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ABSTRACT 

We present the development of an experimental 

measurement technique designed for measuring 

hypervelocity impact fragmentation in the laboratory. 

The setup uses multiple high-speed cameras to record the 

debris fragments. The main steps of the algorithm are: 

fragment identification and tracking in each view, 

matching the fragments found in different views, and 

reconstructing the 3D trajectories of each fragment. The 

result is a method able to measure the 3D positions, 3D 

velocities, and sizes of individual debris cloud fragments 

to a level of detail unmatched by other experimental 

methods. We present an outlook of how the experimental 

hypervelocity fragmentation data collected is being used 

to validate state-of-the-art numerical simulations to better 

predict the fragmentation patterns and satellite breakup 

effects.  

1 INTRODUCTION 

The increasing number of objects orbiting in Earth’s 

orbits constitute a growing risk to satellites operating in 

low earth orbit. Improving our understanding of the space 

debris environment is one step necessary for mitigating 

this risk and slowing its growth. Ground based sensors, 

such as radar and telescopes, are able to provide valuable 

information about the current debris environment, but are 

limited in their resolution. Small sub-centimeter pieces of 

debris are difficult, if not impossible to detect from 

ground-based sensors, yet they are still capable of 

damaging or disabling satellites due to their high incident 

velocities. Numerical simulations based on physical-

mathematical models are one solution to better 

understanding the presence and effect of these smaller 

debris fragments in the orbital environment. While 

numerical simulations are a powerful tool for 

investigating and understanding hypervelocity impact 

(HVI) phenomena, their results are only relevant if the 

models can be shown to faithfully reproduce the physical 

reality of impact and fragmentation. To this end, high 

quality experimental data is needed to calibrate and 

validate numerical simulations.  

Typical experimental measurements of HVI in the 

laboratory are only able to provide generalized or 

qualitative data on the fragmentation resulting from the 

impact. Such measurements are often made with high-

speed cameras or radiographs and can measure the 

expansion velocities of prominent features of the debris 

cloud or provide experimental images for qualitative 

comparisons with numerical simulations. What is 

lacking, for the purpose of numerical validation, is more 

quantitative and statistical data on the properties of the 

individual debris cloud fragments. 

A number of researchers have developed methods for 

tracking and measuring individual fragment properties 

from HVI. The earliest attempts focused on geological 

materials and used a laser sheet to selectively illuminate 

a small subset of particles at a time [1]. More complex 

analysis algorithms, such as Particle Image Velocimetry 

[2] and Particle Tracking Velocimetry [3] from fluid 

applications, allowed detailed data to be measured about 

material ejection from HVI in sand [4], [5].  

The fragment tracking method described in this paper 

also traces its roots to the 2D tracking of ejecta in 

geological material using a laser sheet [6], [7]. The same 

method was applied to track HVI fragments of aluminum 

bumper plates in 2D [8]. Upgrading the fragment tracking 

method from 2D to 3D required new analysis algorithms 

[9] and additional cameras or mirror systems [10]. 

In this paper, we build upon previous developments and 

describe an experimental method which uses at least two 

high-speed cameras and is capable of measuring 

individual fragment positions and velocities in 3D. 

Additionally, fragment sizes can be estimated from the 

images allowing fragment kinetic energy and momentum 

to be directly measured. The uniquely detailed data that 

can be measured with this approach is being used to 

validate numerical simulations to a much higher level of 

detail than previously possible.  

2 EXPERIMANTAL SETUP 

Our fragment tracking method has relatively low setup 

requirements. All that is needed is two or more 

synchronized high-speed cameras and an adequate light 

source. Fig. 1 shows an example of an experimental setup 

at one of Fraunhofer EMI’s light-gas gun facilities. In this 

setup, three high-speed cameras capable of micro- to 

nanosecond exposure times and framerates of up to 10 

million frames per second, are placed in a closely packed 
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configuration to record the fragments generated upon 

HVI. A schematic view showing the relative positions of 

the cameras, the target, and the fragment cloud is shown 

in the lower left corner of Fig. 1. Illumination in this case 

is provided from behind the fragment cloud in a back-lit 

configuration using halogen flash lamps. This leads to 

shadowgraph recordings of the debris fragments. Front-

lit experimental setups have also been successfully 

applied to our fragment tracking method.  

