image processing and object

light curve was obtained, a starting point for further

detailed analysis and classification. The algorithm

marked a streak as real or false based on that light curve

and the trail's target length. Trails were not well

categorised (false positive/false negative) in crowded,

shacked images, in those close to the full Moon or Milky

Way or when trails themselves were not well-detected by

SExtractor (which caused inaccurate angle and/or

barycentre).

It was necessary to smooth the light curve using

convolution to determine the real length of a trail and

detect them correctly. Fig. 9 shows a detected streak and

its corresponding light curve in Fig. 10 (blue line), while

the purple line is convolution. After smoothing, the

algorithm looked for a target trail length over it. At the

point where the purple line intersected the red line (the

background value of the image), if a certain trail length

was detected between these two intersections, it was

detected as a trail. In this case, these lines did not intersect

the red line at the same point, underestimating the streak

length.

Figure 9: Detected streak.

Figure 10: Corresponding light curve to detected streak

in Fig. 9

Sometimes if an image had a high signal-to-noise ratio

(SNR) or was crowded, it was difficult to detect real

streaks using smoothed light curve. Fig. 11 represents an

example of a detected streak using convolution and a

target length. Fig. 12 shows corresponding light curve

and original image (Fig. 13). In these cases, it was a false

positive streak.

Figure 11: False positive detection

Figure 12: Corresponding light curve to detected streak

in Figure 11

Figure 13: Original image of detected streak in Fig. 11

3.2 Astrometry24.net

Sybilla Technologies have developed Astrometry24.net

(A24N). It is an astronomic web service that provides

astrometric and photometric measurements and streak

detection for SST and Near-Earth Object (NEO)

observations. The use of A24N mainly allowed:

• Cross-check and parallel processing of all

ingested images in the database. In this way,

several approaches for data processing could be

considered, and products from different

processing algorithms could be stored for the

sake of comparison.

• Ingestion of the data extracted from A24N

solutions inside the database as part of the

information related to all the images and trails.

• Comparison and convergence of commonly

available outputs.

A24N, together with Deimos Processing Tool, has been

integrated into the database for automated image

processing. Its output was used to cross-check all the

images ingested in the database. In each successfully

processed image with A24N, at least one streak was

detected, including false positives.

3.3 ESA StreakDet Tool

Deimos tested StreakDet tool on the data set obtained

during the campaign on ESA request.

As a result, Deimos noticed that whether the image

contained trails, a significant number of false positives

were detected in most of them. For the images without

trails, false detections still occurred. Fig. 14 shows the

processed image by StreakDet Tool.

Figure 14: Detected streaks with StreakDet Tool (left)

and original image (right)

3.4 Czech Technical University Group

Deimos provided a set of images to the Czech Technical

University Group led by Vojtech Cvrcek, on ESA

request. They analysed an image dataset detecting

objects of interest with a significant angular error for

short streaks, with their method being more suitable for

longer streaks.

3.5 Manual Analysis

A subset of each sensor's images in a range of 1h (an

arbitrary night) was manually checked on ESA request to

verify the streak detection algorithm. Each image was

verified if it had a trail, and, in the case that it did, length

measurements of the trail (in pixel) was calculated and

saved in the database including the trail coordinates of its

ends. Tab. 2 shows the results of manual analysis for each

sensor.

Table 2: Results of manual analysis

Sensor Num.

of

images

for 1h

Images

with

streaks

% of

images

with

streaks

Mutual

streaks

TRACKER2 393 277 70 Yes

ANTSY1 54 48 88 Yes

COAST 36 22 61 Yes

PIRATE 198 177 86 Yes

PANOPTES-

MAM

47 38 80 Yes

4 DATABASE

The database was designed to support the archive of the

data acquired during the activity and the future design,

test and validation of streak detection algorithms. For

that, the interface with such an algorithm was

implemented. Visualisation capabilities were also

required to ease the analysis of the database contents. It

was based on ensuring that bottlenecks were properly

tackled (as using very large files), data accessibility and

robustness.

In order to comply with the objective, the following

requirements and design drivers were identified:

• The database allows the ingestion of different

levels of reduction products from the raw

images.

• Pre-existing product metadata can also be

ingested in the database, as well as the data can

be traceable to its source and uniquely

identifiable.

• The database allows easy access to the acquired

data (at different processing levels) through a

user interface.

• The basic image format in the database is FITS

format

• The database allows general FITS headers to be

included.

• PNG format is included.

• The database allows entering the processed

information generated by different

algorithms/mechanisms (for example,

manually) to be used as a reference for trail

detection algorithms). The solution encountered

by different mechanism was stored.

• It allows the database's easy and fast

extensibility to keep new contents without

modifying manually at the database's low level.

• The system provides a REST API to the rest of

the world that external third-party tools could

use. This REST API provides automatic

processing using the database contents.

