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ABSTRACT 

The power of machine learning (ML) on classification 

problems has been well documented, from image 

classification to speech recognition, so its use in 

lightcurves seems reasonable as a new field of 

applicability. Lightcurves can be used to identify not only 

the attitude state, but also the type of platform, the 

orientation, and geometry. The space domain presents a 

challenge to the applicability of ML due to the large 

amount of training data required. The creation of a 

lightcurve simulator utilising the well-known Phong 

reflection model allows for the simulation of thousands 

of well-characterised training samples. Initial tests show 

that a neural network can identify the satellite and attitude 

mode from lightcurves with an accuracy of 95% using 

simulated data. Testing on real data shows care must be 

taken to ensure that the simulated data includes realistic 

gaps and noise; including these features, leads to an 

accuracy of at least 70%. 

1 LITERATURE REVIEW 

Utilising existing photographical and astronomical 

equipment for artificial satellite observations began with 

the advent of the satellite era in the late 1950s and has 

been evolving quickly since. Starting from photographic 

film, the state of the art moved to photomultiplier tubes 

[1], then to various generations of charge couple devices 

(CCD) and now to extending observational capabilities 

beyond the visible light spectrum. 

Optical tracking data, obtained from either photometers 

or non-resolved images, has historically been used for the 

orbit determination of resident space objects (RSOs). 

Recent research has proven that a collection of 

photometric measurements, i.e. the record of object 

brightness in time (traditionally referred to as a 

lightcurve) can provide vastly more detailed information, 

making it possible to infer the spin and attitude dynamics, 

shape and, to some extent, surface parameters. 

1.1 Spin and Attitude State Characterisation 

Analysing lightcurves for intrinsic periodicities and their 

changes is the most fundamental approach to 

characterising space objects via photometric 

observations. Since it is a general problem of time series 

analysis, several methods and techniques have been 

developed and commonly adopted in the space 

situational awareness (SSA) field. 

Fourier Transforms, in particular the Fast Fourier 

Transform (FFT), are commonly used to determine the 

spectral density when searching for dominating 

periodicities of time series data. The main drawback of 

any Fourier Transform (FT) method is the requirement of 

an equally spaced time series that is free of gaps and 

strong noise, conditions that are rarely present in satellite 

observations. Various pre-processing techniques have 

been applied to the input data to mitigate mentioned 

shortcomings, however FT-based methods are commonly 

used as a crosscheck for other periodicity searching 

techniques. 

On the other hand, a method specifically designed for 

sparse and unevenly sampled data is least squares 

spectral analysis, Reference [2] observes that rotation 

periods up to 40% of the duration of the lightcurve can 

be detected using the Lomb-Scargle algorithm only if the 

data is free of gaps. Introducing gaps into the data reduces 

the duration of the detectable rotational period to just 

16% of the total time series. The same reference also 

shows that Epoch Folding is able to detect periods if the 

length is less than 45% of the total lightcurve. 

Typically, a combination of several methods, in addition 

to the individual experience is used to extract reliable 

spin and attitude state information from lightcurve data. 

1.2 Shape Estimation 

The Light Curve Inversion (LCI) approach aims to 

determine approximately the shape of a satellite and is 

one of the key aspects of ongoing space situational 

awareness research efforts. Using photometric data with 

a light curve inversion technique commonly used for 

asteroid shape estimation; [3] presents an initial 

investigation of the approximate shape of man-made 

objects in the GEO belt. The results indicate that light 

curve inversion is a beneficial technique for rocket bodies 

and CubeSats, while presenting only moderate 
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difficulties with high area-to-mass ratio objects and box-

wing shapes. 

Reference [4] applies deep learning for RSO 

classification using photometric data, in preparation for 

future RSO catalogues, which will have more restraint 

requirements and shall provide a detailed picture of 

characteristics such as shape, attitude, angular velocity, 

as well as surface parameters. Noting that physically 

based model inversion (via Extended Kalman Filters) is 

computationally expensive, the authors show how deep 

learning methods (Convolutional Neural Networks) can 

be deployed to provide an effective shape retrieval in a 

fast and accurate fashion. Using purely simulated data for 

four simple models representative of typical rocket body 

shapes, shown in Fig. 1-1., an average classification 

accuracy of over 90% is achieved, with a maximum 

confusion of 2% between classes “a” and “d”. This work 

serves as a proof of concept regarding the use of machine 

learning for RSO classification. 

