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ABSTRACT

Since Gauss invented the first initial orbit determination
method, a multitude of methods exist to determine an or-
bit of a set of assocuated measurements. Each method
has particular strengths, however, they are sometimes not
easily gauged from the method itself, especially in the
presence of measurement noise. In this paper, a ground-
based optical sensor is asssumed. The goal of this pa-
per is to comprehensively compare a classical initial or-
bit determination method, in this case Gauss’s original
method, with that of a more modern one, classical Good-
ing’s method and the Gooding method in using Der’s al-
gorithm to solve the Lambert problem. The effects of
spacing are characterized in dependence of both short and
multi-revolution arcs, measurement noise, changes in ob-
server latitude, semi-major axis, and eccentricity.

Keywords: Initial Orbit Determination; Gauss; Gooding;
Electro-Optical.

1. INTRODUCTION

Initial orbit determination (IOD) is the process of tak-
ing measurements of a resident space object (RSO) and
using those to determine a preliminary estimate of the
object’s orbit[4]. There are a variety of methods tai-
lored to different sensors like, doppler, laser-ranging, and
radar which measure different subsets of the six param-
eter space of position and velocity[3]. Optical ground-
based telescopes are a cost efficient sensor for observa-
tions on high altitude orbits especially. Initial orbit de-
termination from optical observations, otherwise known
as angles-only IOD, relies upon three measurements con-
sisting of the epoch, and two angles[9]. After acquisition,
the measurements may be fed into a variety of available
algorithms in order to determine the initial orbit.

These IOD algorithms are a large topic of research with a
multitude of methods available. The classical methods
are Laplace and Gauss, while more recently there are,
e.g., Escobal’s double-R and Gooding’s method[12][13].

Gauss’s method relies upon the planar geometry of stan-
dard Keplerian motion while Gooding relies on range it-
eration for its estimate. These methods, despite using
different solvers at their core, are both deterministic and
assume that the input measurements are perfect. While
there has been significant work on making statistical or-
bit determination methods [1], statistical Lambert solvers
[17], and augmenting existing methods to account for un-
certainties [2], there is a need to characterize the suscep-
tibility of available methods like Gauss and Gooding to
measurement error and the measurement geometry.

The effect of measurement error on IOD has been pre-
viously studied in detail for the Herrick-Gibbs method,
which is not an optical method, where a solution to miti-
gate these effects was proposed and analyzed [20]. Below
one revolution, in general state error with the presence
of noise tends to decrease as the spacing increases [5].
Above one full revolution, error tends to increase drasti-
cally for many IOD methods as there is indeterminancy
between mutliple possible solutions. Many solutions to
these multiple revolution cases have been proposed such
as trial and error of different arcs across multiple revo-
lutions while trying to match the time of flight [8] or by
using pairs of user-specified variables in analytic equa-
tions to solve for the state [15]. As such, there is a trade-
off between the measurement error and the measurement
spacing for a given method, but also between different
methods. As such, it is relevant for sensor tasking to have
an understanding of the optimal measurement spacing for
a given sensor or sensor network and expectet error pro-
file [10][11].

In the following, Gauss and Goodings method will briefly
be introduced, followed by an introduction of a modi-
fied Gooding method, called Gooding-Der method. The
methods are tested under various observer latitudes, mea-
surement errors and measurement spacing and compre-
hensively analysed. The paper concludes with a summary
of the findings.
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2. GAUSS’S METHOD

Gauss’s method is based around Keplerian orbits being
planar, observations may not all be in the same plane, but
the positions of satellite are:

c1r1 + c2r2 + c3r3 = 0 (1)

The algorithm also necessitates ten triple products cre-
ated from the lines-of-sight, Li, and the station vec-
tors, Rstat,i for each measurement where one of them,
D0, serves as the denominator in calculations of multiple
quantities:

D0 = L1 · (L2 × L3) (2)

This singularity created from using this quantity in the
denominator becomes evident when considering obser-
vations made all in the same plane. For example, take a
near equatorial station vector measuring a space object at
0◦inclination, this quantity will become zero resulting in
a singularity for this entire scenario.