For accurate 3D measurements, it is critical that the high-

speed cameras be accurately synchronized to ensure each 

image sequence matches those of the other cameras. 

Alternatively, a single high-speed camera, with its image 

split into two separate views can also be used to avoid 

synchronization issues, as is described in [10]. 

The only other requirement for the experimental setup, is 

that the camera parameters, intrinsic and extrinsic, be 

known. This is typically measured with a camera 

calibration routine performed either directly before or 

directly after the experiment. For calibrating the cameras, 

we record dozens of images of a 2D checkerboard pattern 

of know dimension and calculate the cameras’ intrinsic 

and extrinsic parameters based on Zhang’s calibration 

method [11].  Radial and tangential distortion are 

corrected for with Brown's distortion model [12].  

In this paper, we use a single experiment to illustrate the 

steps and results of the fragment tracking approach and 

the type of experimental data that can be reliable 

measured from each experiment. As our illustrative 

example, we use an impact experiment involving an 

aluminium sphere impact on a carbon fibre reinforced 

polymer (CFRP) honeycomb sandwich panel. The 

honeycomb sandwich panel used is typical of those found 

in modern satellites and consists of two 1 mm thick 

CFRP face sheet with 0°/45°/90° fibre orientations, and 

an aluminium honeycomb core for a total thickness of 

32.5 mm. Fig. 2 shows a post-impact image of the 

sandwich panel. 

 

Figure 2. CFRP honeycomb sandwich panel after an 

impact with a 5.5 mm aluminium sphere at 7.0 km/s. 

The impactor is a 5.5 mm aluminium sphere and is 

accelerated to 7.0 km/s. The impact angle is 45° to the 

target normal. The target chamber is evacuated to 

8.25 mbar and is at room temperature. 

The three cameras shown in Fig. 1 record the impact 

event at 66 666 frames per second, each with a field of 

view of approximately 40 x 25 cm. Fig. 3 shows a series 

of snapshots from the high-speed video from camera 1. 

In these images, the target is just outside the camera’s 

field of view on the left side of each image. The impact 

direction is from left to right, and the ejected fragments 

also travel in this direction. The low frame rate, relative 

 

Figure 1. One of Fraunhofer EMI’s light-gas gun facility showing the setup of three high-speed cameras. Bottom 

left insert: Schematic view of relative positions of camera, target, and debris fragments. 
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to the impact velocity, was chosen in order to focus on 

the late-time fragments released from the CFRP face-

sheets and aluminium honeycomb core, rather than the 

very fast and finely fragmented particles of the 

aluminium impactor. From the image sequence in Fig. 3, 

we see that fragment sizes begin small and gradually 

become larger, culminating in entire sections of the face 

sheet delaminating. Fragment shapes can also be 

qualitatively seen to start small and round and then 

progress to long thin fibre shapes. 

It is our goal to track and measure as many of these 

fragments as possible, in order to determine their 

individual 3D velocities and sizes. 

3 ALGORITHM & ANALYSIS 

The algorithm used to perform fragment tracking can be 

broken into four major steps: detection, tracking, 

matching, and triangulation. This is shown schematically 

in Fig. 4. The first two steps, detection and tracking, are 

performed independently for each camera. Camera data 

is merged in the matching step. Finally, 3D quantities are 

reconstructed in the triangulation step. 

 

Figure 4. Workflow of the fragment tracking algorithm. 

3.1 Fragment Detection and Tracking 

The first step in any tracking algorithm is to detect the 

fragments. We do this independently for each image of a 

video sequence using standard image processing 

techniques including background subtraction, local mean 

subtraction, and thresholding. Fragments below a certain 

size threshold, usually one or two pixels, and above a 

certain threshold are removed.  