 

Figure 1-1.  Simulated rocket body models as seen in 

[4]. 

1.3 Phong Reflection Model 

The mathematical model chosen for use in the light curve 

simulator was the Phong reflection Model, which has 

been widely used in computer graphics since it was 

developed by Bui Toung Phong in 1975. This model 

belongs to a larger collection know as bidirectional 

reflectance distribution functions (BRDFs) which are 

used to calculate the brightness of a point based on the 

directions of the light source and the observer. 

The brightness computed from the Phong model is the 

result of three components: ambient, diffuse, and 

specular reflections. 

 

Figure 1-2. Breakdown of a BDRF. [5]. 

The ambient brightness is the uniform light distribution 

within a scene, the diffuse component is the light 

reflected in all directions by a point, and the specular 

component consists of bright highlights due to light 

reflecting off a shiny surface. A simplified visualisation 

of these components is presented in Fig. 1-3. 

 

Figure 1-3. Phong Reflection Model.(a) diffuse 

reflection light, (b) specular reflection light, and (c) 

ambient reflection light [6]. 

For satellites in Earth orbit, the problem can be simplified 

by assuming that the ambient component is negligible 

and the only light source present in the scene is the Sun. 

This reduces the reflection model to: 

 𝐼 = 𝑘𝑑(𝐿̂ ∙ 𝑁̂)𝑖𝑑 + 𝑘𝑠(𝑅̂ ∙ 𝑉̂)
𝛼

𝑖𝑠 (1) 

Where: 

- 𝐼, is the reflected intensity, 

- 𝑘𝑑/𝑠, are the material coefficients for diffuse or 

specular reflection, respectively, 

- 𝑖𝑑/𝑠, are the diffuse and specular intensities of 

the light sources, respectively, 

- 𝛼, is a parameter that determines the “shininess” 

of the material (with shiny, mirror like surfaces 

having a higher value), 

- 𝑅̂, is the direction vector of perfect reflection 

and is defined as: 

 𝑅̂ = 2(𝐿̂ ∙ 𝑁̂)𝑁̂ −  𝐿̂ (2) 

Where: 

- 𝐿̂, is the direction vector from the point to the 

light source, 

- 𝑁̂, is the normal vector at the given surface 

point, 



- 𝑉̂, is the direction vector from the point to the 

viewer. 

Due to the separation of the observer from the satellite, it 

can be assumed that the direction vectors of both the light 

source and the viewer are constant across the reflective 

surface, thus the brightness is dependant only on the 

surface normal (since 𝑅̂ is only dependant on 𝑁̂). It is 

therefore relatively simple to integrate on each surface 

and obtain the brightness of a 3-D shape. 

It can be observed that the diffuse component is 

independent of the viewer direction and is determined by 

the angle between the surface normal and the light 

source. For a satellite, this means that the diffuse 

brightness will vary slowly with the position and attitude 

of the satellite with respect to the Sun. The specular 

component, on the contrary, depends on all the position 

vectors and is responsible for the characteristic peaks that 

are often seen in lightcurves. 

The ambient component of an object's appearance is the 

result of scattered (and often multiply scattered) light, 

which comes from an object's surroundings rather than 

directly from a light source [7]. Ambient light in the 

context of a room on Earth would be light scattered by 

the structure of the room (e.g. the walls and ceilings) and 

other objects within the room. For objects in space, the 

ambient light would be from distant stars, galaxies, 

nebulae, etc. (with the exception of earthshine, which is 

discussed separately). 

The radiance of cosmic illumination has been measured 

on the surface of the Earth [8]. The value can be used as 

an approximation of the value that would be seen in Earth 

orbit. The approximate value is quoted by [8] as ~2.2 ·
10−4 lux as the radiance on a flat surface due to the 

cosmos. In comparison, the Sun would contribute ~10+5 

lux, and the full Moon ~10–1 lux. While the values are 

approximations, the radiances from the cosmos and the 

Moon are orders of magnitude less than the direct solar 

illumination and so will not contribute significantly to a 

satellite's photometric signature. 