Additionally, Gauss’s method requires solving the roots
of an eighth order polynomial for the magnitude of the
position of the space object for measurement two:

||r2||8 + a||r2||6 + b||r2||3 + c = 0 (3)

This polynomial will necessarily yield eight roots, of
which the imaginary and negative roots are discarded.
In most cases, this leaves only one viable root but occa-
sionally there remain two. Without other a priori knowl-
edge, it is impossible to distinguish between the two roots
in terms of which one is closer to the correct solution.
Though some work has been done in selecting between
viable roots [21], this ambiguity is inherent to Gauss’s
method amd for the purposes of this paper if this situa-
tion was encountered, the smallest of the viable roots is
chosen as the solution arbitrarily.

3. GOODING’S METHOD

Gooding’s method is that of range iteration, taking a
guess-and-check approach to IOD [6]. It starts off with
some set of initial guesses for the range such that two full
position vector guesses for the target may be created:

ri = Rstat,i + ρiLi (4)

A Lambert solver [14] can then be called, using the time
between the two corresponding measurements:

[vi,vj] = Lambert(ri, rj, tj − ti) (5)

The method then propagates the state generated by the
Lambert solver to the time of the as yet unused measure-
ment. It then compares the angular offset of the estimated
and true measurement via a dot product. If this dot prod-
uct is nearly one then the method has converged to a solu-
tion. Where the unit vector line of sight of the estimated
position is Li,est and the truth is Li, the residual to be
minimized is:

f = 1− Li,est · Li (6)

Figure 1. Cartesian plot showing the measure lines-of-
sight with L1 and L3 in yellow and L2, the truth for the
residual, in white. Range guesses are shown for each iter-
ation in red triangles, and the converging range estimate
for L2 is shown in cyan trangles. The truth orbit is shown
as an arc in magenta.

The algorithm must then figure out in what direction it
should update the ranges for the guesses and with what
magnitude. Gooding does this by slightly perturbing the
ranges methodically up and down from the starting guess
of the iteration in order to get a numerical derivative of
the error with respect to a change in the range guesses.
This must be done five times given that this is a bivariate
problem: increasing and then decreasing the first range
guess, then the second range guess, then either increas-
ing or decreasing both simultaneously. Then a bivariate
Newton-Raphson method is performed with this deriva-
tive information in order to update the range guesses for
the next iteration.

It should be noted that in Gooding’s formulation, it is
chosen to give range guesses to the first and third mea-
surements, leaving the second measurement as the truth
which to compare the estimated solution. While the pro-
grams created in support of this paper adhere to this struc-
ture, any combination of these pairings will likely pro-
duce valid results and any differences would be down



to the propagation time and accuracy of the propagator
from one state to another. The initial guesses given to the
Gooding method for all cases in this paper are one Earth
radius.

Given that the Lambert solver is crucial to the conver-
gence of the method and the determination of a state es-
timate, other Lambert solvers were also investigated. Of
particular interest is a Lambert solver based on universal
variables [7] and then modified to to check a number of
possible orbits greater than one full revolution [8].

4. GOODING-DER’S METHOD

Since on crucial part of Gooding’s method is its Lambert
solver, a clear avenue for improvement is to replace its
original Lambert solver with a better one. Der’s Lam-
bert solver improves on Gooding’s in two key ways: it
uses Sun’s universal variables to converge on velocity so-
lutions even with arcs spanning multiple revolutions as
well as using the Laguerre algorithm, a higher order iter-
ative solver to solve the Lambert equation.

