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ABSTRACT

Maneuver uncertainties have a significant impact on an
object state vector uncertainty, especially when multiple
maneuvers are performed over a short timespan (for ex-
ample, during post-launch, station-keeping or deorbita-
tion phases using electrical, low-trust maneuvers). They
are usually due to nozzle imperfections or faulty propel-
lant combustion, leading to small errors on the magni-
tude and direction of the thrust. Downstream Space Situ-
ational Awareness (SSA) functions — such as cataloging
or collision risk assessment — usually require propagat-
ing state vector uncertainties over long periods of time,
and often assume the uncertainty follows a Gaussian dis-
tribution in Cartesian space through the entire propaga-
tion.

This paper presents the results of a pre-launch study aim-
ing to assess how long such an hypothesis holds during
the early orbit and station-keeping phases of a satellite
planning to perform respectively 29 and 9 electrical ma-
neuvers over one day. To that end, the state vector uncer-
tainty computed through a state transition matrix (STM)
is compared at different times to the one computed using
a Monte Carlo method.

Initial results show that although the state vector uncer-
tainty remains Gaussian during the analyzed time span,
special care should be taken when propagating covari-
ances through state transition matrices. Indeed, Monte
Carlo results reveal the maneuver direction error can have
a significant impact on the overall uncertainty distribu-
tion, depending on its value. The greater the direction
error, the more the nominal state vector departs from the
perturbed samples, causing the uncertainty distribution to
lose its Gaussianity and making state transition matrices
propagation unsuitable.

Keywords: Uncertainty propagation, Covariance, Ma-
neuver errors, State Transition Matrix, Gaussianity, Elec-
trical propulsion, Monte Carlo.

1. INTRODUCTION

Proper characterization of the orbital state vector uncer-
tainty of an object is a challenge faced during most Space
Situational Awareness (SSA) activities, because of the
highly non-linear dynamics and long periods of propa-
gation involved. Many methods are available to eval-
uate the uncertainty and its propagation (for examples,
see [3]), some more precise than others depending on
the context of the study. Among them, the uncertainty
representation through State Transition Matrices (STM)
in Cartesian space remain the most used method opera-
tionally: it has a low computational cost, and can yield
accurate results if the right conditions are met. In par-
ticular, this method assumes the propagated uncertainty
remains Gaussian during the analyzed time span, which
is not always verified.

This paper presents the results of a pre-launch study aim-
ing to assess if STM could be used to monitor the early
orbit and station-keeping phases of an electrical satel-
lite performing a large number of low-thrust, not 100%-
efficient maneuvers. The purpose of this study is to esti-
mate whether or not the state vector uncertainty distribu-
tion remains Gaussian over the period of interest of these
operational phases, and if so, to determine how to propa-
gate it accurately in presence of maneuver uncertainty us-
ing STM. After generating reference results using Monte
Carlo simulations and concluding on the Gaussianity of
the uncertainty distribution after one day of propagation,
the maneuver errors are modeled as a matrix to be in-
cluded in the STM propagation, which is then compared
to the reference results. In this process, a particularly in-
teresting phenomena is observed: the nominal state vec-
tor departs from the center of the Monte Carlo sample
distribution, consequence of the impact of the maneuver
direction uncertainty.

This paper is arranged as follows. Section 2 introduces
the context of this study and the representation of maneu-
ver errors. Section 3 presents the reference results for un-
certainty propagation, performed using Monte Carlo sim-
ulations for the post-launch and station-keeping phases,
and analyses the Gaussianity of its distribution. Section 4
focuses on the maneuvers errors and describes the way
they are modeled and combined to the state transition ma-
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trices. Results of the STM propagation are compared to
the reference, and the difference between the uncertainty
distributions is analyzed in Section 5, where a solution to
counter this phenomena is proposed. Finally, Section 6
presents the evolution of the state vector uncertainty over
7 days to test its Gaussianity, in case the STM propaga-
tion needs to be extended.

