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ABSTRACT

In the context of Space Surveillance and Tracking, one of
the crucial phases of the cataloguing process is the iden-
tification of newly detected objects and their initial or-
bit determination (IOD). We propose an analysis of the
combined use of radar and optical instruments in a stare
and chase strategy as follows. Through a large field of
view staring optical camera, the prediction of new SOs’
trajectory is obtained. This is then sent to a radar instru-
ment which performs the chasing phase. The radar point-
ing law is obtained either through a quadratic regression
of the optical observations or through the propagation of
an optical IOD solution, depending on the quality of the
optical measurements. This approach aims to merge the
precise optical angular measures with the precise radar
range measurements to achieve better IOD solutions. An
optimization criterion based on the maximisation of the
number of detected objects and the accuracy of the de-
termined orbits was used to optimally point the optical
camera, for each place at any time of the year. At the end
of the operations, very accurate results in terms of orbit
determination were found, proving that this strategy may
represent a valid alternative in the future.

Keywords: Space Situational Awareness; Space Surveil-
lance and Tracking; Orbit determination; Stare and
Chase.

1. INTRODUCTION

The exploitation of space over the last fifty years has led
to an increase in the population of debris orbiting around
the Earth. To improve Space Surveillance, and thus avoid
dangerous collisions, this great amount of space objects
must be classified. In particular, we focus on Low Earth
Orbit (LEO) unknown debris (from 0.2 m to 1.2 m of di-
ameter) because of the great number of active satellites
present in this region. LEO tracking is generally oper-
ated by military radars which present different problems

such as high costs, private facilities and scarce precision
in initial orbit determination (IOD) due to raw angular
measures. Optical sensors are mainly used to monitor
geostationary (GEO) orbits because GEO is too remote
for radar observation [1]. Using these instruments for the
LEO region is not an easy task due to its dependence on
lighting and weather conditions. For these reasons their
capabilities related to the observation time have been ex-
amined and tested in different recent studies [2]. Today,
surveillance sensors, devoted to characterisation of the
near-Earth environment, use fixed or predefined pointing
laws leading to short observation arcs and poor orbital
information. Stare and chase is a strategy which allow
to overcome this limit thanks to the combination of two
sensors working in two different modes [3]. Sensors in
stare mode detect all objects passing through their FoVs,
while sensors in chase mode are ready for an immediate
tracking of the detected objects. Stare observations are
processed as soon as they are collected to obtain trajec-
tory predictions of the object for the tracking sensors as
fast as possible. We want to investigate the potential of
this strategy using a large FoV optical camera as the star-
ing sensor and existing radar observatories as the chasing
sensors.
The aim of this research is to study the potential of the
combined use of optical and radar instruments for cata-
loguing purposes. This strategy can combine the low-cost
and more practical optical cameras together with existing
radar observatories in order to increase the number of de-
tected space objects and get more accurate orbital knowl-
edge. The latter can be achieved by combining high-
precision optical angular measures with those of high-
precision radar range. The interest in such research is
therefore justified by the possibility of reducing the costs
associated with this activity through the implementation
of an easily realizable system. To achieve our main pur-
pose we focused on some related objectives. We inves-
tigated the information we can extract from observations
that relied on polynomial regression or the Gauss method
in order to study the possibility of deriving a chasing
law. We analysed the uncertainties related to the previous
operations to determine the maximum time allowed for
radar acquisition and the need for co-location of the ob-
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servatories. In addition, we created an algorithm to find
the optimal pointing of the large FoV optical camera. All
these objectives were studied according to two different
system implementation strategies. The first deals with the
use of an observatory with both instruments; the second
with two separate observatories using only the optical or
radar instrument. The paper is structured as follows: in
Section 2 we describe schematically the whole adopted
procedure and the two strategies we studied. In Section
3 we recall the main mathematical tools we made use of.
In Section 4 we report the methods we developed specif-
ically for solving the problem. In Section 5, we report
some results and test cases. Finally, in Section 6 we dis-
cuss what we propose to improve and what we will deal
with in future works.

2. OVERVIEW

We can better describe the steps of the procedure thanks
to the diagram in Fig. 1, whose blocks will be detailed
later. It represents the flow of operations starting from the
acquisition of optical measurements of an uncatalogued
space object until the related orbit determination (OD)
(if possible). Simulations of optical observations are ob-
tained by using a tool called Virtual Observatory (VO),
detailed in Section 3.1. The first step is the convergence
analysis of the Gauss method using the newly obtained
data, performed according to [9] and better explained in
Section 3.2. The strategies we studied share a branch of
operations. In the case of separate optical and radar ob-
servatories, an IOD must be available to allow the calcu-
lation of the chasing law defined with respect to another
point on the Earth’s surface. For this reason, the green
dotted block in the diagram contains only the operations
that follow the convergence of the Gauss method, which
is detailed in Section 3.3. In case of non-convergence,
the strategy with the two instruments in the same po-
sition can continue extrapolating a predicted trajectory
through polynomial regression (PR) of the set of obser-
vations, as explained in Section 3.4. For both branches,
radar measurements are taken only if the detection prob-
ability (DP) test gives positive answer, otherwise the flow
is interrupted. DP is described in Section 4.1.
In case of failure of the DP test or the recapturing phase,
the two branches lead to different results. In the right
branch, where an angles-only IOD has not been calcu-
lated, we only have a set of observations and their regres-
sion coefficients, so we are not able to perform any kind
of OD and we consider the procedure a failure. In the
left branch, we already have an IOD, so the procedure
can be considered a success even if the precision of the
results has not been refined through a least-squares (LS)
procedure involving radar measurements. This procedure
will be described in Section 3.5. In case radar measure-
ments are taken, we are able to achieve an accurate or-
bital knowledge through the combined use of two high-
precision measurements. The two strategies mentioned
above are detailed in the next sections.