 

Figure 5. Tracked fragments in XYT space (2D + time). 

Next, the detected points need to be tracked, or linked 

together into trajectories, along the length of the video. 

We achieve this by implementing a random sample 

consensus (RANSAC) [13] based algorithm specifically 

tailored to the constraints and characteristics of the HVI 

fragments. Most notable of these is the fact that after 

impact fragment travel in free-flight, with only negligible 

external forces acting to change a fragment’s trajectory 

or velocity. Recognizing these unique characteristics 

allows us to accurately track fragment, even at very high 

particle per pixel densities, leading to robust results. Fig. 

 

 

Figure 3. Image sequence from one high-speed video camera. Impact from left to right with target panel out of 

view to the left of each image. 
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5 shows the results of fragment detection and tracking. 

Identified and tracked fragments are plotted in an XYT 

(2D + time) space. Fragments that represent the same 

object over time are shown in the same colour.  

3.2 Fragment Size 

Fragment sizes can be measured independently in each 

camera by segmenting the fragment foreground from the 

background. As shown in Fig. 6, a region of interest is 

defined about each fragment and the central fragment is 

identified and measured with the appropriate threshold. 

Since each fragment has already been tracked, the area of 

the same fragment can be measured over many frames. 

 

Figure 6. Fragment areas are measured by segmenting 

the foreground from the background. 

An example of this is shown in Fig. 7, where a CFRP 

fragment is tracked. Fig. 7 shows a collage of images of 

the same fragment at consecutive time frames starting at 

the upper left corner and proceeding to the right. The 

CFRP fragment can be seen rotating over time. Despite 

the low resolution and noisy image background, the 

ability to make size measurements repeatedly, over the 

course of a fragment’s trajectory considerably increases 

the reliability of the size measurement. The areas of the 

fragments in Fig. 7 are plotted over time in Fig. 8. Here 

the noisy nature of individual measurements is apparent 

as well as the advantages of having multiple 

measurements. 

 

Figure 8. Fragment area measurements are averaged 

over time 

3.3 Fragment Matching 

The most challenging step in our fragment tracking 

algorithm is the matching step, also known as image 

correspondence in the photogrammetry and computer 

vision communities. The goal here is to match the same 

fragment, seen in different views, together. This task is 

challenging because it can only be done based on the 

position of the fragments. Additional information such as 

features, shape, or colour are not reliable enough to be 

used because of the small fragment sizes and low camera 

resolutions. 

Fragment matching is made possible by using epipolar 

constraints as defined by the fundamental matrix between 

two cameras. The epipolar geometry of a camera pair is 

described by  

𝐥𝟏
′ = F12𝐱𝟏 , (1) 

where F12 is the 3 x 3 fundamental matrix, 𝐱𝟏 is 2D image 

coordinate in image 1, and 𝐥𝟏
′  is a line in image 2 on which 

the matching point must lie. The first two images of Fig. 

9 schematically illustrate this two image scenario. Point 

𝐱𝟏 is identified in image 1 (top left) and the 

corresponding epipolar line  𝐥𝟏
′  is shown in image 2 (top 

right) as an orange line. Potential matches in image 2, 

𝐱′𝐀 , 𝐱′𝐁 , and 𝐱′𝐂  are shown in green. All three of these 

points are within the error tolerance of the epipolar line 

and could be potential matches. They therefore represent 

ambiguities that cannot be resolved without additional 

information. 

 

Figure 7. Zoomed in view of a single fragment over multiple time frames. The rotation of the fragment is visible. 
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Figure 9. Epipolar geometry is used to match fragments 

between cameras. 

To resolve such ambiguities, a third camera, shown in the 

bottom image of Fig. 9, can be used. Eq. 1 can again be 

used for points identified in image 3 to help resolve 

ambiguities in image 2. This is graphically shown with 

the intersection of the purple and orange epipolar lines in 

Fig. 9. 

If three views are available, a much more elegant and 

robust solution is available via the three-view analogue 

of the two-view fundamental matrix, the trifocal tensor. 