2. STUDY CONTEXT AND MANEUVER ER-
RORS

The post-launch phase is composed of 29 maneuvers per
day, performed at each ascending and descending node
of the orbit. Their magnitude is 24 mm s−1, and all last
1300 s. The station-keeping phase performs 9 maneu-
vers per day, alternatively on the ascending or descend-
ing node as shown in the Figure 1. The magnitude is
10 mm s−1 for the 600 s-long maneuvers and 5 mm s−1 for
the 300 s-long maneuvers.

Orbit 1
descending node

10 min

Orbit 3
ascending node

5 min

Orbit 5
ascending node

5 min

Figure 1: Station keeping maneuvers plan to repeat over
the period of interest.

For both early orbit and station-keeping phases, the over-
all uncertainties consist of the initial state vector uncer-
tainty and the maneuver errors. The initial state vector
uncertainty distribution is assumed to follow a normal
distribution law NX(0, σX) on each coordinate of posi-
tion (σ in m) and velocity (σ in m s−1) in the QSW local
orbital frame, and the corresponding standard deviation
vector is defined as follows:

S =


5.471
14.922
18.418

7.089× 10−3

11.613× 10−3

21.052× 10−3


The correlation between these uncertainty distribution
laws is expressed through the following matrix:

C =


1 −0.011 −0.046 −0.474 −1.0 0.015
− 1 −0.028 0.504 0.004 −0.022
− − 1 0.007 0.047 0.05
− − − 1 0.475 −0.073
− − − − 1 −0.015
− − − − − 1


with “–” expressing the symmetry of the matrix.

In this context, two types of maneuver errors are taken
into account. The first one is the magnitude error, which
is defined as a percentage of the nominal maneuver mag-
nitude. It is assumed to follow a normal distribution law
N (0, σm), where σm = 0.01‖V ‖, meaning that the stan-
dard deviation of the magnitude error is 1% of the nom-
inal magnitude. This error can be due to propellant ran-
dom behavior, causing the effective thrust magnitude to
be slightly bigger or smaller than the planned magnitude.
The second one is the direction error, which is defined as
a deviation angle around the nominal thrust direction. It
is assumed to follow a normal distribution lawN (0, σd),
where σd = 5◦ around the nominal direction. This er-
ror can be due to imperfections on nozzle manufacturing,
causing the effective thrust direction to be deflected from
the planned direction.

Considering the maneuver frame with the thrust along the
X axis, and with m and α the magnitude and direction
perturbations, the maneuver vector Vp subject to these
perturbations can be represented as:

X

Z

V

Vp

(1 +m)‖V ‖
α

Figure 2: Maneuver errors representation.

The magnitude error is easy to represent, as it is only
distributed on one direction, along the maneuver vector.
The direction error is harder to perceive since it is de-
fined in 3 dimensions. Indeed, this error is evenly dis-
tributed around the nominal maneuver vector V : in the
Figure 2, the specific direction perturbation represented
is a rotation α around the Y axis of the maneuver frame,
but it could be any rotation with an axis included in the
Y Z plane. In other words, the direction error can be rep-
resented by a cone around the X axis, of angle σd the
standard deviation of the error normal distribution law as
shown on Figure 3.

X

Y

Z

σd

Figure 3: Direction error representation in 3D.

In order to model this perturbation in 3D, which will be



necessary later, another variable is introduced: the an-
gle θ represents the even distribution of the perturbation
around the maneuver vector (see Figure 4). This variable
is defined by a uniform distribution law U(0, π).

Y

Z

V

Vp

θ

Figure 4: Definition of θ.

Now that the different types of uncertainty taken into ac-
count in this case have been defined, they can be prop-
agated for each operational phases in order to determine
whether or not the global state vector uncertainty distri-
bution stays Gaussian after one day.