• Different databases (RDBMS and/or non-

RDBMS) are assessed regarding their

performance when handling large files; external

storage solutions are also evaluated, where only

the metadata is kept in the database.

• It provides some minimal protection (through

the usage of user roles).

• The STREET User interface accesses the

database through this API, but also third-party

entities may use the API directly.

• Software developed in this activity is ESA IPR,

and it is considered prototype software.

The STREET system solution was implemented

following a Service Oriented Architecture (SOA). The

core modules that compound the whole system provide

Web services to exchange the data and access their

functionalities. The Web services are based on the

REpresentational State Transfer (REST) architectural

style compounding a commonly called RESTful API

(Application Programming Interface). The data format to

interchange the messages in the REST API is the open-

standard (RFC7159) JavaScript Object Notation (JSON).

The RESTful API's design and implementation follow

the architectural constraints defined in this style.

The STREET system's high-level logical architecture is

shown in Fig. 15.

Figure 15: High-level architecture of STREET system

The Front-end is a web-based Human Machine Interface

(HMI) to the STREET system. This module is

responsible for providing remote access to accredited

users to each profile's data and functionalities. All the

data and actions to be executed from the front-end are

retrieved and requested through the back-end REST API.

The Back-end is the module that, following the SOA

paradigm, provides a REST API for data exchange

between the persistence and the front-end layers.

Additionally, the REST API allows the users to execute

on-demand tools for processing products stored in the

database. Finally, the back-end authenticates and

authorises the users when the user signs in to the

STREET system via the front-end.

The Database (PostgreSQL) is the module responsible

for the persistence of the STREET system's data.

4.1 Back-end Database Design

PostgreSQL is used as a relational database for storing

products metadata and Minio as an object database for

files storage.

The relational database (PostgreSQL) stores a product

repository or any other information required by the

system. It allows making queries over the data to provide

high-performance search capabilities. The database

contains links to large size files, which are stored in

external file storage. The choice of Minio for external file

storage resolves the problem of managing large size files.

When a query is performed for obtaining a list of

products matching the used constraints, the REST API

retrieves links to the external files. External files can be

downloaded directly from the Minio database using the

provided links.

This sub-module manages the data interchange between

the back-end database and the front-end. It handles data

insertion (tools and products definitions, sensor

configurations...), data browsing (search, filtering,

sorting and numerical/graphical representations), data

uploads/downloads (sensor observations load, raw data

insertion ...), etc. The back-end REST API was built

using the usual Spring layers (see Fig. 16) where:

• Controllers layer defines service entry points for

each HTTP URL and how parameters are to be

read from the HTTP request.

• Services layer contains business logic and

provides interfaces for interaction with the

repositories and other external Web Services.

• Repositories layer maps the database to/from in-

memory domain objects

Figure 16: Rest API Architecture Layers

4.2 Front-end Architecture

STREET HMI is a Web-based Human-Machine

Interface based on the Angular framework. The

application architecture is described in Fig 17.

Figure 17: STREET Front-end Architecture

The application has been developed with the following

technology:

• NodeJS and NPM for the installation and

management of dependencies.

• Angular was a development framework with

TypeScript, HTML and CSS.

• RxJS (used to maintain the Observable flow in

queries via HTTP with the back-end).

The application was structured in modules that include

components and containers (the basic difference was that

the containers were those that interacted with HTTP

Services, and the child components received input data

and sent output data to the container).

The interaction with the back-end was done via HTTP

through services, and reactive technology with RxJS was

used to maintain the streams' flow.

User authentication was based on JWT (JSON Web

Tokens).

The access to data stored in the STREET database was

based on the RESTful API standard.

STREET HMI provides the main features described in

Fig. 18:

Figure 18: STREET HMI Main Features

The main access view (Fig. 19) gives access to the

STREET front-end application using user credentials

(email and password).

Figure 19: Login View

A dashboard view (Fig. 20) is a reporting tool showing a

statistical summary of uploaded products and streak

detection

Figure 20: Dashboard view

It is possible to upload one or multiple FITS or

JPEG/PNG products in order to be processed by the

back-end (see Fig. 21). Choosing only one product view,

custom metadata might be added.

Figure 21: Upload Products view

It is possible to search any supported product applying

different filters to get more specific results based on the

entered criteria (see Fig. 22).

Figure 22: Search Products view

HMI shows detailed preview of a selected product from

the Search Products view of one streak detected in the

Search Streaks view (see Fig. 23). This view includes

some features related to the custom metadata edit, the

possibility of validating detected streaks or review the

used tools input and streak feature metadata associated

with the detection process.

Figure 23: Product detail view

It is possible to search any streak in the STREET

database, applying different filters based on the Streak

Features related to the streak detection process (see Fig.

24).

Figure 24: Search Streaks view

5 RESULTS

The average percentage of detected streaks by Deimos

Processing Tool and the number of streaks in total are

shown in Tab. 3, including the estimated number of

images with streak extrapolated from a manually checked

set of images.