Sunlight reflected from the Earth (earthshine) is often 

visible as a brightening of the full disk of a thin-crescent 

Moon. This phenomenon is most prominent in the 

evening, when the Moon is a few days past new and sets 

not long after the Sun. The amount of earthshine from an 

object depends on how much of the sunlit Earth is visible 

to the surfaces of the object, which are visible to the 

observer. The extent of planetary cloud cover and the 

scattering characteristics of the sunlit land and cloud will 

all be significant – but difficult to model – factors, which 

affect the amount of earthshine, directed towards the 

object's visible surfaces. 

GEO satellites are typically observed at, or near, 

opposition (see Fig 1-4) where the object is at 

considerable angular distance from the Sun, the Earth-

facing side of the object will be facing the night side of 

the Earth and so no Earth-reflected reflected sunlight will 

illuminate the object. Modelling indicates earthshine will 

be less than 10–3 that of the direct solar illumination [9]. 

 

Figure 1-4.  Satellite viewed at opposition (arrow 

indicates direction of sunlight). 

2 LIGHTCURVE SIMULATOR 

Due to the lack of large amounts of well-characterised 

real photometry data to use in training machine learning 

algorithms, it was decided in this project to implement a 

simulator capable of producing large amounts of realistic 

lightcurves. The simulated lightcurves were validated 

against examples from the archive of SpaceInsight Ltd 

(SIL) and the expertise of Beechleaf Consulting Ltd 

(BCH) was used to recreate, as accurately as possible, the 

model of the satellites used in validation. 

An extensive collection of satellite images sourced by 

BCH, were used to provide the configuration of each 

satellite, including the number of antennae and the 

approximate size of each shape. The material properties 

of each surface were also estimated using these images, 

combined with baseline values for typical materials 

provided by both SIL and BCH. 

The satellites chosen for final validation were a result of 

iterative work comparing the satellites available in the 

SIL archive and those that could be easily modelled by 

use of artist impressions and photographs. 

The lightcurve simulator was designed with the goal of 

producing sufficient data with which to train a machine-

learning algorithm. Computationally intensive methods 

such as 3D modelling and ray tracing were discarded, and 

finally the Phong reflection model (presented in Section 

1.3) applied to satellite models composed of simple 

shapes was considered reliable and accurate enough for 

the purpose. The simple shapes composing those models 

consisted of cubes, flat plates, cylinders, and spheres. 

Each shape is treated individually and is considered to be 

at the origin of the satellite model and so any effects from 

shadowing or multi surface reflections are not 

considered. Each shape is created by specifying the size 

and material properties: ambient coefficient, diffuse 

coefficient, specular coefficient and specular index. The 

satellite can be configured as either spinning or stable 



with configurable pointing offsets or spin rates and each 

shape can be offset from the main satellite frame to 

recreate antenna pointing. 

The simulator also includes the capability to randomise 

several parameters per lightcurve in order to recreate 

variations to the configuration and the location of the 

spacecraft. The key parameters that can be randomised 

within a configurable margin are: 

- Satellite longitude 

- Satellite body pointing 

- Shape fixed orientation (w.r.t. the satellite 

body). 

- Shape initial orientation and spin rate. 

- Material coefficients 

- Specular index 

2.1 Validation with SIL Archive 

In order to verify the satellite models created for the 

simulation, full night photometry data provided by SIL 

was used. It was decided that this study would focus on 

GEO satellites (due to the full night photometry 

available) and so this archive is well suited as it contains 

mostly GEO photometry recorded by the Starbrook 

optical telescopes located in Troodos, Cyprus. This data 

was for satellites identified by BCH as well defined and 

of similar box wing designs. The photometry files were 

all recorded in September 2018 and due to the alignment 

of the Sun and Earth at this time of year the shadow of 

the Earth was present, which caused a gap of 

approximately 70 mins and so some definition was lost. 

Comparisons between the simulated and real photometry 

are shown in Figs 2-2 and 2-3. 

 

Figure 2-1. Athena-Fidus Starbrook Comparison 

The data gap that is seen at roughly the midpoint of the 

previous lightcurves was caused by the Earth’s shadow, 

and so there is no illumination from the Sun. The values 

shown are the noise caused by the background 

subtraction process. This functionality was included in 

the simulator and as such, the background noise can be 

configured. 