3. REFERENCE RESULTS

The propagation of the state vector uncertainty is studied
for the post-launch and station-keeping phases, which are
especially interesting due to the high number of electrical
maneuvers executed during the period of interest. During
these phases, it is necessary to assess collision risk prob-
abilities with other orbiting objects in order to anticipate
eventual avoidance maneuvers, which requires propagat-
ing the state vector uncertainty over the timespan of each
phase. In this case, it would be convenient to use the
State Transition Matrices to model the uncertainty prop-
agation and compute collision risks. Given that the appli-
cation of this method depends on the Gaussianity of the
distribution, reference results are necessary to determine
the nature of the uncertainty distribution after one day
of propagation, and whether or not STM are suitable to
represent it. The method selected to provide reference re-
sults for the uncertainty propagation is Monte Carlo sim-
ulations. It consists in representing every uncertainty as
a large number of perturbed states, and propagate these
states to obtain the final uncertainty of the object. For
both phases, the state vector and maneuvers uncertainties
are sampled in 105 perturbed states and propagated over
one day in the QSW local orbital frame. Figures 5 and 6
show the perturbed samples position in QSW coordinates
(in meter) from the final distribution of the early orbit and
station-keeping phases.

The normality of the final uncertainty distribution is as-
sessed using the normality test introduced by Henze-
Zirkler [2]. In this case, multiple Henze-Zirkler tests are
conducted on randomly selected sub-groups of 5000 sam-
ples, and the normality of the final distribution is deter-
mined by the percentage of groups that were designated

Figure 5: Uncertainties propagated for one day with the
Monte Carlo method in QSW (early orbit phase).



Figure 6: Uncertainties propagated for one day with the
Monte Carlo method in QSW (station-keeping phase).

as Gaussian according to the Henze-Zirkler test. A high
number of groups tested is requested to get an accurate
percentage – in this case, the percentage converges for
approximately 4000 groups selected. From experience,
in the context of this study, the final uncertainty distribu-
tion can safely be considered Gaussian if the percentage
reaches 85 %. Otherwise, a visual verification is neces-
sary to determine the normality of the final uncertainty.
For example, a Gaussian distribution of samples can be
defined by its ellipsoid shape, like in Figure 5. After run-
ning Henze-Zirkler tests on the final uncertainty in the
QSW local orbital frame, the percentage of tests giving
a positive result for the Gaussian distribution hypothesis
is 90.4 % for the early orbit phase, and 90.6 % for the
station-keeping phase. Thus, for both phases, the state
vector uncertainty distribution is Gaussian at one day of
propagation, and STM should be suitable to model the fi-
nal distribution. It should be noted that only one date has
been tested for Gaussian distribution. The Gaussianity of
the state vector final uncertainty doesn’t necessarily im-
ply that this uncertainty distribution remains Gaussian at
all times between the initial and final date of propagation.

4. MANEUVER UNCERTAINTIES MODELING

In order to use the STM to represent the state vector un-
certainty propagation, all uncertainties need to be mod-
eled as matrices. For the rest of this paper, vectors will
be written in bold letters (e.g.

−→
V = V ) for ease of read-

ing. The initial state vector uncertainty matrix is defined
thanks to the standard deviation vector and correlation
matrix given in Section 2. For the maneuver uncertain-
ties, we start from the initial formula proposed by Gates
in a technical report from 1963 [1]:

L = Var [Vp]

= E
[
VpV

T
p

]
− E [Vp] E

[
V T
p

]
with Vp the perturbed maneuver vector, and E [X] and
Var [X] the expected value and variance of a variable X .
The modeling of maneuver errors following this formula
in Gates’ report is not adapted to this case, as it is not
compatible with the high direction error value considered
(σd = 5◦). A different approach will be presented here.

Considering a random variable m from a normal distri-
bution N (0, σm), which represents the magnitude error
(see Figure 2). The maneuver vector V m

p perturbed by
maneuver errors can be formulated as:

V m
p = (1 +m)V (1)

Considering now two variables α and θ to represent the
direction error in 3 dimensions, respectively from a nor-
mal distribution law N (0, σd) and a uniform distribution
law U(0, π) (details in Section 2, and Figures 3 and 4).
In the maneuver frame, the maneuver vector V d

p subject



to direction error is:

V d
p = ‖V ‖

[
cosα

sinα cos θ
sinα sin θ

]
(2)

When combining magnitude and direction errors, the per-
turbed maneuver can thus be written as:

Vp = (1 +m)‖V ‖

[
cosα

sinα cos θ
sinα sin θ

]

Knowing that the expected value of a vector is the vector
of expected values of its components, the expected value
of Vp can be rewritten as:

E [Vp] = ‖V ‖

[
E [(1 +m)cα]
E [(1 +m)sαcθ]
E [(1 +m)sαsθ]

]

with cx = cosx and sx = sinx.