Using the trifocal tensor, once a point has been matched 

in two views, it can be uniquely transferred to the third 

image with 

𝑥′′𝑘 = 𝑥𝑖𝑙′𝑗 𝑇𝑖
𝑗𝑘

, (2) 

using Einstein summation notation and where 𝑇 is the 

trifocal tensor, 𝑥 are image points, and 𝑙 is an epipolar 

line. The prime and double prime indicate image two and 

three respectively. 

3.4 Fragment Triangulation 

Once tracked fragments have been matched to one 

another in all three views, the 3D positions of each 

matched fragment can be reconstructed via triangulation. 

The final step after triangulation is a bundle adjustment 

step to refine the final reconstructed positions. 

4 RESULTS 

In this section we present some of the measurement 

results that can be made with the fragment tracking 

method described in the last section. We continue with 

the same example experiment presented in Sec. 2. 

Fig. 10 shows the last three experimental images from 

Fig. 3, this time with the completely tracked and matched 

fragments indicated with a small green dot and each 

velocity with an orange arrow. The velocities in this plot 

are 2D in-plane velocities. Due to the requirement that 

each fragment be uniquely matched in all three cameras, 

many fragments that are visible in Fig. 10 and have been 

tracked in this camera are not marked because a suitable 

match was not found in all three cameras. Large 

fragments, such as those seen in the last frame of Fig. 10, 

are also excluded from the tracking. 

In Fig. 11 these same fragments, combined with those in 

cameras 2 and 3 are triangulated to show their 3D 

positions and 3D velocities. In the plots of Fig. 11, the 

bold red arrow represents the impact direction and the red 

dot the impact location on the CFRP panel. The CFRP 

panel is placed at a 45° angle to the impact axis such that 

its normal vector lies in the y-z plane. The coordinate 

 

Figure 10. Fragments tracked in 2D in a single camera. Velocity vectors are scaled to the magnitude of the 2D 

fragment velocity. 
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system has its origin at the centre of camera 1. This 

configuration of the CFRP panel angle leads to 

apparently symmetric fragmentation pattern when seen in 

2D, such as in Fig. 10, but the clearly unsymmetrical 

reality is aparent when 3D data is available such as in 

Fig.11. 

The data represented as points and vectors in Figs. 10 and 

11 are also shown as histograms. Fig. 12 shows a 

histogram of fragment velocities. In this experiment, only 

the late-time, and hence slower fragments were tracked, 

ranging from 100 to 600 m/s. Being able to measure a 

fragment velocity distribution for a large and 

representative number of fragments in a single debris 

cloud represents one of the key achievements of our 

fragment tracking method as this type of data is rarely 

available from other experimental measurement 

methods. 

 

Figure 12. Fragment velocity distribution. 

Fig. 13 shows the fragment size distribution of the debris 

cloud fragments. This histogram is plotted on a log scale 

because of the power law nature of the distribution.  

 

Figure 13. Fragment size distribution. 

Fig. 14 combines the data shown in the velocity and size 

distributions to show a distribution of individual 

fragment kinetic energy. Fragment size data is converted 

into mass by using the thickness the CFRP ply layers, 

which constitute the vast majority of the tracked 

fragments based on post-mortem analysis. Fig. 14, also 

shown with a log scale, indicates a very strong 

representation of relatively low kinetic energy fragments. 

 

Figure 14. Fragment kinetic energy distribution. 

As a final example of the types of data that can be 

 

Figure 11. Fragments tracked in 3D. Velocity vectors are scaled to the magnitude of the 3D fragment velocity. 
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measured by the fragment tracking, we show the 

distribution of individual fragment momentum in Fig. 15. 

Fig. 15a shows a standard momentum histogram, while 

Fig. 15b presents the same data as a bivariate histogram 

covering fragment velocity and mass. The number of 

fragments in each bin is indicated by the colourbar. The 

grey iso-lines represent contours of constant momentum. 