2.1. Co-located optical and radar observatories

This strategy consists in keeping the optical camera in
the same location as the radar observatory, thus resulting
in time reduction in calculating and sending the chasing
law to the steerable radar. The advantages of this case
are that the two instruments have the same pointing at
the beginning (so the radar is quite fast in pointing the
predicted trajectory) and that the polynomial regression
is also applicable when the IOD with the Gauss method
fails. The disadvantage is that the two instruments work
best in different scenarios so the optical sensors could be
penalized by the lower altitude location typical of radar
observatories.

2.2. Separate optical and radar observatories

Optical sensors need very specific location to overcome
visibility constraints, as already stated. For this reason,
the first strategy could limit the number of objects de-
tected by optical cameras, and the second strategy aims to
break through this dependence by positioning the optical
instrumentation in a more adapted place, different from
radar observatory. The disadvantage is that we are deal-
ing with two different positions on the Earth’s surface, so
the extrapolation of the chasing law for radar has to be
derived through inertial coordinates. In addition, the time
for data handling is affected as described in Section 5.3.

3. TOOLS

This work is based on the use of optical and radar ob-
servations. For this reason a fundamental tool is the so-
called Virtual Observatory, which is able to create syn-
thetic measurements. Other mathematical tools, already
mentioned in 2, were used on the results of such simu-
lations to create new methods. These methods were then
applied to find a solution to the objectives proposed in the
introduction.

3.1. Virtual Observatory (VO)

A fundamental part of this work involved the creation of
synthetic measurements to test and validate algorithms
and study their sensitivity to different observation sched-
ules. For this reason a Virtual Observatory was used.
This software is able to recreate optical and radar survey
scenarios from any point on Earth, thanks to the use of
Spacecraft Planet Instrument C-matrix Events (SPICE),
a powerful tool developed by the Navigation and An-
cillary Information Facility (NAIF) group at NASA [4].
In order to create simulations, two-line elements (TLEs)
of the space object of interest are fed into the software.
These files contain data that represent the ephemerides
of the objects for a certain time interval. Thanks to this
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Figure 1. Flow diagram

information, the states of the object and the desired ob-
servatory are created. The relative geometry analysis and
the application of different constraints enable the defini-
tion of the so-called tracklets, which are sequences of N
observations collected in a certain amount of time. The
constraints used in the simulation are related to sky back-
ground luminosity, object illumination, object elevation,
object relative position with respect to Sun and Moon.
Lastly, the observations are simulated by defining the sen-
sor type and by adding user-defined measurement noises.
More details about the VO are given in [5].

3.2. Convergence analysis for Gauss’s method (IOD
test)

The best possible case is to obtain an IOD immediately
after the optical measures have been taken, so that a more
precise chasing law can be defined. Unfortunately, we
cannot be sure that the Gauss method will converge by
using the data of each optical tracklet. For this reason,
once the optical measurements are available, an analy-
sis is performed in order to check if the Gauss method
will converge using these data. For this aim, the Signal
to Noise Ratio (SNR) of the line-of-sight matrix deter-
minant is estimated through the procedure described in
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[9]. Given a set of three angle-pair measurements and the
associated measurement uncertainty, this quantity can be
used to estimate whether the point-valued solution pro-
duced by Gauss’s method belongs to a convergent distri-
bution or not. We used this procedure iteratively based
on the fact that for LEO objects the presence of a diver-
gent ”pinch point” is possible, and even low-noise mea-
surements are expected to produce a divergent solution
space. Initially, the first, the middle, and the last angle-
pair measurements of the tracklet are selected. Then, if
the threshold criterion for convergence is not satisfied, we
take a reduced version of the same tracklet (we cut the last
elements), and we take again the first, the middle, and the
last angle-pair measurements, so that the time shift be-
tween the three pieces of data is also reduced. If a good
set of three angle-pair measurements is found, then an
IOD is obtained through Gauss’s method.

3.3. Gauss’s Method (IOD)

The Gauss method of angles-only orbit determination
takes as input three times of observations (t1, t2, t3), the
observatory’s positions for those times (R1,R2,R3) and
the direction cosine vectors (ρ̂1, ρ̂2, ρ̂3). The algorithm
estimates the slant ranges (ρ1, ρ2, ρ3) in order to obtain
the object positions for i = 1, 2, 3

ri = Ri + ρiρ̂i (1)

in two-body dynamics. Detailed description of the algo-
rithm can be found in [6]. In our work Gauss’s method
has been used for those sets of optical observations that
allow good results in terms of convergence according to
the analysis previously described, in order to get an IOD
that is then used to extract the chasing law needed for the
radar observation phase.

3.4. Polynomial Regression (PR)

Polynomial regression is a mathematical process that
models the relation between two variables through an n-
th degree polynomial. In order to construct the curve
that best fits a series of data points, the method of least-
squares, which minimizes the sum of the squares of the
residuals, is typically used.
For our purposes polynomial regression was used for both
optical and radar observations, which are defined in the
time spans

[
tO0 ; tOf

]
and

[
tR0 ; tRf

]
In the case of optical observations, this procedure was
used to derive an estimate for the short-term trajectory of
the space object. This information is then extrapolated in
time in order to get a predicted trajectory used as a chas-
ing law for radar observation phase. Concerning radar

range measurements, they are also fitted through a sec-
ond order polynomial in order to allow the calculations
performed by the IOD method described in Section 4.3.
The series of data points to be fitted are the observations
contained in the optical tracklets. They usually contain
three or more observations, each observation being made
of a right ascension (RA) α, a declination (Dec) δ, a pre-
cision σ and a time of observation t. Time is thus used
as an independent variable and two different curves are
obtained for α and δ. In our work the most used curve is
the quadratic polynomial.

α(t) = a0t
2 + a1t+ a2 (2)

δ(t) = d0t
2 + d1t+ d2 (3)
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Figure 2. Example of regression on right ascension

Regression can be conveniently performed at the central
time of optical observations such that smaller uncertain-
ties on the observed angles are obtained at the beginning
and the end of the confidence region. This kind of ap-
proach is thus convenient for the IOD calculations of the
Gauss method.