Moreover, if X and Y are two independent variables, the
expected value behaves as E [X + Y ] = E [X] + E [Y ]
and E [XY ] = E [X] E [Y ], which leads to:

E [Vp] = ‖V ‖

[
E [cα]
E [sα] E [cθ]
E [sα] E [sθ]

]

knowing that E [m] = 0 since m ∈ N (0, σm).

Considering the formula eiα = cosα + i sinα, and that
if α ∈ N (0, σd):

E
[
eiα
]
= e

−σ2
d

2

then the expected value of the cosine and sine of α are:

E
[
eiα
]
= E [cosα] + iE [sinα]

E [cosα] = e
−σ2

d
2

E [sinα] = 0

Finally, the expected value of the dispersed vector Vp can
be expressed as:

E [Vp] = ‖V ‖

e−σ2
d

2

0
0

 (3)

and the product of the expected values of Vp and V T
p is:

E [Vp] E
[
V T
p

]
= ‖V ‖2

e−σ2
d 0 0
− 0 0
− − 0



The expected value of the product of the vectors Vp and
V T
p is formulated as:

E
[
VpV

T
p

]
=M

E [c2α] E [cαsαcθ] E [cαsαsθ]
− E

[
s2αc

2
θ

]
E
[
s2αcθsθ

]
− − E

[
s2αs

2
θ

]


with M = E
[
(1 +m)2

]
‖V ‖2.

Since θ ∈ U(0, π), the expected values of the cosine
and sine of this variable follow E [cos θ sin θ] = 0, and
E
[
cos2 θ

]
= E

[
sin2 θ

]
= 1

2 . With the same argumenta-
tion as before, and with:

E [cosα sinα] = 0

E
[
cos2 α

]
=

1

2

(
1 + e−2σ2

d

)
E
[
sin2 α

]
=

1

2

(
1− e−2σ2

d

)
this expression can be simplified to:

E
[
VpV

T
p

]
= N

2(1 + P 2) 0 0
− (1− P 2) 0
− − (1− P 2)


with N = 1

4 (1 + σ2
m)‖V ‖2 and P = e−σ

2
d .

The matrix representing the combined maneuver errors in
the maneuver frame can finally be defined as:

L =

2N(1 + P 2)− P 0 0
− N(1− P 2) 0
− − N(1− P 2)


This matrix is added to propagated uncertainty at the mid-
thrust date, simulating a contribution as an impulse ma-
neuver (unlike the Monte Carlo simulations which take
into account the fact that the maneuvers are continuous).
Tests have been run on the Monte Carlo results to confirm
that, in this case, the maneuver type has no significant
impact on the overall distribution, but the proper inclu-
sion of the maneuver errors matrix in the STM propaga-
tion remains an area for improvement. The state vector
uncertainty propagated by STM with contribution of the
maneuver errors for the early orbit phase is shown in Fig-
ure 7. The comparison with the reference results shows
that the Gaussianity of the uncertainty distribution is not a
sufficient condition for STM results to accurately match
the reference results. The sample distributions are sim-
ilar, but a slight offset from the Monte Carlo results can
be observed. The same phenomena occurs for the station-
keeping phase, with a smaller shift between the distribu-
tions.