The smaller areas of noise present in the Starbrook 

photometry are mainly due to clouds or other obscuring 

phenomena and so cannot be recreated accurately in the 

simulator due to their unpredictability. 

 

Figure 2-2. Eutelsat 36B Starbrook Comparison 

Towards the end of the lightcurve in Fig. 2-2, the 

apparent magnitude of the simulated data can be seen to 

drop off compared to the observed photometry. The cause 

of this is unclear. It is possible that the simple shapes used 

to create the satellite were missing details only observed 

around twilight, or that the photometry reduction 

methods used do not cope well with effects seen around 

twilight; other factors such as the presence of the galactic 

plane in the image could also contribute to errors seen. 

Nevertheless, it has been demonstrated that the simulator 

is able to provide representative lightcurves using a 

relatively simple reflection model and basic shapes. 

Tumbling satellites are more difficult to model due to the 

uncertainty regarding the spin axis, spin rate and the 

deployment of panels before the tumbling state began. 

Photometry of tumbling satellites is far scarcer than for 

stable satellites and as such only two tumbling objects 

were initially available from the SIL archive - Angosat 1 

and GSat 6A. For each satellite, only one photometry file 

was available, in comparison to an average of 10 for 

stable satellites. The experience of SIL was used to 

estimate the configuration of each tumbling satellite 

including the spin rates and satellite configurations. The 

comparison between the real photometry (black lines), 

SIL simulated photometry (blue lines), and the lightcurve 

simulator (red lines) is shown in the following Fig. 2-4. 

 

Figure 2-3. Angosat 1 Photometry Comparison 



It is possible to obtain a realistic approximation of the 

spin rate by examining the real photometry and making 

some assumptions. For Angosat 1 it was assumed that the 

twin peaks seen in Fig. 2-4 were caused by the two side 

mounted antenna and thus the rotational period can be 

estimated as approximately two hours. It can be seen in 

Fig. 2-4 that the frequency of the peaks is well matched 

by both simulated lightcurves, as is the relative size of 

each peak. The absolute value of each peak is not 

recreated well however with both simulated lightcurves 

either under or over-estimating different peaks. It is 

therefore likely that a more detailed simulation method is 

needed to capture effects that that are not currently 

considered, such as overlapping shadow from multiple 

surfaces. The machine learning testing with real data will 

be solely focussed on real data due to the difficulty in 

retrieving multiple lightcurves for any given tumbling 

satellite and so the current simulation method is well 

suited for this purpose. 

3 AI APPROACH 

Based on the available expertise and the literature review, 

three distinct approaches were devised, each with an 

alternate approach to processing the data prior to the 

neural network.  

- The first approach involves doing no processing to the 

raw data (brightness), only normalisation when needed, 

and simply using the raw lightcurve as the input. This will 

allow the neural network to decide what features are 

linked to changes in brightness and how the phase angle 

can influence the brightness. 

- The second approach involves deciding what features 

are likely to influence the lightcurve and only provide this 

to the AI, greatly reducing the volume of data required. 

Data processing for this method involves applying pre-

processing methods to the raw lightcurves, such as 

polynomial fitting, providing the coefficients and 

residual as input, or the frequencies identified by a 

Fourier transform. 

- The third approach is taken directly from the literature 

[10], where it was applied to sparse photometry of distant 

solar bodes by taking the difference in brightness and 

time of every combination of pair of points. This idea was 

presented as a way to extract patterns of sparse, uneven 

data but is applied here to simulated lightcurves.  

3.1 Interfaces and pre-processing 

To perform any needed data handling and normalisation, 

an interface was created to process the simulated data 

before it was passed as in input into the neural network. 

The main function of this interface is to collate all the 

lightcurves into a single csv file, which can be easily 

loaded and then reshaped to form the inputs to the neural 

network. Prior to creating this csv file, the interface 

applies any normalisation, filtering, pre-processing 

and/or other configurable data augmentation techniques. 

In addition, this interface standardises the real data to the 

size required by the input layer of the neural network, and 

removes possible outliers. 

 

Figure 3-1. Original and formatted apparent magnitude 

comparison (2003-020A) 

3.2 Raw Data 

This approach is the simplest of the three considered. It 

involves passing the lightcurve from the simulator into 

the machine learning algorithm with no additional data 

processing or manipulations applied, apart from the ones 

related to the data interfaces. 