Interestingly, Fig. 15b shows that the distributions of 

fragment momentum roughly follow the contours of 

constant momentum. 

 

Figure 15. Fragment momentum distribution. Left: 

simple histogram. Right: bivariate histogram with 

colourbar indicating count and iso-lines indicating 

constant momentum. 

5 APPLICATIONS 

State-of-the-Art numerical models are usually calibrated 

to experiments via a qualitative comparison of the 

fragment cloud in terms of shape and expansion speed. 

Based on that fact, our fragment tracking method offers a 

novel way to increase the predictivity of numerical 

models since a quantitative match between experiments 

and numerical simulations can be achieved. 

As an example of how the newly available fragment 

tracking data can be applied to validating numerical 

simulations, we present a FEM simulation of the same 

HVI on the CFRP panel and demonstrate a simple 

validation between the experiment and the simulation. 

A detailed geometry of the sandwich structure, in which 

honeycomb cells are explicitly modelled is represented in 

Fig. 16. By using appropriate material models for the 

CFRP and aluminium components, and particularly an 

erosion-based failure model, in which elements are 

transformed to non-interacting mass points upon 

achievement of a critical strain, a realistic fragmentation 

pattern can be reproduced in the simulation. Fig. 18 

shows a snap-shot of the numerical simulation, where the 

honeycomb core has been hidden from view to allow 

visualization of the fragmentation occurring between the 

CFRP face-sheets. 

 

Figure 16. Numerical model of the CFRP honeycomb 

sandwich panel shown in Fig. 2. 

A direct comparison between experiment and simulation 

must consider the particular limitations of each system. 

The experimental instrumentation exhibits some 

limitations, such as a surface projection-based evaluation 

of fragment volumes and minimum resolvable fragment 

size. Furthermore, only a subset of the fragments are 

tracked. Analysis of the size distribution of fragments 

tracked compared with collected post-impact fragment 

distributions indicate that the tracked fragments are a 

representative sample of the entire fragment cloud. 

The numerical model introduces a bias in the fragment 

size distribution, which is strongly influenced by the 

mesh discretization. We assume that the artificial 

distribution of volumes does not introduce any bias in the 

distribution of velocities.  

To overcome these limitations, we compare not an 

absolute fragment count, or even a normalized fragment 

mass, but work in percentage volume fraction. This 

allows a direct comparison between experiment and 

simulation. Fig. 17 shows such a comparison between the 

FEM simulation and the experiment regarding the 

fragment velocity distribution. 

 

Figure 17. The fragment tracking data allows a direct 

and quantitative comparison between simulation and 

experiment. 
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Apart from some local discrepancies, both histograms 

show similar trends and are thus in good accordance. This 

result testifies to the quantitative validation of the 

numerical model by the experiment. 

6 CONCLUSIONS 

In this paper, we present the development of an advanced 

experimental measurement technique designed for 

measuring hypervelocity impact fragmentation in the 

laboratory. The measurement method focuses on the 

fragmentation caused by hypervelocity impacts, 

particularly on describing the properties of the fragments 

in the debris cloud that forms after impact. The setup uses 

two or more synchronized high-speed cameras to record 

image sequences of the in-flight debris fragments. The 

experimental images are processed with algorithms 

inspired from the fields of computer vision and 

photogrammetry. The main steps of the algorithm are: 

identifying fragments and their trajectories in each view, 

matching the fragments found in different views, and 

finally reconstructing the 3D locations and 3D 

trajectories of each fragment. The result is a method able 

to measure the 3D positions, velocities, and sizes of 

individual debris cloud fragments to a level of detail 

unmatched by other experimental methods. The paper 

focuses on the experimental method for measuring 

hypervelocity fragmentation, but fits within the wider 

context of validating numerical simulations of 

hypervelocity impact and satellite breakup. We present 

an outlook of how the experimental hypervelocity 

fragmentation data collected is being used to validate 

state-of-the-art numerical simulations to better predict 

the fragmentation patterns and satellite breakup effects.  
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