3.5. Non linear weighted least-squares (LS)

Given a set of N measurements affected by errors and
a parametric function, the least-squares method aims to
determine those parameters which minimize an objective
function J . Let f(t,x) be a parametric function with t
as independent variable and x as the M-dimensional pa-
rameters vector. If (ti, yi) represents the i-th measure-
ments of a physical event associated with the weight wi,
the least-squares criterion foresees the minimization of
the so-called residual equation

J =

N∑
i=1

w2
i r̄

2
i = r̄TWr̄ (4)

where
r̄i = yi − f(ti,x) (5)
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is only dependent on the unknown parameters, and the
weighting matrix is

W = diag(w̄) (6)

where
w̄ =

[
w2

1, . . . , w
2
N

]
(7)

We want to find a minimum for J , so the problem to solve
is

dJ

dx
= 0 (8)

In practice we used the MATLAB function lsqnonlin to
find the solution of equation (8). Only an initial es-
timation of x, the so-called guess state x0, is neces-
sary to create an iterative process which, under conver-
gence conditions, provides the solution. For further in-
formation, see [7]. In our research, this method was
used to refine the IODs by using the whole set of opti-
cal measurements, with x the six-component state vec-
tor [rx, ry, rz, vx, vy, vz], and yi the right ascension (α),
declination (δ) or range (ρ) measurement affected by er-
rors at time ti. The guess state x0 is represented by the
six-component vector obtained by the Gauss method or
the O&R IOD (Sections 3.3 and 4.3). This initial state is
then propagated under Keplerian assumptions at the same
time as the optical and radar measurements. In order to
be used in the iterative procedure, state vectors thus ob-
tained have to be converted into local coordinatesα, δ and
ρ. Therefore, in our specific case, f is the composition of
the orbit propagation function and the conversion func-
tion into local coordinates. Concerning the matrixW , we
considered two different weights linked to the optical and
radar instrumentation. Let σo be the standard deviation
of optical measurements and σr the standard deviation of
radar measurements, we can explicit the weights matrix
components as wi = 1

σo
if r̄i derives from α or δ mea-

surements and wi = 1
σr

from ρ ones. The iterative pro-
cess returns the least-squares refined state vector, which
can easily be converted into Keplerian elements. Another
important output of the function lsqnonlin is the Jaco-
bian matrix A which, for Gauss-Newton or Levenberg-
Marquardt assumptions, can be used to estimate the Hes-
sian matrix in order to calculate an approximate covari-
ance matrix given by

C =
(
ATWA

)−1
MSE (9)

where

MSE =

∑N
i=1 r̄

2
i

N −M
(10)

This multiplicative term is used to reduce the errors gen-
erated by Hessian estimation, which is non-negligible if
the residuals are large (see [8] for more details). The co-
variance matrix is used for error propagation analysis as
well as for calculating the state transition matrix, which
proved useful for estimating detection probability (see
Section 4.1).

4. METHODS

4.1. Estimation of detection probability (DP)

This section explains how we provide a random charac-
ter to the simulation by using a quantity called detection
probability. The first step required to calculate this quan-
tity is to perform the uncertainty analysis on the predicted
trajectory. As stated before, the latter can be obtained
through an IOD or a polynomial regression, depending
on the quality of the optical measurements. In both cases,
the quantities we need are the uncertainties expressed in
azimuth and elevation defined at the start time of radar
measurements tR0 .
In the case of polynomial regression, we can get the Root
Mean Square Error (RMSE), which measures the gap be-
tween the estimator and the data collected. We define the
fitted laws in right ascension and declination from the ini-
tial time of optical observation tO0 until tR0 , and then we
perform the conversion in azimuth and elevation. Finally,
we calculate the quantities of interest as follows

RMSEA,h =

√√√√ 1

N

N∑
i=1

r̄2A,hi
(11)

whereN is the number of observations and r̄i is the resid-
ual in azimuth or elevation defined as the difference be-
tween the simulated and the estimated quantities.
In the case of IOD, we can perform a least-squares refine-
ment by using only optical measurements, and then ob-
tain the corresponding covariance matrix C as described
in 3.5. The state vector refined by the least-squares proce-
dure is defined at the central time of optical observations
tc, therefore the covariance matrix must be calculated at
a later time to define the uncertainty at the time of inter-
est tR0 . This procedure is performed by using the state
transition matrix of the Keplerian dynamics defined as

Φ(t, t0) = I +A(t− t0) (12)

where

A =

[
0 I

G(r) 0

]

with

G(r) =
µ

r5
(3rrT − r2I)

In our case, C is defined in Cartesian state, therefore lin-
ear mapping is also necessary to get the covariance matrix
in azimuth and elevation. Let y = f(x) be the function
that defines the transformation from Cartesian state into
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azimuth and elevation, the map M to transform the co-
variance is defined through finite differences.

M =
∂f

∂x
(13)

where

∂f

∂x
≈ f(x+ δx)− f(x− δx)

2δx

This procedure requires generating two samples for each
state vector element and therefore a total of twelve sam-
ples. The steps for defining the uncertainties in azimuth
and elevation at tR0 , can thus be performed as follows:

C(x; tR0 ) = Φ(tR0 , tc)C(x; tc)Φ
T (tR0 , tc) (14)

C(A, h; tR0 ) = MC(x; tR0 )MT (15)

Finally, we obtain the two-by-two matrix from which we
can extract σA and σh, that are the standard deviations in
azimuth and elevation.
Once we have the uncertainties in azimuth and elevation,
we can compare them with the width of the radar’s FoV
(FoV R) in order to get DP for both laws. To get these
numbers, we integrate a Gaussian distribution with zero
mean and variance equal to σ2

A or σ2
h in the interval

[
−FoV

R

2
; +

FoV R

2

]

Once DP is available, we compare it with a random num-
ber uniformly distributed between zero and one. If the
number is below DP, the procedure for taking radar mea-
surements begins, otherwise it is considered a failure a
priori. In most cases, these numbers were found to be
very close to one, thereby highlighting the high accuracy
of the chasing laws.