The data was normalised using two methods: 1) to have 

zero mean and unit variance and 2) re-arranged to ensure 

all the outputs lie between zero and one. 

 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑 𝑑𝑒𝑣(𝑥)
 (3) 

For testing with real data, the same normalisation was 

applied but using the mean and standard deviation from 

the training data to ensure the same distribution and range 

of values is considered. A combination of both 

normalisations were used and it was found that the best 

results when testing with real data were achieved when 

both normalisation methods were applied. When dealing 

with simulated data only, the best results occurred with 

either both normalisation methods or none applied. The 

use of only one of the normalisation methods not only 

yielded poorer accuracy but also took more training 

epochs to converge to a stable accuracy. 

3.3 Feature Analysis 

This approach involves the analysis of the lightcurves 

looking for the most important characteristics or features. 

In this case, only a preliminary analysis was performed, 

including maximum and minimum values, the possible 

polynomial coefficients of a polynomial fitting and the 

most representative frequencies of its Fourier transform. 

During the analysis, no real data was used, as the other 

methods discussed in this section displayed more 

promising results. 



 

Figure 3-2. Schematic representation of the polynomial 

fitting 

3.4 Differential Approach 

This approach was taken from [10] and it is designed to 

capture the variability in the lightcurve by showing the 

variation in brightness and time, instead of the absolute 

values. The computation involved taking the first value 

of brightness and time and computing the difference in 

each for every other point in the lightcurve. This was then 

repeated for every value of apparent magnitude and time 

leading to (𝑥 − 1)2 pairs of points, where 𝑥 is the number 

of points in the original lightcurve.  

This method was originally applied to photometry taken 

from the Catalina Real-Time Transient Survey, which 

contained optical measurements of transient celestial 

phenomena such as supernovae. The differential 

approach was applied here due to the uneven and sparse 

nature of the data, with the idea being to create more data 

while capturing the variability of the original. 

 

 

Figure 3-3. Example of an input for the differential 

approach 

This differential mapping was applied in the same way to 

the simulated lightcurves used for the initial machine 

learning testing where the time component was replaced 

by the phase angle. This generated 1,036,800 data points 

per lightcurve, with half being the brightness difference 

and the other half being the corresponding phase angle 

difference. Given that machine learning datasets could 

contain thousands or millions of training examples, it was 

decided to sub-sample (1/10) the simulated datasets to 

perform the initial tests. 

4 RESULTS AND DISCUSSION 

In order to understand the precision in the predictions of 

each algorithm, the confusion matrix tool was used. This 

graphical representation allows discerning how far the AI 

predictions (the ordinates’ labels) are from reality (the 

abscissae’s labels). The darker the diagonal the better the 

prediction. 

For each of the approaches discussed here, the same 

satellites, shown in Tab. 4-1., were used as a dataset 

unless otherwise stated. 

Table 4-1. Satellites Used 

Sat. Name Sat No. Attitude Mode 

Athena-Fidus 39509 Stable 

Eutelsat 36B 36101 Stable 

Hellas-Sat 2 27811 Stable 

Sicral 2 40614 Stable 

Angosat 1 43087 Tumbling 

GSat 6A 43241 Tumbling 

 

4.1 Raw Data 

4.1.1 Simulated Data 

Initial testing was carried out using only simulated data 

and using only apparent magnitude as the input. The 

neural network used to obtain the best results for this 

phase is shown in Tab. 4-2. Note that a feature here is 

defined as a unique input variable to the neural network. 

For example, a lightcurve consisting of apparent 

magnitude and phase angle at every time step would have 

two features at every epoch.  

Table 4-2. Baseline Raw Data Neural Network Design 

Layer No. of Neurons 

Input 721 x no. of features 

Dense fully connected 2000 x no. of features 

Dense fully connected 2000 x no. of features 

Dense fully connected 2000 x no. of features 

Flatten 2000 x no. of features 

Output no. of classes 

 



Using this design and training the network for 100 epochs 

(iterations), the neural network achieves 88% accuracy 

on identifying the satellite using apparent magnitude 

only. 