Table 3: Results of the Analysis with Deimos tool for

Tracker2

Sensor Num.
of

images

Num. of
FITS

with at
least
one
streak

% of
FITS

with
streak
s

Estimated
number

of streak
images

TRACKER2 53532 26395 49.12 35220

ANTSY1 33717 25456 75.50 23253

PIRATE 23406 15897 67.92 20113

COAST 13141 7511 57.16 7999

PANOPTES

-MAM

5400 3914 72.49 5074

TRACKER2 sensor has been observing for 25 nights.

Observation nights were almost entirely successful. The

average percentage of streaks per night (excluding

unsolved FITS files) was 49.12%, and for those which

include all FITS files was 46.87%. One of the reasons for

the lower % of trails per image may be SExtractor

detection's imprecision (as previously mentioned, we had

to compromise where a lot of chained and faint trails

would not be detected). However, it could also be due to

bad, shaken images or nights close to the Moon, Milky

Way or cloud base.

For ANTSY1, the average percentage of streaks per night

(excluding unsolved FITs files) was 75.50% and for

those which included all FITs files was 56.29%. The

same reasons as those mentioned for TRACKER2 can

cause fewer trails detections. However, it could also lead

to the opposite result – a significant number of false

positives. In the COAST sensor case, the average

percentage of streaks per night was 57.16%, for PIRATE,

it was 67.92%, and for PANOPTES-MAM 72.49%. For

these three sensors, unresolved images were not provided

to Deimos. The total number of trails/nights and detected

trails/nights are shown graphically in the following

figures (Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29).

Figure 25: Images per night and the total number of

detected trails per night for TRACKER2

Figure 26: Images per night and the total number of

detected trails per night for ANTSY1

Figure 27: Images per night and the total number of

detected trails per night for COAST.

Figure 28: Images per night and the total number of

detected trails per night for PIRATE.

Figure 29: Images per night and the total number of

detected trails per night for PANOPTES-MAM.

If SExtractor output catalogue was precise enough (in

particular barycentre and angle), trail detection was easier

and more accurate. Fig. 30, Fig. 31, Fig. 32 and Fig. 33

show some well-detected streaks for different sensors.

Figure 30: FITs file and image of the detected streak.

The image obtained by TRACKER2.

Figure 31: Multiple detected streaks. Image obtained by

TRACKER2.

Figure 32: Original FITs file (left) and detected streaks

(right). Image obtained by ANTSY1.

Figure 33: FITs file (left) and cropped image of s

detected streaks (right). Image obtained by COAST.

Fig. 34 shows an example of both false-positive (right-

top) and real streak (right-bottom) detections in the same

FITS.

Figure 34: False-positive and real streak detection.

Image obtained by PIRATE.

With all given conditions for the observation, false-

positive streaks were also detected. Fig. 35 shows false-

positive detected streaks in cropped images (right) and

ANTSY1 png of original FITS. Fig. 36 is another

example of false-positive detections. In the original FITS

file, dark shadow-like features around trails displayed. In

this case, those trails were stars with smears. These dark

shadows happen on frame transfer CCD architectures

when stars/trails are very bright and close to saturation.

Figure 35: False-positive detections.

Figure 36: False-positive streak detection in ANTSY1

image.

6 CONCLUSION AND FUTURE WORK

Overall, around 80% of the images contained streaks,

whereas streaks were detected automatically for 50-70%

of the cases, depending on the sensor features and image

conditions. The current database can integrate different

streak detection algorithms and compare the output with

already implemented software and stored data. This can

give us a thorough insight into various tools' capabilities

and ideas on achieving the highest possible accuracy in

streak detection.

In future work:

• ESA might use STREET database in a challenge

to find faint streaks.

• STREET may also be used in preparing for

space-based observation endeavours by ESA.

7 REFERENCES

1. Celestrak website https://www.celestrak.com

2. FITS World Coordinate System (WCS)

description and conventions

https://fits.gsfc.nasa.gov/fits_wcs.html

3. SExtractor website

https://www.astromatic.net/software/sextractor

4. CCSDS Hystorical Document, Tracking Data

Message, Blue Book, Issue 1, November 2007,

Washington

5. CCSDS 503.0-B-1 Cor. 1, Technical

Corrigendum 1 to CCSDS 503.0-B-1, Issued

November 2007, Blue Book, Issue 1 Cor. 1

Sepmteber 2010

6. CCSDS 502.0-B-2, Orbit Data Messages. Blue

Book, Issue 2. November 2009

7. CCSDS 502.0-B-2 Cor. 1, Technical

Corrigendum 1 to CCSDS 502.0-B-2, Issued

November 2009. Blue Book, Issue 2 Cor. 1 May

2012

https://fits.gsfc.nasa.gov/fits_wcs.html
https://www.astromatic.net/software/sextractor