4.2. Delay time for radar measurements (DT)

Both strategies plan to take radar measurements after hav-
ing approximated the α(t) and δ(t) time laws of the ob-
ject from optical measurements. These laws can be use-
ful for pointing small radar FoV in order to take range
and range rate measurements. The time delay between
the end of optical measurements and the radar capture of
the object is taken into account in order to make the sim-
ulation more realistic. We can split this delay time into
two different parts tD = tIPF + tRC , with tIPF as the
time for optical images processing and fitting and tRC as

the time needed by the radar to point in the predicted tra-
jectory. In our work the tIPF has been estimated accord-
ing to [2], while the tRC has been modelled according
to the following procedure. The α(t) and δ(t) predicted
laws are firstly converted into azimuth A(t) and eleva-
tion h(t) and, once they are fed into the radar, they repre-
sent the target positions for the center of the radar’s FoV.
We notice that tIPF is also the time at which the radar
starts moving, so with AR(tIPF ) and hR(tIPF ) the ini-
tial radar positions in azimuth and elevation (which are
the same as that of the center of the optical FoV in the
case of the co-located strategy), the initial errors are

δA(tIPF ) = A(tIPF )−AR(tIPF )

δh(tIPF ) = h(tIPF )− hR(tIPF )

In addition, if we suppose that the radar moves with con-
stant slew rate both in azimuth and elevation, respectively
ȦR and ḣR, then the AR(t) and hR(t) positions laws of
the radar at time t can be obtained as

AR(t) = AR(tIPF )± ȦR(t− tIPF )

hR(t) = hR(tIPF )± ḣR(t− tIPF )

Intuitively the azimuth and the elevation will increase if
the object moves from left to right or upwards the FoV,
but will decrease in the opposite case. The time required
to chase the object (tRC) is equal to the time required to
nullify the errors in azimuth and elevation

δA(tRC) = A(tRC)−AR(tIPF )∓ȦR(tRC−tIPF ) = 0
(16)

δh(tRC) = h(tRC)−hR(tIPF )∓ ḣR(tRC − tIPF ) = 0
(17)

These equations can be solved without any particular dif-
ficulty and will return two different values. Given tRC1

and tRC2
these values, we will consider the chasing time

as the time at which both (16) and (17) are accomplished

tRC = max(tRC1 , tRC2) (18)

The contour plot in Fig. 3 shows the influence of both the
tIPF , ȦR and ḣR, considered as equal and constant, on
the tD. We can remark how tD is mainly influenced by
tIPF because of the slow changes of the object’s azimuth
and elevation with respect to radar motion laws.
The estimation of the end time for radar measurements
tRE can be simply calculated as the minimum time at
which the difference between the predicted lawsA(t) and
h(t) and the real azimuth and elevation of the objects,
respectively Areal(t) and hreal(t), is superior to the mid-
amplitude of the FoV of the radar. In equation:
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Figure 3. Time needed to recapture the object

tRE = min(t1, t2)

t1 = t : |A(t)−Areal(t)| >
FoV R

2

t2 = t : |h(t)− hreal(t)| >
FoV R

2

4.3. IOD from optical and radar measurements
(O&R IOD)

If an IOD cannot be acquired through optical measure-
ments due to the lack of convergence of the Gauss
method, the polynomial regression strategy is still avail-
able. Through the propagation of the fitted laws α(t) and
δ(t), the chasing law is determined and fed into the radar
instrument to take the slant ranges. Once a set of range
measurements are available, they are used to perform a
second order polynomial regression to get the fitted law

ρ(t) = r0t
2 + r1t+ r2 (19)

Six independent parameters, defined at the same time in-
stant, are necessary to perform their conversion into posi-
tion and velocity. The central time of optical observations
tc is used for reference. The values of α(tc) and δ(tc) are
taken from their fitted laws so that the presence of noise
on the single value can be, somehow, reduced. Concern-
ing range, the regression coefficients ri (i = 0, 1, 2) of
the fitted law ρ(t) are obtained using radar observations,
which are defined in the time span that starts from tR0 .
The law ρ(t) allows us to have approximated range val-
ues in the whole optical observations time span and in
particular at the time tc. Then, the angles rate and range
rate quantities α̇, δ̇ and ρ̇ are calculated using their re-
spective regression coefficients.

α̇(tc) = 2a0tc + a1 (20)

δ̇(tc) = 2d0tc + d1 (21)

ρ̇(tc) = 2r0tc + r1 (22)

Once all parameters are collected, they can be converted
into the state vector of position and velocity. Since such
observations are made from a ground station, the position
of the object with respect to the planet center is given as
the sum of the position of the ground station and the posi-
tion of the object with respect to the station, and likewise
for the velocities:

robj = robs + robj/obs and vobj = vobs + vobj/obs

where robj/obs and vobj/obs are given using spherical co-
ordinates.

robj/obs = ρuρ and vobj/obs = ρ̇uρ + ρα̇uα + ρδ̇uδ

and the vectors uρ, uα and uδ are given by:

uρ =

[
cosα cos δ
sinα cos δ

sin δ

]

uα =

[ − sinα cos δ
cosα cos δ

0

]

uδ =

[ − cosα sin δ
− sinα sin δ

cos δ

]

The state vector obtained through this procedure is then
used as a first guess for a least-squares refinement by
drawing on all the measurements available from both op-
tical and radar instruments.