Lambert’s equation for elliptic multi-revolution arcs:

F (x) = f(x)− f(y) +Nπ − g(x)τ (7)

Then according to Sun [7] and Der [8] elliptic orbits span
−1 < x < 1, parabolic orbits have x = 1 and hyper-
bolic orbits have x > 1. Specifically for elliptic orbits
if −1 < x < 0 the orbit is the high path, if x = 0 then
the trajectory is the minimum energy path, and finally, if
0 < x < 1 then the trajectory is the low path.

Relating back to the standard Kepler problem, x, y, and σ
are given by:

x2 = 1− m

4a
(8)

y2 = 1− n

4a
(9)

σ2 =
1− y2

1− x2
(10)

Where m is the perimeter of the Lambert triangle, n =
r1 + r2 − c, c = |r1 − r2|, and a is the semi-major axis
[8].

5. NUMERICAL SIMULATION SETUP

In order to compare the three methods of initial orbit de-
termination of interest in this paper, a viable set of test
cases must be found which are representative of the typi-
cal satellite for which these algorithms will be run.

For the orbit, two parameters of interest are semi-major
axis and eccentricity, as parameters which are prone to
misrepresentation in an IOD method and also lead to se-
vere effects when determined far off from the truth, as the
object will not be re-observed in follow-up observations.

Of particular interest is the effect of the ground-based ob-
server position and the measurement spacing in the pres-
ence of measurement noise on the initial orbit determina-
tion. The parameter space of the observer position sce-
nario allows for the variation of altidude, latitude, and
longitude when limited to Earth-based observers. Alti-
tude was ruled out as a parameter of interest as the ef-
fect of feasible altitudes, as compared to the Earth’s ra-
dius, is negligible on IOD, especially with respect to the
othereffects. For a geosynchronous object, the effect of
longitude is less interesting, as it is equal to a change in
anomaly and is hence not explored here. To explore the
observer latitude effects, the angle between observations
is varying between 0.0573◦and 181.8◦in true anomaly of
the respective orbit with 20 linearly spaced increments
and the latitude was varied between 0◦and 90◦with 10
linearly spaced increments.

Finally, the measurement spacing is crucial. In the first
set of cases, eccentricity and spacing has been varied,
with the spacing varying between 1 minute and 600 min-
utes with 20 linearly spaced increments, while eccentric-
ity was varied between 0 and 0.95 in 10 linearly spaced
increments. For the semi-major axis vs. spacing, the
measurement spacing was varied between 0.0573◦and
181.8◦in true anomaly of the respective orbit with 20 lin-
early spaced increments and the semi-major axis was var-
ied between 6778 km and 42’000km in 10 linearly spaced
increments.

For the measurement noise, a noise of zero, 1 arcsecond
and 10 arcseconds has been assumed for all cases.

5.1. Scenario Statistics

Table 1. Orbit parameters for eccentricity vs spacing
case and observer location at first measurement. True
anomaly is also given at first measurement.

Parameters Value
Perigee Radius 42164

Eccentricity Variable
Inclination 0◦

RAAN Undefined
True Anomaly 180◦

Observer Latitude 30◦

Observer Longitude Obs. Long. = RSO Long.



Table 2. Semi-major axis vs spacing case orbital param-
eters. Observer parameters and true anomaly are only
for first observation.

Parameters Value
Perigee Radius Variable

Eccentricity 0
Inclination 0◦

RAAN Undefined
True Anomaly 180◦

Observer Latitude 30◦

Observer Longitude Obs. Long. = RSO Long.

Table 3. Observer latitude vs. spacing scenario, or-
bital parameters and observer location as well as true
anomaly at first observation.

Parameters Value
Perigee Radius 42164

Eccentricity 0
Inclination 0◦

RAAN Undefined
True Anomaly 180◦

Observer Latitude Variable
Observer Longitude Obs. Long. = RSO Long.

6. RESULTS

6.1. Varying Eccentricity

Figure 2. Gauss’s positional error when changing eccen-
tricity and spacing(1).