Fig. 4-1 shows the confusion matrix for this scenario, 

which reveals a high level of confusion between the 

stable satellites, in particular Eutelsat 36B and Hellas-Sat 

2, with up to 19.2% and 24.4% confusion in labelling 

each class. Examining the artist’s impressions shown in 

Fig. 4.2 shows that these two satellites have a similar 

configuration of front mounted antenna, which may be 

causing this significant confusion. Although Eutelsat 

36B appears to have four side mounted antenna whereas 

Hellas-Sat 2 has only two, the total surface area may be 

similar and thus adding to the similarities. Athena-Fidus 

appears to have the most distinctive profile with six small 

antenna front mounted antenna and three side mounted. 

The result of this is clearly seen in Fig. 4-1 as Athena-

Fidus has the highest classification accuracy of all the 

stable satellites. 

 

Figure 4-1. Satellite Identification Confusion Matrix 

(Apparent Magnitude Only) 

 

Figure 4-2. Stable Satellites 

The neural network also shows an accuracy of 88-96% in 

distinguishing Angosat 1 from GSat 6A, which are the 

two tumbling satellites in this dataset. Both of these 

satellites are tumbling because of a failure during GEO 

orbital insertion. The spin rates and initial positions for 

each are randomised within the same margin and so the 

only difference between the satellites is the construction 

of the models. Fig. 4-3 shows the artist impressions for 

Angosat 1 and GSat 6; GSat 6A was of identical design 

but suffered a failure during orbital insertion and the large 

antenna was never deployed. As such, there is no antenna 

included in the GSat 6A model whereas Angosat 1 is 

modelled as having two side-mounted antennae, which 

may account for the relatively high accuracy in 

identifying between these two satellites.  

 

Figure 4-3. Tumbling Satellites 

Including the phase angle as part of the input layer 

increases the accuracy of the network to 95%, as is shown 

in Fig. 4-4 where the confusion matrix is more strongly 

aligned with the diagonal. Including the phase angle may 

be allowing the neural network to identify patterns in how 

the brightness is dependent on the phase angle and so any 

anomalies caused by surface offsets may be easier to 

detect, hence the increase in accuracy. 

 

Figure 4-4. Satellite Identification Confusion Matrix 

(Apparent Magnitude + Phase Angle) 

The results from Figs 4-1 and 4.4 show very little 



confusion between the tumbling (Angosat 1 and GSat 

6A) and stable satellites with a maximum confusion of 

only 1%. This was analysed in more detail by taking one 

stable satellite (Athena-Fidus) and one tumbling satellite 

(Angosat 1) and simulating each as both stable and 

tumbling. The results show an accuracy of over 95%, 

which would suggest that the neural network is clearly 

able to identify which lightcurves contain periodicities 

and which do not. 

 

Figure 4-5. Attitude Mode Confusion Matrix 

Preliminary work was conducted to test the ability of the 

neural network to identify the current pointing of satellite 

antenna. This could have real world applications such as 

fault identification or aiding in the classification of 

unknown satellites by determining where the antenna are 

pointing on the Earth. For this, a simple satellite was 

created using Hellas-Sat 2 as a basis. This mock up 

satellite was only modelled with one large antenna of 5m2 

(compared to other modelled antenna of 0.5-2m2). This 

antenna was offset in pitch (North - South) and then yaw 

(East – West) in increments of 0.1 radian (5.73 degrees) 

from -0.4 to +0.4 radians. It was found that the neural 

network was unable to recognise the pitch variations but 

showed remarkable accuracy in identifying the yaw 

offset in certain circumstances. Two scenarios are 

presented here: the first consists of lightcurves that have 

been simulated on a random day of the year and the 

second where the lightcurves are constrained to be on a 

random day within one month. The unconstrained 

scenario yields an accuracy of 30-40% and considerable 

confusion between small offset values as shown in Fig. 

4-6 although the accuracy increases with a larger offset 

value, as should be expected. The labels correspond to 

the specific offset value, where “NEG_POINT_FOUR” 

is a yaw offset of -0.4 radians. The interesting point about 

this is the constant confusion with the undisturbed value 

(ZERO_YAW). Regardless of the actual offset, there is 

at least 20% confusion with this zero value, although it 

does appear to reduce slightly as the offset magnitude is 

increased. 