4.4. Optimization algorithm for a large FoV optical
camera

The FoV of the optical camera is fixed in space, wait-
ing for new objects to pass by. Orbital elements of the
population of LEO satellites have an interesting distribu-
tion that we want to exploit in order to maximize both
the number of detected objects and their probability of
being captured by the radar observatory. In practice, we
analysed the distribution of LEO satellites according to
some orbital parameters of interest, and we extracted a
significant number of samples in order to make our simu-
lation statistically relevant, as we will explain later (Sec-
tion 5.1). We created an algorithm based on simulated
LEO tracklets from different observatories, in different
time periods over a year, in order to assign a score to
each possible optical FoV. This score must take into ac-
count the two following main objectives: the number of
detected tracklets and mainly their potential to generate
a high-precision IOD. To do so, it was necessary to cre-
ate a Figure of Merit (FoM ) which was specific to each
tracklet and measured its quality. In all the cases in which
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a least-squares procedure has been performed, the FoM
used was

FoM = − 1

det(C)
(23)

where C is the covariance matrix in Cartesian state ob-
tained after the last refinement possible. This parame-
ter was naturally chosen to indicate the precision of the
refined state vector. This aspect also takes into account
that a combined refinement, through optical and radar
measurements, returns a better covariance matrix (whose
eigenvalues are smaller) and consequently a larger nega-
tive FoM , which is consistent with a minimization prob-
lem. In Fig. 4, we have summarized the algorithm for
both strategies.

Figure 4. FoM assignment to one tracklet for optical
FoV Optimization

For each tracklet we assigned an initial FoM equal to
zero. While with the separate strategy the tracklet cannot
be used in any meaningful way (and thus its FoM re-
mains null) if Gauss convergence fails, in the co-located
strategy we can try, through polynomial regression, to
detect the object on the radar and to obtain an IOD
which will be refined according to the procedure dis-
cussed in 4.3. In both cases, if Gauss convergence suc-
ceeds we have at least a covariance matrix from optical
least-squares refinement which can be further improved
if the radar detection probability, as explained in 4.1, is
high. In order to find the optimal solution we have to
create an objective function by using FoM introduced
before. The objective function we implemented takes an
optical camera pointing as input, and returns the score,
above mentioned, equal to the sum of the FoMs of the
tracklets seen thanks to that pointing.

Fig. 5 shows with a red rectangle the optimized opti-
cal FoV, and in black all the tracklets within sight of an
observatory. According to [2], the visibility of satellites
from a given observatory varies during the year, so the
optimization provides one optimized FoV for one obser-
vatory during one month. In this case, for the month of
July the shown FoV will have a score equal to the sum of
the FoM of the tracklets viewed (in black dots). Instru-
mentation errors and DP make the output of the objective
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Figure 5. Example of an optimized FoV

function a random variable. It means that different calls
of the optimization process do not return the same optical
FOV. For this reason, the final optimized optical FoV was
obtained by averaging a sufficient number of optimized
optical FOV realizations.

5. TEST CASE AND RESULTS

The aim of this section is to show the potential, and even-
tually the limits, of taking combined measurements and
to highlight the related effects on the precision of the as-
sociated orbit determination. Here we detail the choice
of samples of space objects used to obtain results that are
representative for the population of objects we want to fo-
cus on. Then, a brief description of the observatories we
implemented in the VO and the input data we used for
simulation follow. Lastly, we present the overall results
obtained for a specific simulated object’s trajectory.

5.1. Statistical choice of samples

The detection of unknown objects can force us to make
difficult choices in terms of input parameters to carry out
reliable simulation studies. As we focus on the detection
of LEO objects, a statistical study on the population of
known LEO satellites was necessary to collect informa-
tion on their distribution according to specific orbital pa-
rameters of major interest. For this reason, we extracted
samples with particular inclination and semi-major axis
from approximately 15,000 thousand TLEs of LEO satel-
lites downloaded from space-track [13].

We can see clearly that the population of known LEO ob-
jects presents some particular features. Concerning the
semi-major axis, there are two obvious concentrations
which take place between 7200 km and 7850 km. For
the inclination, we note that the population concentrates
at very narrow inclination ranges; between these ranges
the quasi-polar inclinations (from 96◦ to 103◦) present
the higher number of LEO satellites. We extracted ten



9

Figure 6. Distribution of known LEO objects according
to semi-major axis

Figure 7. Distribution of known LEO objects according
to inclination

LEO satellites according to these distributions in order
to simulate possible unknown LEO objects trajectories.
Furthermore, in order to take into account the wide vari-
ety of sizes of the objects we are interested in, we use a
random simulator to fix their Radar Cross Section (RCS).
Considering a circular shape, for each passage of the ob-
ject recorded by the observatory, we selected a different
diameter from a uniform distribution within the interval
[0.2, 1.12] m. In this way we are able to use the orbital
characteristics of only ten samples to simulate a more var-
ied number of space objects in terms of size.

5.2. Observatories description

The location of observatories is of great importance due
to its effect on object detectability. As discussed in Sec-
tion 2, the installation of a radar observatory is very ex-
pensive so the best choice for a low-cost system is to
use already existing radars and then to position an optical
camera in the most convenient place according to one of
the strategies detailed above. In particular, we analysed
three radar observatories located in France, whose instru-
mentation present the same characteristics. Concerning
the optical camera, we considered four possible place-
ments. One of them corresponds to the separate strat-
egy, and the other three correspond to co-located strategy,
which requires the same location for radar and optical ob-
servations. In Table 1 we summarize the geographical
information about these observatories

Table 1. Observatories
Observatory Description Lon [◦] Lat [◦] Alt [km]
SATAM 1 Radar and/or Optical -0.3 44.2 0.119
SATAM 2 Radar and/or Optical 4.5 49.3 0.137
SATAM 3 Radar and/or Optical 9.4 41.9 0

Pic du Midi Only Optical 0.14 42.94 2.8

From now on, radar observatories will be referred to as

CoLoc to emphasize their use for the co-located strategy,
while the optical one will be referred to as Sep.