Gauss’s method shows a relatively smooth increase in po-
sitional error as the spacing increases. Like with other

methods, too-short arcs are apparent even with the small-
est even second-smallest spacing, increasing the posi-
tional error. Eccentricity appears to only produce large
differences in area for large spacings, especially between
eccentricities of 0.1 and 0.3.

Figure 3. Magnitude of velocity error for Gauss’s method
while changing spacing of observations vs. eccentricity
(1).

The velocity error of Gauss’s method shows similar
trends to that of its positional error; however the differ-
ences between the low error and high error are reduced
for velocity. This indicates that Gauss provides more sta-
ble velocity estimates than positional estimates under this
set of scenarios.

Figure 4. Norm of positional error for Gooding’s method
for changing spacing and eccentricity (1).

For the position estimates, Gooding follows similar
trends to that of Gauss with the too-short arc singular-
ity and instability for e = 0.1 to e = 0.3. Despite, these
similarities the error in position in much lower than that
of Gauss.



Figure 5. Magnitude of velocity error for Gooding’s
method with changes in spacing and eccentricity. (1).

Gooding’s error in the velocity estimate with changing
eccentricity has similarly low error to its positional esti-
mate and does not rise appreciably along with spacing.

Figure 6. Norm of positional error for Gooding-Der’s
method for changing spacing and eccentricity (1).

Fig. 6 shows that Gooding-Der’s method for a range of
eccentiricities and spacings is inconsistent in positional
error. There is a region of low error at lower eccentrici-
ties and smaller spacings but as compared to Gooding’s
original method, Gooding-Der’s is nearly unusable.

Figure 7. Magnitude of velocity error for Gooding-Der’s
method with changes in spacing and eccentricity. (1).

The velocity error of Gooding-Der in fig. 7 shows the
same trends as the positional error: it is equally unreliable
for velocity.

Gauss and Gooding, for the variety of cases involving
changing eccentricity and measurement spacing, follow
similar trends in both position and velocity error. Both
methods show a singularity with large measurement spac-
ing of around 550 to 600 minutes with an eccentriciy of
around 0.2. The magnitude of positional error is overall
lower with Gooding than with Gauss and is only magni-
fied in the velocity error, where overall and especially for
larger spacing, the error of Gauss goes up significantly
while that of Gooding remains around zero.

6.2. Varying Semi-Major Axis

Figure 8. Changing semi-major axis and spacing case
showing error in Gauss’s method (2).

From fig. 8 it is shown that Gauss’s positional estimate
error increases with increasing semi-major axis and mea-
surement spacing in a circular orbit and quickly becomes
unstable.

Figure 9. Velocity error for Gauss’s method while chang-
ing spacing of observations vs. semi-major axis (2).

Unlike in fig. 2 and fig. 3 where the position and veloc-
ity estimates of Gauss show similar trends, 8 and fig. 9



differ significantly in their trends, showing the for chang-
ing semi-major axis, Gauss’s velocity estimates are less
stable.

Figure 10. Positional error for Gooding’s method in
changing spacing and semi-major axes cases (2).

Gooding’s estimate for changing semi-major axes are the
least stable for both position as shown in fig. 10 and ve-
locity as shown in the next figure. Positional error re-
mains low for for high semi-major axis and low spacing
but there is a sudden drop in stability upon reaching semi-
major axis of less than around 40,000 km and spacings
less than 100◦apart.

Figure 11. Velocity error for Gooding’s method for chan-
gies in spacing and semi-major axis (2).

Fig. 11 shows a similarly drastic change in velocity error
estimates as that fig. 8 in the same region. Error of the
estimates outside of this region remain low except for the
lowest spacing cases were too-short arcs come in again.

Figure 12. Positional error for Gooding-Der’s method in
changing spacing and semi-major axes cases (2).

Gooding-Der’s and Gooding’s method show similar dras-
tic positional error increases with true anomalies above
90◦as shown in fig. 12. Gooding-Der differs from Good-
ing in semi-major axes above that of geostationary where
Gooding provides better estimates than Gooding-Der.