 

Figure 4-6. Surface Offset Detection Confusion Matrix 

(One Year) 

Given the previous results, a second trial was attempted 

but limiting the lightcurves to be generated within one 

month, largely reducing the variability in the lightcurves 

by limiting the position of the Sun. This allowed an 

accuracy of 80% to be achieved and removing the 

previous confusion with the undisturbed value. Fig. 4-7, 

shows impressive results with over 90% accuracy 

achieved in identifying the larger offsets. With the offsets 

close to zero, noticeable confusion can be seen with the 

nearest labels, mainly in the ±0.5 radian categories but 

this is quickly reduced as the offsets are increased in 

magnitude. 

 

Figure 4-7. Surface Offset Detection Confusion Matrix 

(One Month) 



These results suggest that the effect of the solar 

declination somehow masks the effects that offsetting 

one panel can have. This is likely the cause of the 

confusion seen in Fig. 4-6, which was greatly reduced by 

limiting the lightcurves to one month. Further work is 

warranted to explore this effect and to attempt 

improvements that can somehow decouple the effects of 

antenna offsets and the solar declination. It is worth 

noting that both scenarios used a dataset of 2,000 

lightcurves and it is likely that increasing this would 

improve the ability of the neural network to distinguish 

the antenna pointing effects from the phase angle effects.  

4.1.2 Real data 

Real data testing was limited to stable satellites due to the 

lack of sufficient photometry for tumbling satellites; 

therefore, the only scenario that could be tested on real 

data was satellite identification. The stable satellites used 

were Athena-Fidus, Eutelsat 36B, and Sicral 2 each 

having 10 photometry files available from the SIL 

archive, all recorded in September 2018. The real data 

was processed using the interface, described in Section 

3.1 in order to be normalised within the same time span 

as the simulated data and therefore have the same number 

of inputs as the simulated data. The neural network was 

trained and validated using simulated data, with the real 

data being used as a test dataset. The date of the simulated 

data was also constrained to be within the same month as 

the real data. Initial results show poor performance with 

the neural network failing to produce a clear 

identification using an initial test dataset containing only 

Athena-Fidus and Eutelsat 36B.  

 

Figure 4-8. Initial Real Data Confusion Matrix 

When comparing the simulated and real lightcurves, 

significant differences were found because of the 

normalised timespan used. The simulated lightcurves 

were always produced within a span of local midnight ±6 

hours with a time step of 60s leading to a fixed 721 

intervals per lightcurve. The real data can be of any 

length and with an unknown time step; this is why the 

real data interface discussed in Section 3.1 was 

developed, to normalise the lightcurve length and time 

step. This caused blocks of zeros to be inserted since the 

real lightcurves are usually shorter than the standard 12-

hour duration. This created a scenario for which the 

neural network had not been trained for (as the training 

data contained no zeros) and so the tests on real data were 

failing. 

The interface between the simulated data and the neural 

network was subsequently updated to insert an array of 

zeros at the start of each lightcurve to allow training with 

more representative data. This lead to improved results 

with an accuracy of 70% but the confusion matrix in Fig. 

4-8 shows that the majority of examples are classified as 

Athena-Fidus.  

The simulated data interface was then further updated to 

insert an array of zeros at the start and end of each 

simulated lightcurve. The length of these zero arrays was 

randomised with a configurable upper and lower limit. 

The size of the neural network was increased to account 

for the loss of significant amounts of training data. 

Adding dropout to the initial three layers was also found 

to provide results that were more reliable during 

validation and testing. 

The resulting design is shown in Tab. 4-3. With these 

updates, the neural network was able to achieve an 

average of 70% accuracy which varied by ±10% between 

subsequent executions. This is most likely a consequence 

of the limited availability of real data. 

Table 4-3. Real Data Neural Network Design 

Layer No. of Neurons 

Input 721 x no. of features 

Dense fully connected 2000 x no. of features 

Dropout (0.4) - 

Dense fully connected 2000 x no. of features 

Dropout (0.4) - 

Dense fully connected 2000 x no. of features 

Dropout (0.4) - 

Dense fully connected 2000 x no. of features 

Dense fully connected 2000 x no. of features 

Flatten 2000 x no. of features 

Output no. of classes 

 



 

Figure 4-9. Final Data Confusion Matrix 

4.2 Feature Analysis 

In the case of the feature analysis, the architecture of the 

neural network used to obtain the best results for this 

phase is summarised in Tab. 4-4. 