5.3. Data for simulations

Table 2. Data set for simulations
Parameter Symbol Numerical Value

Radar Field of View FoV R 0.5◦ × 0.5◦

Optical Field of View FoV O 10◦ × 10◦

Optical Camera RA Standard Deviation σα 10 ”

Optical Camera Dec Standard Deviation σδ 10 ”

Radar Range Standard Deviation σρ 25m

Limiting Visual Magnitude V̄ 13

Optical Camera Image Rate ∆tIR 3 s

Azimuth slew rate ȦR 30 ◦/s

Elevation slew rate ḣR 30 ◦/s

tIPF for co-located strategy tIPF 20 s

tIPF for separate strategy tIPF 30 s

Here we report in detail all the data we used for simu-
lations carried out with the VO, always referring to Ta-
ble 2. Further details about the definition of some values
needed by the VO can be found in [11]. As we have al-
ready stated, each sensor is characterized by its own FoV.
The radar’s FoV was set to a typical value of sensors used
for orbital debris monitoring. For the optical camera, the
choice was carefully considered following the exhaustive
analysis of different aperture diameters and lens shown
in [2]. Finally, considering the context of our research, a
large FoV going from 10◦×10◦ to 15◦×15◦ was possible,
and the first was selected. By using the results found in
[10], which also show the link between the FoV’s width
and the noise, the precision of the observation was mod-
elled as a white noise and thus was considered as a Gaus-
sian random variable with zero mean and σ standard de-
viation, specifically given by optical or radar sensor. Re-
garding the constraints for optical sensors measures, we
considered the optical signatures of orbital debris. By
convention, optical signatures use the visual magnitude
system adopted from astronomers. It measures the bright-
ness of an astronomical object observed from the Earth.
For the purposes of our research, highlighted in Section 1,
we needed to define a limit to visual magnitude. Accord-
ing to the results found in [10] and [2], which investigated
the detection capabilities of different large FoV optical
sensors, we calculated a proper value for the quantity V̄
by considering the altitudes, the optical FoV, and the sizes
of interest. So, for an object with an altitude around 800
km, a size around 10 cm and an elevation of the sensor’s
FoV around 30◦, we get a good approximation for this
constraint with a value of 13. Concerning the image rate
of the optical camera, once all the other parameters were
defined, gap times between the image frames were set to
3 s and the exposure time was 0.1 s, where the latter is the
length of time when the digital sensor inside the camera
is exposed to light. We are thus considering a short expo-
sure time setting for our staring camera, which allows for
more images over a certain period of time with respect to
the long exposure time setting (for more information on
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optical cameras typologies and performances, see [2]).
Lastly, the time needed for processing the images taken
by the optical camera, and for obtaining the chasing law,
was chosen differently for the two strategies. Consider-
ing the need for two facilities to communicate, we set the
time with a higher value for the second strategy.

5.4. Search for optimal FoV

In this section we present some results of the algorithm
described in section 4.4. We would like to point out that a
lower limit was set for the elevation in the algorithm in or-
der to take into account the exponential increase in back-
ground radiance under 30◦, which undermines the de-
tectability of instrumentation (more details in [10]). Both
strategies have many features in common concerning the
pointing of Optical FoV. The following tables report op-
timized FoVs for both strategies, considering TLEs data
referring to the first ten days of the months of January,
March, July and November. These months were chosen
according to [2], because they can be considered repre-
sentative of the visibility conditions in one entire year.
For each month, the first line refers to optimized azimuth
intervals, and the second to elevation.

Table 3. Optimized optical FoVs for co-located strategy
CoLoc 1 CoLoc 2 CoLoc 3

Jan
az [358.2◦, 8.2◦] [352◦, 2◦] [355.7◦, 5.7◦]

el [38.8◦, 48.8◦] [46.8◦, 56.8◦] [36.8◦, 46.8◦]

Mar
az [354◦, 4◦] [353.5◦, 3.5◦] [357.3◦, 7.3◦]

el [36◦, 46◦] [44◦, 54◦] [33.9◦, 43.9◦]

Jul
az [353.6◦, 3.6◦] [359◦, 9◦] [353.7◦, 3.7◦]

el [36◦, 46◦] [40.5◦, 50.5◦] [38.6◦, 48.6◦]

Nov
az [356.1◦, 6.1◦] [356.2◦, 6.2◦] [355.1◦, 5.1◦]

el [36.7◦, 46.7◦] [41.5◦, 51.5◦] [33.6◦, 43.6◦]

Table 4. Optimized FoVs for separate strategy
Sep

Jan
az [4.2◦, 14.2◦]

el [39.4◦, 49.4◦]

Mar
az [2.8◦, 12.8◦]

el [32◦, 42◦]

Jul
az [348.8◦, 358.8◦]

el [35.2◦, 45.2◦]

Nov
az [6.2◦, 16.2◦]

el [32.7◦, 42.7◦]

We can notice how, for both strategies, the optimized
FoV tends to point at low elevations and at northern az-
imuths. Low elevations are worse than high ones con-
sidering optical visibility constraints, but they also in-
volve longer tracklets that usually provide a better con-
text for performing IOD calculations. Northern azimuths

can be explained by the fact that most satellites have a
polar inclination. In the next tables, we show quantita-
tively the performances of the algorithm relative to the
simulations over the four months. We compared the op-
timized FoV (Opt) to the following [0◦, 10◦]× [40◦, 50◦]
(NOpt), which would be a typical Optical FoV based on
the characteristics of the majority of LEO objects’ orbits,
as explained earlier in this paragraph. Recalling the ran-
dom behaviour of measurements acquisition, and conse-
quently of the IODs and radar recaptures, in order to get
the most probable values, Tables 5 and 6 report the aver-
ages of the analyzed quantities over fifty realizations.