Figure 13. Velocity error for Gooding-Der’s method for
changies in spacing and semi-major axis (2).

The velocity estimate of Gooding-Der shows the same
trends as its positional error however the realtive magni-
tudes in fig 13 are larger than for positional error, espe-
cially with low spacing between the measurements.

Focusing on the changing semi-major axis results, Good-
ing displays large indeterminancy below geostationary
orbit and with spacings corresponding to a true anomaly
above 90◦. Gooding-Der shows similar instability with
true anomaly though without the stability above geo-
stationary. It has been noted before that such instabil-
ity in circular orbits with larger measurement spacing is
typical of Gooding’s method [16] thus would likely af-
fect Gooding-Der as well. Outside of this region, er-
ror in both position and velocity remain small until too-
short arcs with noise come into play with small spacings.
Meanwhile, Gauss’s method in this unstable region offers
greater positional accuracy as well as velocity accuracy,
however the velocity error of Gauss in this region is still
quite high. Gooding-Der differs from the previous two



methods and proves to be unreliable in producing low-
error solutions for many of the tested cases.

6.3. Varying Observer Latitude

Figure 14. Magnitude of positional error for Gauss’s
method while changing spacing of observations and ob-
server position(3).

Gauss’s method shows a unique behavior for the chang-
ing observer latitude vs. spacing cases in fig. 14. Outside
of the too-short arc region, positional error starts low, ris-
ing with spacing until a peak of instability at 90◦, lower-
ing but not returnig to the similarly low levels at the some
of the lower spacings. The peak at 90◦spacing is due to
the ambiguity of the geometry, for a circular geostation-
ary orbit with a measurement are spanning half of a full
orbit, there are multiple solutions that are feasible.

Figure 15. Norm of velocity error for Gauss’s method
while changing measurement spacing and observer lati-
tude(3).

Fig. 15 shows similar trends, though less in magnitude,
to that of fig. 11. Additionally it is shown that even with
no noise, coplanar lines-of-sight greatly increase the er-
ror in both the position and velocity estimates due to the
geometric indeterminancy of such cases.

Figure 16. Positional error for Gooding’s method with
changing spacing and observer latitude(3).

Fig. 16 shows similar trends to that Gauss’s position esti-
mates for the observer latitude vs. spacing cases although
the error for much of the series of cases is lower than that
Gauss. The effect of indeterminacies is more abrupt in
Gooding’s method, a positive given that cases near such
scenarios show less error than those of Gauss.

Figure 17. Observer latitude vs. spacing: velocity error
of Gooding’s method (3).

Fig. 17 shows the velocity estimate error of Gooding for
the observer latitude vs. spacing cases. It shows sim-
ilar trends to the position error, and, to a lesser magni-
tude, Gauss’s velocity error. An interesting distinction
between these estimates of Gauss and Gooding is for the
the co-planar observer and orbit, the no noise scenario
shows nearly zero error using Gooding’s method but has
significant error from Gauss’s method. This follows sim-
ilar results for Gooding where observer placement even
in space-based IOD did not produce very different results
using Gooding’s method [19].



Figure 18. Positional error for Gooding-Der’s method
with changing spacing and observer latitude(3).

Fig. 18 follows the trends of the semi-major axis chang-
ing case where below a measurement arc spanning span-
ning half an orbit, the positional error remains low for all
levels of noise, but behaves erratically above this thresh-
old. Similar to other observer latitude cases, the error
increases when coplanar measurements are used.

Figure 19. Observer latitude vs. spacing: velocity error
of Gooding-Der’s method (3).

Fig. 19 is shows behavior of the velocity error similar
to that of Gooding-Der’s positional error though with in-
creased magnitude around the singularities.