Table 4-4: Feature Analysis Satellite Identification NN 

Design 

Layer No. of neurons 

Input 6  

Dense fully connected 10 

Dense fully connected 8 

Flatten no. of classes 

Output no. of classes 

 

The input layer included the maximum and minimum 

values of the apparent magnitude, the coefficients of a 

third order polynomial regression and the first two most 

representative frequency amplitudes of the Fourier 

transform. 

It is worth to mention the significant differences between 

the architectures of the previous approach and this 

approach. Feature analysis used almost 200 times less 

neurons than the raw data analysis, which influences 

directly the number of parameters to be trained. This 

difference is due to the reduced number of inputs used, 

as, instead of using raw data, the neural network only 

needs the main characteristics of the lightcurve to 

identify the satellite. 

Using this architecture for the AI and training for slightly 

less than 100 epochs, the AI was able to achieve almost 

80% of accuracy for all the simulated lightcurves as 

shown in Fig. 4-10. It can also be seen that tumbling 

satellites are the most distinguishable satellites of all the 

ones analysed, reaching more than 99% correct 

predictions for both satellites. On the other hand, there 

seems to be a high confusion between stable satellites, 

leading to correct predictions of even around 30% 

accuracy. For example, Eutelsat 36B and Sicral 2 only 

reaches around the 70% of success in the predictions and 

the AI algorithm could not distinguish correctly between 

Athena-Fidus from Hellas-Sat 2, as their number of false 

positives reached a 29.6% and 30.1% respectively. 

 

Figure 4-10: Feature Analysis Satellite Identification 

Confusion Matrix 

Fig. 4-3 shows the overall configuration of both tumbling 

satellites and it is known that GSat 6A had a problem 

during the launch, which prevented the bigger antenna 

from being extended. This was taken into account when 

the simulated data was generated. In addition, both 

satellites’ rotation rates were simulated using different 

random seeds within a wide range of speeds around their 

nominal rotation speed. All these facts seem to indicate 

that this neural network architecture is able to correctly 

identify tumbling satellites, even with similar spin rates, 

thanks to the use of the Fourier coefficients, while the 

polynomial fitting is not covering correctly the behaviour 

of the stable satellites. 

4.3 Differential Approach 

Using the differential approach as described in section 

3.4, a neural network with the same design as Tab. 4-2 

was trained to identify the satellite that created each 

lightcurve using purely simulated data. The accuracy is 

comparable to that achieved using raw data (around 

90%), but the volume of data used to achieve this 

accuracy is over 4 times that of the raw data approach, 

even with the under sampling proposed.  



 

Figure 4-11. Differential Approach Confusion Matrix 

The training results for this method are much noisier than 

the raw approach, with the validation loss varying 

significantly as shown in Fig. 4.12. There also appears to 

be a certain degree of overfitting as the validation loss 

seems to be slightly tending upwards during the latter part 

of training. 

 

Figure 4-12.  Differential Approach Validation Results 

5 CONCLUSIONS 

The lightcurve simulator solves the problem of the lack 

of large amounts of real photometry data to use in 

training a machine-learning model, as it generates 

photometry data similar to the real data with enough 

variability to consider a huge number of conditions.  

The three approaches considered achieved reasonable 

accuracy, in particular the feature analysis performed 

best on the classification of tumbling satellites, while the 

other two methods reached at least 90% accuracy in 

identifying the satellite. Despite the high accuracy on 

tumbling satellites, the feature analysis approach was 

unable to differentiate clearly between stable satellites. In 

contrast, the differential approach was able to achieve 

comparable accuracy with the raw data approach but the 

significantly increased processing time and volume of 

data does not provide any significant advantage against 

the raw data approach. High accuracy for attitude mode 

identification is common across all approaches, 

differentiating between tumbling and attitude stable 

satellites.  

The real data testing showed that it is possible to train a 

neural network with simulated data and then apply this 

network to real data with accuracy of 70±10% only if the 

simulated data contains the same levels of gaps and noise 

as is present in the real data. The fluctuation in the real 

testing accuracy is likely caused by the limited real data 

(only 10 examples per satellite, all in the same month) 

compared to the thousands of training examples that can 

be simulated, each with a randomised configuration. A 

dedicated campaign to supplement the existing 

photometry would be a logical next step in continuing 

this work. 
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