Table 5. Performance comparison between Optimized
Optical FoV and Non Optimized Optical FoV: Co-located
strategy

CoLoc 1 CoLoc 2 CoLoc 3
Opt Nopt Opt Nopt Opt Nopt

Total Number in
FoV O

25 17 22 28 21 21

Total Gauss IOD 11 9 10 11 12 6
Total O&R IOD 4 1 1 3 0 1
Total Radar Recap-
tures

13 9 10 9 11 7

Table 6. Performance comparison between Optimized
Optical FoV and Non Optimized Optical FoV: Separate
strategy

Sep
Opt Nopt

Total Number in
FoV O

18 14

Total Gauss IOD 12 5
Total Radar Recap-
tures

5 4

Total Number in FoV O represents all the tracklets seen
by the optical camera during these four months, with the
exception of the so-called sparse observations [5]. To-
tal Gauss IOD represents those tracklets for which an
IOD with the Gauss method was accomplished. Total
O&R IOD represents the number of tracklets for which
the Gauss method did not converge, but an IOD with the
method described in 4.3 was successful. This is present
only in the co-located strategy for evident reasons. Con-
cerning Total Radar Recaptures, we have to distinguish
between the two strategies. In the co-located strategy,
it represents the number of tracklets for which recapture
with the co-located radar was possible. In the separate
strategy, it represents the number of tracklets for which at
least one of the radar observatories was able to recapture
the satellite. Concerning the co-located strategy, it should
be noted that almost all the parameters increased with the
optimized FoV. Above all, the difference in the parame-
ter Total Radar Recaptures, which gives the number of
the most precise OD, clearly shows the importance of an
optimization algorithm. Concerning the separate strategy,
we have a satisfying number of Gauss IOD but the num-
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ber of radar recaptures is disappointing. This means that
the chasing law derived from Gauss IOD, and corrected
by a least-squares refinement, is too imprecise to allow
the radar instrument to take range measurements. We un-
derline that these results are obtained considering only
a population of ten TLEs, so it is easy to understand its
potential compared to the real problem of detecting and
cataloguing thousands of new space objects. The large
number of surveys we would have to deal with in real
life, highlights how this tool plays a fundamental role in
this problem.

5.5. Detailed results of a co-located case

In this section, we present some representative results of
the strategy with co-located observatories. We focus on
the differences in OD precision between each step of the
cataloguing process of one specific simulated trajectory.
The observatory, period of time and Optical FoV which
were used for the simulation are summarized in the fol-
lowing table

Table 7. Input for co-located simulation example
Observatory Period of time Optical FoV

CoLoc 1
From: 2019 MAR 01 08:56:54 az [354◦, 4◦]

To: 2019 MAR 09 20:49:56 el [36◦, 46◦]

The choice of this optical FoV derives from the optimiza-
tion analysis discussed in 4.4. These inputs, together with
the data set specified in Table 2, gave interesting results
in terms of the number of detected tracklets and the pos-
sibility of returning high precision OD.

Table 8. Tracklets Analysis
Number of Number of Tracklets Number of Number of
Tracklets in FoV O Gauss’ IOD recaptures

13 3 2 3

The first parameter represents the total number of track-
lets that could be visible from the optical observatory,
while the second represents the tracklets which actually
entered the selected optical FoV. Even if the number
of Gauss’ IOD is two, the number of recaptures is
three, meaning that the radar chased the object correctly
twice thanks to Keplerian propagation of only optical
least-squares refined IOD, and once thanks to polynomial
regression of right ascension and declination. This result
is very important because it shows how the method
presented in 4.3 gives us the opportunity of obtaining
an OD in such cases, usually present in non-negligible
number, for which IOD with Gauss’s method fails. This
aspect also represents a great advantage of the co-located
strategy for which O&R IOD is exclusively applied.

In Table 9, we can find a comparison between the Mod-
ified Equinoctial Elements (MEE) of the target orbit, the

Table 9. From Gauss’ IOD to refined OD

MEE
Target orbit Optical Optical Combined
from TLE Gauss’ IOD least-squares least-squares

p [km] 7084.655160 6328.844550 7195.890865 7085.949663
f [\] 0.000516 -0.059996 0.013449 0.000729
g [\] 0.000039 0.082285 -0.008418 0.000025
h [\] -0.300780 -0.300569 -0.302580 -0.300801
k [\] -0.377314 -0.373137 -0.375883 -0.377293
L [rad] -0.874718 -0.878307 -0.876219 -0.874718
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Figure 8. Predicted trajectory through orbit propagation

Gauss IOD, the refined orbit through optical measure-
ments only, and the refined orbit through combined op-
tical and radar measurements. We used MEE because we
are dealing with low eccentric orbits, so a representation
with typical Keplerian elements could lead to problems
in calculating the perigee argument and the true anomaly.
It is clear that the Gauss method provides a very impre-
cise IOD, but we are immediately able to obtain a more
accurate orbital knowledge by performing a least-squares
refinement with optical measurements. We can then use
these results to perform an orbit propagation in Keple-
rian dynamics and obtain the predicted trajectory of the
object both in azimuth and elevation. For simplicity, in
Fig. 8 we report only the azimuth chasing law, while
underling that, for a successful recapture, both of them
have to respect precision constraints over the same pe-
riod of time. The most interesting result is that, by refin-
ing through radar measurements, a very accurate OD is
obtained. This highlights once again the importance of
combining the two types of measurements because of the
high accuracy they can provide for different parameters,
i.e. angles from optics and ranges from radar.

We want to compare the accuracy of these results with
the OD from O&R IOD case. In Table 10, we present the
consecutive refinements of an IOD obtained thanks to a
radar chasing law derived from polynomial regression of
optical measurements.

In Fig. 9, we note a valid approximation for a very short
period of time with respect to the chasing law in Fig. 8;
nevertheless it is good enough to allow radar recapture. It
is also remarkable how the O&R IOD is quite imprecise,
but a combined least-squares refinement considerably re-
duces the errors returning an OD which is slightly less ac-
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Table 10. From O&R IOD to refined OD

MEE
Target orbit O&R Combined
from TLE IOD least-squares

p [km] 7084.827371 8438.139532 7081.601875
f [\] 0.000431 -0.014261 0.000531
g [\] -0.000184 -0.216745 0.000387
h [\] -0.416985 -0.415563 -0.416949
k [\] -0.243420 -0.247684 -0.243508
L [rad] -1.160880 -1.158311 -1.160785

0
2
:0

3
:2

4

0
2
:0

3
:3

3

0
2
:0

3
:4

1

0
2
:0

3
:5

0

0
2
:0

3
:5

9

0
2
:0

4
:0

7

0
2
:0

4
:1

6

10

15

20

25

30

35
Real Azimuth

Predicted Azimuth

End of radar measurements

Figure 9. Predicted trajectory through polynomial re-
gression

curate than the previous case; nevertheless, this important
result shows how the method developed in 4.3 can com-
pete with a well-affirmed method. In order to compare
the precision of the two methods implemented to obtain
an IOD, figure 11 compares standard deviations of the
MEE after the combined least-squares.