5. NOMINAL STATE VECTOR SHIFT

The offset phenomena observed in both operational
phases is due to the maneuver direction error. Indeed,



Figure 7: Uncertainties propagated for one day with
Monte Carlo (dark blue) and STM (light blue) methods
in QSW (early orbit phase).

considering the formulas of the perturbed maneuver vec-
tor from magnitude error (Equation 1) and from direction
error (Equation 2), the average perturbation on the ma-
neuver vector for each error are:

V − E
[
V m
p

]
= 0

V − E
[
V d
p

]
= ‖V ‖

1− e
−σ2

d
2

0
0


Note that the average perturbation caused by the direction
error on the maneuver vector is not zero when σd 6= 0,
which explains why the state vector propagated with no
perturbation does not correspond to the average of the
Monte Carlo perturbed samples. By nature, the uncer-
tainty propagated through the STM method is centered on
the unperturbed state vector, meaning that, in this case,
it cannot be used for collision risk assessment since it
doesn’t properly represent the uncertainty distribution.

To counter this problem, the idea is to create a shifted
nominal state vector, centered in the Monte Carlo partic-
ules cloud at all time during the propagation. The shifted
nominal state vector is propagated with maneuvers tak-
ing into account the average perturbation (that is, with
a thrust vector equal to E [Vp], see Equation 3), instead
of the planned maneuvers. Figure 8 shows the results
of STM propagation combined with the shifted nominal
state vector: the propagated samples match the Monte
Carlo simulations in QSW.

With the correct modeling of maneuver errors, and with
the use of the shifted nominal state vector, results yielded
by the STM propagation are consistent with the reference
results and can be used for computations performed dur-
ing operations, like collision risk assessment.

6. ADDITIONAL ANALYSIS

In case the state vector uncertainty needs to be propa-
gated for more than one day (e.g. if orbit restitution is
not available every day), its evolution is analyzed every
day up to 7 days. The reference results of this propaga-
tion are presented on Figure 10. After 7 days of propaga-
tion, Henze-Zirkler tests are run on the final uncertainty
distribution of both operational phases. For the station-
keeping phase, the Gaussianity of the state vector uncer-
tainty is maintained after 7 days, as shown on Figure 9b.
However, due to a higher number of maneuvers and per-
turbations, the uncertainty distribution for the early orbit
phase looses its Gaussianity at 4 days of propagation.

As long as the uncertainty distribution remains Gaus-
sian, and with the use of the shifted nominal state vec-
tor, the STM propagation is suitable represent the un-
certainty and compute collision risk probabilities (results
are shown on Figure 10). As mentioned in Section 3,
the Gaussianity of the state vector uncertainty distribu-
tion has been tested for only a few dates (each day for



(a) Early orbit phase. (b) Station-keeping phase.

Figure 8: Uncertainties propagated for one day with Monte Carlo (dark blue) and STM (light blue) methods and shifted
nominal position (orange) in QSW.



(a) Early orbit phase. (b) Station-keeping phase.

Figure 9: Uncertainties propagated for 7 days with Monte Carlo method in QSW.



7 days). The fact that the distribution can be considered
Gaussian for two consecutive dates doesn’t necessarily
mean that it is Gaussian at all times between these dates.

7. CONCLUSION

Although results presented here are specific to this partic-
ular study, they show the state vector uncertainty propa-
gation with STM in Cartesian space should be used with
caution, especially when maneuver uncertainties are con-
sidered. It is necessary to ensure the modeled uncertainty
distribution remains Gaussian, but not sufficient: partic-
ular attention should be paid to the representation of ma-
neuver errors and the propagation of the nominal state
vector. Otherwise, the accumulation of maneuver uncer-
tainties causes the STM propagated uncertainty to depart
from the reference results, which is corrected here by the
use of the shifted nominal state vector, taking into ac-
count the average perturbation of maneuvers.

Future work will consist in extending the Gaussianity
analysis to the complete period of interest, instead of test-
ing single dates as presented here. Indeed, in order to
use the STM to perform collision risk computations at all
times during the propagation, it is essential to verify that
the modeled uncertainty distribution stays Gaussian dur-
ing the whole timespan.
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(a) Early orbit phase (4 days propagation). (b) Station-keeping phase (7 days propagation).

Figure 10: Uncertainties propagated with Monte Carlo (dark blue) and STM (light blue) methods and shifted nominal
position (orange) in QSW.
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