Gooding’s method and Gauss’s show especially similar
trends in this scenario. Both have a singulary at around
90◦true anomaly change between each measurement they
also show not only high error with small spacing between
measurements but also high error with observer latitudes
of 0◦. This is due to the fact that in those cases, the
observer and therefore the lines-of-sight lie in the same
plane as the orbit. Additionally, the error due to those
singularities has a much more abrupt jump with Good-
ing than with Gauss, adding to merit of Gooding. Addi-
tionally, numerical results for the minimum, median, and
maximum position (4) and velocity (5) error are given in
the appendix. Gooding-Der shows instabilities for over
half of the cases in this regime, specifically when true
anomaly between measurements grows above 70◦. Over-

all across both the positional and velocity error Gooding
has much higher accuracy than Gauss and Gooding-Der.

7. CONCLUSIONS

In short, Gooding’s method in its classical formulation, as
shown throughout the various test cases, is more accurate
in the presence of measurement noise of a ground-based
optical observer with a variety of different measurement
spacings when comparing in both positional amf veloc-
ity error in state estimates of simulated orbits compared
to both alternatives, Gauss and Gooding-Der. Gauss and
Gooding show similar trends in the error when varying
eccentricity and observer latitude but show very different
trends when changing semi-major axis for circular, equa-
torial orbits. Gooding-Der deviates from both of these
methods. The best case scenarios for Gooding’s method
are when the spacing between measurements represents
less than a quarter of the target’s orbit but is still greater
than 5◦.

Orbit determination of objects on highly eccentric pose
challenges also in characterizing errors, as the measure-
ment geometry is affected by the orientation of the orbit
in the orbital plane. In the investigated cases, except for
large spacings on the order of 8 to 10 hours for eccentrici-
ties of 0.1 to 0.3 where there is an indeterminancy in both
methods, classical Gooding still provides the smallest er-
ror. Classical Gooding performs best with a measurement
spacing of around one hour.

The Gooding-Der mothod unfortunately has proven to be
inconsistent in its error profile.
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8. APPENDIX

On the next two pages are tables detailing the minimum,
median and maximum error of the two methods in each of
the cases. The first table details quantities corresponding
to the magnitude of the positional error in each case, in-
cluding the velocity error at the given point, the spacing

or change in true anomaly at that point, and the chang-
ing parameter of interest for this point, either eccentric-
ity, semi-major axis, or observer latitude. The second ta-
ble shows similar information but this time the minimum,
median, and maximum are for that of the magnitude of
velocity, showing the corresponding positional error as
well.

8.1. Numerical Results

The numerical results are shown in Tabs. 4 and 5 on the
next two pages.



Table 4. A table of the minimum, median, and maximum positional error for each method for each case. Also listed are
the spacings and specific parameters of each of the cases and the corresponding velocity or position error. All positional
parameters are given in km, velocity in km/s, spacing is in minutes, and angular quantities are in degrees.