Table 11. MEE Standard deviation comparison between
Gauss method and O&R IOD method of final orbits

MEE SD Gauss IOD Example O&R IOD Example
σp [km] 2.777134 7.928394
σf [\] 0.000434 0.004070
σg [\] 0.000256 0.002625
σh [\] 0.000105 0.001080
σk [\] 0.000118 0.002406
σL [rad] 0.000139 0.002044

In the case of O&R IOD, we usually obtain worse stan-
dard deviations, which justifies its application only af-
ter Gauss IOD failed, but it remains a useful method
for increasing the number of ODs. In both presented
cases, sometimes the errors in the parameters can be
non-negligible, and nothing prohibits using these rougher
ODs for a possible recapture with a higher-cost system in
order to further increase their precision. This particular
strategy involves data association, as described in [12].

5.6. Detailed results of a separate case

Here we present the results of the strategy with separate
observatories. We also report for this case the specific
details of the simulation, recalling that the main data re-
ported in Table 2 were used.

Table 12. Input for separate strategy simulation example
Observatory Period of time Optical FoV

Sep
From: 2019 JUL 01 03:47:03 az [348.8◦, 358.8◦]

To: 2019 JUL 09 14:01:01 el [35.2◦, 45.2◦]

Still using an optical FoV found through the optimization
algorithm, we can notice in Table 13 how the number of
detected tracklets is quite lower than the total number of
objects passing within sight of the observatory. The posi-
tive aspect is that, as in this example, the initial orbits de-
termined by the Gauss method are usually precise enough
to enable their recapturing by the radar.

Table 13. Tracklets Analysis
Number of Number of Tracklets Number of Number of
Tracklets in FoV O Gauss’ IOD recaptures

24 4 2 2

Like in the previous section, we can compare the results
in terms of MEE by looking at the target orbit. Also, in
this case we can see how the IOD is quite imprecise and
how the least-squares refinement gives us much better re-
sults. We can see in Fig. 10 how the chasing law, always
obtained through orbit propagation in Keplerian dynam-
ics, is very precise and allows us to take radar measure-
ments (the chasing law is here reported only in azimuth).

Table 14. From Gauss’ IOD to OD separate strategy

MEE
Target orbit Optical Optical Combined
from TLE Gauss’ IOD least-squares least-squares

p [km] 7084.199021 8422.807782 7173.747674 7075.876869
f [\] 0.000149 0.123371 0.007403 -0.000933
g [\] -0.000246 -0.131621 -0.009567 0.000423
h [\] -0.418323 -0.424766 -0.418487 -0.418279
k [\] -0.241123 -0.239449 -0.241558 -0.241165
L [rad] -0.933082 -0.948536 -0.933905 -0.932976

We can therefore remark the possibility of making com-
bined use of the instruments located in two different ob-
servatories thanks to the precise IOD we achieved with
this strategy, but we have to consider that further re-
captures are needed to make this strategy more advan-
tageous. For the sake of comprehensiveness, we report
standard deviations of the MEE of the final orbit in Table
15.

6. CONCLUSION AND FUTURE WORK

This paper presented a novel method for extracting or-
bital knowledge of a space object by exploiting the com-
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Figure 10. Predicted trajectory through orbit propaga-
tion

Table 15. MEE Standard deviation of the final orbit
MEE SD After combined LS
σp [km] 7.778675
σf [\] 0.000881
σg [\] 0.000693
σh [\] 0.000089
σk [\] 0.000104
σL [rad] 0.000134

bined use of optical and radar measurements. Two pos-
sible strategies, with co-located or with separate obser-
vatories, were investigated to understand their ability to
adapt to different needs. They showed they could achieve
good results by using any existing radar observatory and
low cost optical cameras. The optimization algorithm to
find the optimal optical FoV for the staring camera, and
the method to get an IOD from combined measurements
were widely validated. They were of crucial impor-
tance to increase system detectability and overcome the
problems associated with the convergence of the Gauss
method. In fact, the results show that optimal pointing
respects the condition of pointing north, because most of
LEO satellites are in polar orbits, and at lower elevations
to increase visibility and the amount of objects seen. We
can also mention how the uncertainties related to the OD
show the accuracy of the final results. Regarding future
work, the increase in the number of samples analysed is
certainly one of the most interesting and effective steps
in validating all the results obtained. Increasing the num-
ber of observatories and differentiating their location can
also be a key step in creating a more efficient network of
detection systems.

A more accurate and detailed study of input parameters
could also give more realistic simulations; above all, the
addition of weather constraints could make the separate
strategy appear more advantageous than presented in our
study, due to the better positioning of the optical instru-
ment. As a last remark, we want to highlight the possibil-
ity of using different FoVs for both instruments. A radar’s
FoV of 1◦×1◦ could lead to better results for both strate-
gies, and especially for the second one, but this is not

the most important parameter to change. For the separate
strategy we have to underline the possibility of having an
optical instrument in a very favorable position. At these
altitudes the noise and the disturbances coming from ex-
ternal factors like the weather or background luminosity,
have reduced effects. For this reason, the possibility of
using a larger optical’s FoV of 15◦ × 15◦ could be inves-
tigated. This could lead to longer tracklets and thus to a
higher probability of having a successful IOD through the
Gauss method. A larger FoV would lead to an increase
in the measurement noise because of the larger aperture
diameter and pixel size, but this would be compensated
by the increase in visibility mentioned before, leading to
an acceptable overall situation in terms of disturbances.
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