Method/Case Quantity Minimum Median Maximum

Gauss
Eccentricity

rerror 60.1560 3.3039e+04 1.9196e+07
verror 0.0117 2.4928 1.2403e+03

Spacing 64.0526 316.2632 316.2632
e 0.1056 0.9500 0

Gauss
SMA

rerror 107.5519 6.5589e+04 5.1780e+06
verror 0.1962 5.0151 235.1818

∆TrueAnomaly 14.2648 270 113.7174
SMA 6778 4.2164e+04 4.2164e+04

Gauss
Ob-
server
Latitude

rerror 83.9877 9.4717e+04 2.3268e+06
verror 0.0288 5.2930 105.9556

∆TrueAnomaly 9.6227 181.8000 114.8422
ObserverLatitude 80 90 10

Gooding
Eccentricity

rerror 5.5042 64.6592 9.6726e+08
verror 4.4967e-04 0.0024 3.6769e+04

Spacing 410.8421 600 536.9474
e 0.1056 0.9500 0.1056

Gooding
SMA

rerror 0.3182 1.5319e+04 2.4637e+19
verror 9.9214e-04 12.7795 9.9678e+14

∆TrueAnomaly 19.1881 0.0573 172.2346
SMA 6778 6778 3.4301e+04

Gooding
Ob-
server
Latitude

rerror 3.3820 39.9010 4.0824e+08
verror 2.9242e-04 0.6736 1.6790e+04

∆TrueAnomaly 67.0151 181.8000 124.4076
ObserverLatitude 60 90 0

Gooding-
Der
Eccentricity

rerror 3.5694 173.6510 9.6726e+08
verror 0.0075 NaN 5.2876e+03

Spacing 316.2632 1 505.4211
e 0.7389 NaN 0.3167

Gooding-
Der
SMA

rerror 0.3182 4.9896e+03 1.8705e+08
verror 9.9248e-04 12.7795 4.0728e+04

∆TrueAnomaly 19.1881 0.0573 114.8422
SMA 6778 6778 1.4642e+04

Gooding-
Der
Ob-
server
Latitude

rerror 3.6152 89.0946 1.6733e+08
verror 0.0019 NaN 5.9638e+03

∆TrueAnomaly 124.4076 0.0573 143.5384
ObserverLatitude 70 NaN 80



Table 5. A table of the minimum, median, and maximum velocity error for each method for each case. Also listed are
the spacings and specific parameters of each of the cases and the corresponding velocity or position error. Positional
parameters are given in km, velocity in km/s, spacing is in minutes, and angular quantities are in degrees.

Method/Case Quantity Minimum Median Maximum

Gauss
Eccentricity

verror 0.0117 2.8713 1.2403e+03
rerror 60.1560 7.8831e+04 1.9196e+07

Spacing 64.0526 505.4211 316.2632
e 0.1056 0.9500 0

Gauss
SMA

verror 0.0301 9.2777 293.8956
rerror 430.8699 6.5948e+04 2.5213e+06

∆TrueAnomaly 14.2648 270 113.7174
SMA 4.2164e+04 4.2164e+04 2.2505e+04

Gauss
Ob-
server
Latitude

verror 0.0249 5.5046 3.0414e+05
rerror 338.6655 9.7955e+04 7.6845e+04

∆TrueAnomaly 9.6227 181.8000 38.3189
ObserverLatitude 50 90 10

Gooding
Eccentricity

verror 4.1331e-04 0.0044 3.6879e+04
rerror 5.6744 54.4320 9.1318e+08

Spacing 379.3158 600 505.4211
e 0.1056 0.9500 0.1056

Gooding
SMA

verror 2.7945e-04 5.5253 1.4179e+15
rerror 3.5571 6.0239e+03 2.5635e+18

∆TrueAnomaly 124.4076 0.0573 143.5384
SMA 4.2164e+04 6778 6778

Gooding
Ob-
server
Latitude

verror 2.9242e-04 0.0033 1.6790e+04
rerror 3.3820 1.0258e+04 4.0824e+08

∆TrueAnomaly 67.0151 181.8000 124.4076
ObserverLatitude 60 90 0

Gooding-
Der
Eccentricity

verror 4.1331e-04 0.0131 1.0184e+04
rerror 9.1363e+07 NaN 3.1958e+07

Spacing 410.8421 1 64.0526
e 0.7389 NaN 0.8444

Gooding-
Der
SMA

verror 2.7945e-04 1.3657 3.7184e+05
rerror 3.5571 6.0240e+03 1.6238e+06

∆TrueAnomaly 124.4076 0.0573 0.0573
SMA 4.2164e+04 6778 2.2505e+04

Gooding-
Der
Ob-
server
Latitude

verror 2.6908e-04 0.0088 3.2828e+04
rerror 0.0023 NaN 6.0675e+05

∆TrueAnomaly 124.4076 0.0573 0.0573
ObserverLatitude 70 NaN 70
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